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ABSTRACT

Non-Vanishing of Modular L-Functions with Large Level
Amir Akbary-Majdabadno
Department of Mathematics, University of Toronto

Ph.D. Thesis, 1997

This thesis studies the non-vanishing of the twisted modular L-function Lf(s. \) for
a fixed weight k. varying level .V and a fixed Dirichlet character x (mod q) where
(g.N) = 1. Here f is a newform of level V. Let Fy be the set of newforms of weight
k and level .V.

(1) It is proved that

N
(log V)

k
Ck <i{feFv: Lf(:z'- \) # 0}

for prime .V large enough. Here. C is a constant depending only on k.
(2) It is proved that for real Dirichlet characters yi and y» with y;x2(—V) =1 and
k> 2,

!

\Y k k
— = <i{feFn: L= Li(=.x2)#0
k(log.f\/')b <i#f Y f(.z 1) f(,z xz) # G}

for prime .V large enough. Here. C’k is a constant depending only on A.
(3) In the case k = 2. it is proved that under the assumption of the Generalized
Riemann Hypothesis for Lg(s) and the assumption of L,y,n'—’(f)(% +it) K NE" for

some n > 0
eN < #{f € Fx: Lg(1) =0and L'f(1) # 0}

for prime V large enough. Here L'f(s) is the derivative of Ly(s) and c (0 <c<1)is
an absolute constant.
During the course of the proof of (3), a “semi-orthogonality” relation between the

Fourier coefficients of Fy~ (newforms with root number —1) is given. Using this




relation and the symmetric square L-function properties, upper bounds for

rf 1
Z —————4ﬂ_<f’f>,and z rg?

feFNT f€FNT

and asymptotic formula for
Y. <fif>

feFNnT
are obtained, where r; is the vanishing order of Lf(s) at s =1 and < ... > denotes

the Petersson inner product.
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NOTATIONS

flz) = olglz)) if T 05 =0

f(z) = O(g(x)) or f(zr) < g(z) if there exists a constant C such that |f(z)| < Cg(r)
‘H: the upper half-plane

H*: HUQU{oo}

GL,"(R): the group of 2 x 2 matrices with real entries and positive determinant
SL,(Z): the group of 2 x 2 matrices with integer entries and determinant equel to 1
To(V): the subgroup of SL,(Z) consist of matrices (ai;),,, Which ay is divisible by
AY

Co(V): To(V) mod its center

Si(V): the space of cusp forms of weight k and level .V

< f.g >v: the Petersson inner product of f and g in Si(-V)

ag(n): the n-th Fourier coefficient of the cusp form f

L;(N): the L-function associated to the cusp form f

Wy: the Atkin-Lehner involution

Set(N): the (—l)g—eigenspace of Wy in Sk(V)

S.=(V): the (—1)* ' eigenspace of Wy in Si(.V)

T, (pt N).U, (g|N): the Hecke operators

Fv: the set of normalized newforms of weight k£ and level .V

x: a Dirichlet character

L¢(s.x): the twisted L-function associated to f and

€s: the root number of Ly(s)

r(x): the Gauss sum

€y: the root number of L¢(s. )

L,ym2(s)(s): the symmetric square L-function associated to f

ry: the vanishing order of Ls(s) at s = £
P.(z.k.N): the Poincaré series of weight k and level NV for Si(.V)
B.(m,k.N): the m-th coeficient of the Fourier expansion of P,(z.k..V)

v




P.~(z.k.N): the Poincaré series of weight k and level V for 5x7(.V)
[ : the stabilizer of oc in [o(V)

[(s): the Gamma function

S(m.n;c): the Kloosterman sum

Je—1(t): the Bessel function of order £ — 1

Sdmn: the Kronecker delta

T, (pt V). Cq (q|V): the Pizer operators

Py : the Pizer basis

Tr(f): the trace function

tr(T.2): the trace of the e*-th Hecke operator

((s): the Riemann zeta function

Cv(s): the Riemann zeta function with the Euler factors corresponding to p[.V re-
moved

d(n): the number of positive divisors of n

o(n): the Euler phi function

A(n): the Von Mangoldt function

p(n): the Mobius function

| N: g | Vbut gtttV

(m.n): the greatest common divisor of m and n
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Chapter 1

Introduction and Statement of

Results

We recall some basic facts about modular forms (see [12] and [13] for details).

1.1 Modular forms

Let ‘H denote the upper half-plane
H={:=z+1iy: z€R, y>0}

Let GL,*(R) be the group of 2x 2 matrices with real entries and positive determinant.

Then GL;T(R) acts on H as a group of holomorphic automorphisms

az+b a b +
“/...i—)m,‘)’—(c )GGL2 (R).

Let H* denote the union of H and the rational numbers Q together with a symbol

oo (or i00). The rational numbers together with oo are called cusps.



Let f be a holomorphic function on H and k a positive integer. For

a b
Y= ( ) € GL2+(R).
c d

define the stroke operator *|;.” as

« . z+5b
(len)(2) = et ez + 0745 (£).

Sometimes. we simply write f|y for f|,v. Note that (f|v){oc = flvo.

Let SLy(Z) be the group of 2 x 2 matrices with integer entries and determinant 1
and let [ be a subgroup of finite index of it. Suppose f is a holomorphic function on
‘H such that f|v = f for all v € ". Since [ has finite index.

M
11 1 M
(01) 01

for some positive integer M. Hence f(z + M) = f(z) for all = € H. So f has a

~Fourier ezpansion at infinity” in the form of

G
2wz

f(z)= Y af(n)qu”. qu=¢€.

n=—ox

We say that f is holomorphic at infinity if a, = 0 for all n < 0. We say it vanishes
at infinity if a, =0 for all n < 0.

Let ¢ € SL,(Z). Then o~ 'To also has finite index and (flo)|y = flo for all
v € ¢"'To. So flo also has a Fourier expansion at infinity. We say that f is
holomorphic at the cusps if f|o is holomorphic at infinity for all o € SL,(Z). We say
that f vanishes at the cusps if flo vanishes at infinity for all ¢ € SL,(Z).

Now for ¥V > 1 let

To(N) = {( 4 Z ) € SLy(Z). ¢ =0 (mod N) }
c




and [o(N) = To(V)/{£1}. Note that To(N) is of finite index in SLy(Z) (Here. we
follow the unconventional notation of [4] to be consistent with the results of [5]).
A modular form of weight k and level N is a holomorphic function f on H such
that
(1) flv = f for all v € To(V).
(ii) f is holomorphic at the cusps.
Such a modular form is called a cusp form if it vanishes at the cusps.
The modular forms of weight k and level .V form a finite dimensional vector space
Mi(N) and this has a subspace Si(.V) consisting of cusp forms. Note that since

-1 0 10
( ) is the same as ( ) in [o(V). (i) shows that Si(V) = {0} if k 1s
0 -1 01

odd. From now on we assume that & iIs even.

Moreover. one can define an inner product called Petersson inner product on

Sk(V) by

— ,dzd
<f.g >=/ f(2)g(=)y*

To(N\H y:

Note that if V; | .V, then Si(NVy) C Sk(V;). However. the value of the Petersson
inner product depends on V. To emphasize this dependency sometimes we write

<f.g >y.

1.2 L-function of a cusp form

11
Now if f € Si(:V) since (

) € To(.V) its Fourier expansion at ioc is of the form
01

) = eZm:

t2

f(z) =3 ag(n)e(nz). e
n=1

Attached to f. we define the the L-function associated to f by the Dirichlet series

20

Lg(s) = Z af(n).




We can show that Lg(s) represents an analytic function for Re(s) > %U— This is a

consequence of the fact that ag(n) = O(nk%l) (see formula (1.1}).

0 -1
Let Wy = ( ) It is not an element of SL;(Z) unless V = 1. However.
N o0

WyTo(VYWy ™' = To(V).

Moreover. fIlWy? = f. Wy is called the Atkin-Lehner involution.
More generally for any prime g dividing .V with ¢" || .V (i.e. ¢" | .V but g+t N).

"r
W, = q y
Nz quw

where r. y. = and w are any integers satisfving det(W,) = q". W, is called the “W,

let

operator” of Atkin and Lehner.
Since Wy is a linear transformation of the vector space Si(.V) and Wy = 1.1t
decomposes the space of cusp forms (modular forms) to complementary subspaces

corresponding to the eigenvalues £1. Set
Set(N) = {f € SuN):  FIWy = (_1)%f} _

SV = {f € Suvy: AWy = (~1)F f

and so Si(V) = ST (V) 5 57 (V).

Then the following Theorem of Hecke guarantees the analytic continuation of
f € SK(N).
Theorem (Hecke) Let f € Si¥(N). Then L(s) eztends to an entire function and
As(s) = N2(2m)"°T'(s)Ly(s) satisfies the functional equation \s(s) = £As(k — s).
Corollary Let f € Si(N). Then Ly(s) eztends to an entire function.
Note Our definition of Si*(.V) and S~ (.V) is slightly different from the conventional

ones which denote them as subspaces corresponding to the eigenvalues +1 and —1 for

operator Wy, so for % odd our Si(N) is their Si¥(NV). The root number of Lg(s)

4




is the sign appearing in the functional equation of L¢(s). In our notation SiE(N) is
g f

the set of cusp forms whose L-functions have root number 1. respectively.

1.3 Hecke operators

Let f € Mi(N). Let p and g be primes such that p { .V and ¢ | V. The Hecke
operators T, and U, are defined by

ik 0 Ll 1
flTp=p5“[fl(p )+Zf|( )]
01 e=0 0 p
P 1
FlU, =qf! [Zfl( )}
e=0 0 q

We can show that f | T, f | [, are also modular forms of weight &k and level .V. and
furthermore they are cusp forms if f is a cusp form.

Let f € Sk(.V). We will say that f is an eigenform if f is an eigenfunction for all
the Hecke operators {T, (pt V). U, (q|-V)}. The following theorem gives the main

property of eigenforms.
Theorem The following conditions are equivalent:
(i) f is an eigenform and ay(l) = 1.

(1) Ls(s) has a product of the form

a -1 1 -1
Lg(s) = H (1 - M) H (l - it + p25+l—k>

X3
qlN q

which converges absolutely for Re(s) > 'ﬁzl

We call the product given in part (ii) of the above theorem an Ewuler Product.
Inspired by the above theorems we may think of finding a basis for Sx(.V) consisting
of eigenforms for all the operators {Wy. T, (p 1 V). U5 (q|V)}. We can show
that there exists a basis for Si(V) consisting of eigenforms for all the operators

{T, (pt N)} and the operator Wy (see [1] Lemma 27). The existence of such a basis

3




is the consequence of the fact that {T, (p t N), Wy} form a commuting family of
Hermitian linear operators (with respect to the Petersson inner product) and therefore
from a theorem of linear algebra (see [10] p. 207, Theorem 8) the space of cusp forms is
diagonalizable under these operators. Unfortunately the operators {U, (q|V)} are not
Hermitian for Sk(N) and we can not diagonalize Si(.V) with respect to the operators
{T, (pt N), U, (q|N), Wn}. However, we may find such a basis for a certain subspace
of Sk(N) (For a proof of the fact that the operator Wy is Hermitian. see Lemma 14.
Chapter 3).

1.4 Oldforms and newforms

In (1] Atkin and Lehner construct a subspace of Si(V) which is diagonizable under
the operators {T, (pt V). U, (q|V). Wn}. More precisely they showed the existence
of a subspace of Si(N) whose {T;, (pt N)} eigenspaces are one dimensional. We call
such a property “multiplicity one”. Now since the {U, (gIN). Wy} commute with the
{T, (pt N)}, the eigenform for the {T,, (p { N)} are eigenform for the {T7, (g|-V). Wx}
too.

Let N’ | N (N’ # N) and suppose that the {g;} is a basis of eigenforms for the
{T, (pt N")}. Now if d is any divisor of “—\77 then g;(dz) € Sk(NV). Set

S5 (N) = span{gi(dz); for any N'|N (N'#N). d| _VY?

We call Si?(N) the space of oldforms. Its orthogonal complement under the Peters-
son inner product is denoted Si"**(NV) and the eigenforms in this space are called

newforms. So we have
Sk(N) = Si24(N) P Sk™¥(N).

If f is a newform then we can prove that a(1) # 0 and therefore we can normalize
a newform such that as(1) = 1. Since the space of newforms has multiplicity one

the set of normalized newforms of weight k and level N is uniquely determined. We




denote it by Fx. From the above discussion it is clear that if f € F. L(s) is given
by an absolutely convergent series on the half plane Re(s) > 52”—', it has an analytic
continuation to the whole plane. Moreover, it satisfies a functional equation and has
an Euler product on the half-plane Re(s) > !‘—'2"—' For the Fourier coefficients of a
newform f we have the Deligne bound
lag(n)] € d(n)n*F (1.1)

where d(n) is the divisor function.

Now let f € Fn and x be a primitive Dirichlet character mod q with (¢. N) = 1.
The twisted L-function associated to f and y is defined by

= x(n)ag(n
Lis,x) =3 —(_,f—)

n=1

n

The twisted L-function is given by an absolutely convergent series on the half-plane
Re(s) > "zil and has an Euler product valid there. Also it has an analytic continuation

which satisfies the following functional equation

qVN
2

qVN
2

s k—s
( ) T(s)Ls(s. x) = &l ) [(k—s)Le(k—s.%) (1.2)

where €, = e,x(.f\f)-r(,\')zq‘1 with €; = +1 (the root number of f) which depends only
on f and () is the Gauss sum (see 20] p. 93).

Now let f € Fy; then the symmetric square L-function associated to f is defined
by

Cn(2s +2 — 2k) i (ag(n))?

L,ymz(f)(s) = CN(S +1 _ k) (13)

s
n=1 n

where (n(s) is the Riemann zeta function with the Euler factors corresponding to
p|N removed.

Since f is a newform, we have

-1 mn
a(m)esin) = Y & ag(Tg)

dl{m,n)
(d,N)=1




(see [12] p. 163 for a proof). Using this identity for m = n we have

1 (af >
CN(S‘*‘I—k)Z ;

n=1

Substituting this in (1.3) yields

8
|3
>

L,ymz(f)(s) = CN(2S + 2 (14)

Since > 02, —"(—"— is absolutely convergent for Re(s) > k. Lyym2(s)(s) is also absolutely
convergent for Re(s) > k. By [8] we know that L, mz(s)(s) extends to an entire

function and satisfies a functional equation of the form

s+k—2 s+k—-1
2

)F( )Lsymz(f)( )—'“"R(B —s)

N @»

where |w| = 1. and A is a constant with log A = O(log .V) (see [13] p. 337).

1.5 Problems

The L-function of a cusp form is one of the many L-functions which one studies in
number theory. Specifically, the investigation of the non-vanishing of L-functions
has been one of the main themes in modern number theory. For example. the dis-
tribution of prime numbers in arithmetic progressions is intimately connected with
non-vanishing properties of various L-functions.

In this thesis we study the non-vanishing of the L-function associated to a cusp

form of weight k& and level V. Specifically we consider the following problems.

Problem 1 Find a lower bound for

H{feFn Lf x) # 0}

(here x is a primitive Dirichlet character).



Problem 2 Find a lower bound for

k k
H{f € fv;Lf('2'~ Xl)Lf(?, x2) # 0}

(here \, and Y, are distinct primitive Dirichlet characters).

Problem 3 Find a lower bound for

k
Hf € Fuillf(5.) # 0}

(here L'y is the derivative of Ly).

1.6 Statement of results

In Problem 1. we expect that for a positive proportion of the newforms f € Fv.
L f(%. x) # 0. however. it seems that we are still far from being able to prove this
fact. The only known result concerning Problem 1 is one by W. Duke [5] for the case
k=2.

By comparing mean and mean square estimate for the twisted L-function Ly(s. \)
attached to a newform f of weight 2. Duke proved that there is a positive absolute
constant C and a constant C, depending only on ¢ such that for any prime .V > C;
there are at least C':V(log V)™ newforms f € Fy for which Ly(1.y) # 0.

Although this result does not give us a positive proportion of Fy for which
Ls(1.x) # 0. it is an important result and has certain applications. For example. if
4 is the factor of the Jacobian of the modular curve Xo(.V) determined by f € Fuv.
then L,(1) is conjectured not to vanish if and only if the rank of the Mordell-Weil
group of A over the set of rational numbers is zero . Thus. Duke’s result gives a lower
bound for the frequency of this occurrence for a prime level .V.

The main difficulty in the generalization of the above result to the cusp forms of
weight k is the contribution coming from oldforms of weight k. In chapter 2. by using
a special construction of a basis for the space of cusp forms of weight & and level .V.

introduced by A. Pizer [17], we show that the contribution of oldforms is negligible.




and therefore we obtain a generalization of Duke’s result to newforms of weight k& and

level V. More precisely. we prove the following result.

Theorem Suppose that \ is a fized primitive Dirichlet character mod q such that
(q. N) = 1. Then there are positive constants Ci (depending only on k) and constant
Cok (depending only on q and k) such that for prime N > Cqy there ezist at least
CiN(log N) % newforms f of weight k and level N for which Ly(5.x) # 0.

By using similar techniques and an estimation of sums of Fourier coefficients due
to W. Duke. J.B. Friedlander and H. Iwaniec [6]. we have been able to prove the
following theorem about the non-vanishing of the product of two distinct twist of a

modular L-function.

Theorem Let k > 2 and v, (mod q) and \2 (mod q2) be fized distinct real primative
Dirichlet characters such that y,x2(—N) = 1. Then there are positive constants C.
(depending only on k) and C,, 4« (depending only on qi. q2 and k) such that for
prime N > Cy o,k there exist at least Ci.V(log N)® newforms f of weight k and
level N for which Lf(,%. yl)Lf(.%. x2) #0.

L(s) and consider

If we set ry = ord,_x
2

Sy (1.5)

fE€FN

we may find a solution for problem 1 (in the case that y is trivial) if we can find
a good upper bound for (1.3). For example if we could prove that 3 (.- r; <
¢ dim 5" (N) + o(.V) for some c < 1.

In [16] R. Murty by applying the machinery of the Weil explicit formula to new-
forms of weight 2 and prime level V. showed that under the assumptions of the Gen-

eralized Riemann Hypothesis for the L-functions of the newforms f and the Lindelof

hypothesis for the symmetric square L-function of f

11 .
S < (5 +eldim S3(N) +o(N)
feFn

10




as N — oo for any € > 0. Since & > 1 this result does not help us with Problem 1.

The main technical tool in the proof of Duke and R. Murty’s results is the “semi-
orthogonality” of the Fourier coefficient of an orthonormal basis of Si(.V) which is a
consequence of the Petersson formulae about Poincaré series.

In chapter 3. we develop a new technical tool. We define a similar Poincaré series
for S~ (V). the complex vector space of cusp forms with root number -1 as defined in
section 1.2. and then by analogy with the classical case. we get a “semi-orthogonality™
relation for Sy ~(V). As a consequence of this. by applying the methods developed

in [16]. and under the assumption of the Riemann hypothesis. we obtain an upper

bound for
> W
f€FN
where wy = E<—}f—> Also under certain assumption on L,,,2(5)(s) on the line % + it

we obtain an asymptotic formula for

S <ff>.

fEFN
Finally. as a direct consequence of these two facts. we have

Corollary: Assume the Riemann hypothesis for L¢(s) and suppose that L,ymzm(% +
it) << N7, for some n > 0. then for prime N large enough. a positive proportion

of elements of Fy~ (and therefore Fx ) have order 1 at s = 1.




Chapter 2

Non-Vanishing of Weight k&

Modular L-functions

2.1 A semi-orthogonality relation

We start by recalling some basic facts about Poincaré series (see [18] chapter 5 for
more explanation).
We can show that Si(.V) equipped with the Petersson inner product is a finite

dimensional inner product space spanned by the Poincaré series

. e(nyz)
P.(z.k.N) = Z —_ . n2>1
veCo\Lo(V) (€5 F d)k

. * %
where e(z) = e*™ . 4 = . and [.is the stabilizer of ioc in [o(.V). We know

c d

that for & > 2 the above series is absolutely convergent.

If f € Sk(NV). we write the Fourier expansion of f as

at 100.

12



Petersson proved (see [11] p. 206)

T(k—1)

< P.(. k. N), f>= (47m)k_1a,(n). (2.1)

Now if {fi..... fr} is an orthonormal basis for Si(.V). and
Po( k. N) = cif;

we have

¢ =< Po( k. N). fi > .

Therefore from (2.1)
(4mn)*!

ﬁk——l)Pn("k' N)= ;af;(n)f.’-

Now if lsn(m. k..V) is the m-th coefficient of the Fourier expansion of P,(z.k..V). by

comparing the m-th coefficients on both sides we have

(47rn)k—l
[(k-1)

N
N
~

Po(m.k.N) =3 ag(n)ag(m). (2.

But by a formula of Petersson we have the following explicit representation (see [11]
p. 206)

k-1

15,,(m.k-,.\f)=(-'rfl‘-)T {5,,.,,+2m-" ) c"Jk_l(47rvcmn)S(m.n:c)} (2.3)

c=0(mod N)

where 4, 1s the Kronecker delta. Ji_;(z) is the Bessel function of order & — 1 which

is defined by the following integral

tfe __ =1
Jor(8) = 1/ exp(z(= — = ))d:

271 -k

=1 ~

13



and S(m.n:c) is the Kloosterman sum

S(m.n:c) = Z e(M)

C

a mod ¢
(a,c)=1

where ea = 1(mod c).
From (2.2) and (2.3). one can get the following “semi-orthogonality”of the Fourier

coefficients of an orthonormal basis of Si(.V)

ap(m) ag(n) _ (4m)*”"
S T

c=0(modN)

{Jmn + 27k Z Vi ( -h S(m n: c)}
(2.4)

Now for 0 # f € Sk(.V) set

o Tk-1
T amkt < ff S

Then we have the following estimate.

Proposition 1 If {fi..... fr} i3 an orthogonal basis for Si(N). for m and n positive

integers we have the inequality

) ag(n)

IZ j af.
',/ k— l,/nk 1

— Sl € MA(N)NT*(m.n)?/(mn)*!

where M is a constant depending only on k and d(N) is the number of divisor of N.

Proof: The following expression for the Bessel function of order & — 1 is known
(see [23] p. 60)

A1

26-1T(k - 3)T(3)

B

Jeo1(2) = /0 cos( = cos ) sin®*729 d8.

From this we get the following bound for = > 0;

\/".,Ll

|e-1(= )l_W—)

14




1

Also we have Weil's bound for the Kloosterman sum (see [7]).
[S(m.n:c)| < (m.n. c)%d(c)cli. (2.6)

Now the Proposition follows by applying (2.53) and (2.6) in (2.4). O

Note Although in the case k = 2. one does not have the absolute convergence of the

Poincaré series. nevertheless. Proposition 1 is valid in this case as well.

2.2 A basis for Si(NV)

We are going to generalize Duke's result to cusp forms of weight k£ and prime level .V
(see [5]. Theorem 1. and also 1.6 of the Introduction).

The first difficulty that we encounter is that Fy is not a basis for Si(.V) when &
is large (more precisely if k > 12 and k # 14). So we must find a basis for Si(.V)
with good analytic properties. A theorem of Pizer guarantees the existence of such
basis for Si(V).

In 1983 A. Pizer introduced the operators C, on Sk(.V) for q|.V. such that the
action of C, on the new part of Si(.V) is the same as the action of the classical {7

operators. More precisely he defined C; as
Co=Upt Wl Wy +¢5 7' W, if ql|V

C,=U, +W,L,W, if ¢|V.

Then he showed that T, (pt V). Cq (g|-V) form a commuting family of Hermitian

operators. Using this. he proved ([17] Theorem 3.10) the following result.

Theorem There ezists a basis fi(z) (1 < ¢ < dim Si(V)) of Sk(NV) such that each
fi(z) is an eigenform for all the T, and C, operators with p t N and q|.V. Let
f(z) = =2, ag(n)e(z) be an element of this basis. Then ag(1l) # 0 and assuming f(=)
is nurmalized so that ag(1) = 1, we have f|T, = ag(p)f for allpt N. f|Cq = ay(q)f

for all q|N, and af(nm) = ag(n)as(m) whenever (n,m) = 1. Furthermore f(z) is an
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eigenform for all W, operators, q|N. Finally, if g(z) € Sk(N) s an eigenform for all
the T, and C, operators with p{ N and g|N, then g(z) = cfi(z) for some c € C and

some unique t, 1 <1 < dim Si(N).

Now let Py be the basis of Si(NV) given by the above theorem. The elements of Py
form an orthogonal basis for Si(V) and their L-functions have analytic continuation
and satisfy certain functional equations. We can show that the action of C, on
Sk(N)™™ is the same as the action of U, (see [17] Remark 2.9). This shows that
Fn C Pw.

In the sequel we need an estimation for the Fourier coefficient of an oldform in

Px. Suppose that N is prime and f € Py — Fn . then we can show the existence of
A € C such that

f(z) = h(z) + AR(N:2)

where k is the normalized newform of weight k and level 1 associated to f (see [17].

Proposition 3.6). From this we can get the following lemma.
Lemma 1 With the above notations, A = £N3.

Proof: Since f € Py — Fn, we have

Therefore, f is in the space generated by h and h(.Vz). From [17], Proposition 3.4.

we krow that this space is invariant under C. We can show that
h|Cxn = ch(N)h + N*h(Nz)

R(Nz)|Cn = h + ch(N)h(N:z)

where c,(N) is the N-th Fourier coefficient of h. We know that ay(V) is the eigen-
value of Cv operator. The above identities show that the Cy operator on the space

generated by h and h(Nz) can be represented by the following matrix
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C;,( ./V) 1
NE (V) |

Therefore its characteristic polynomial is
2 — 2e4(V)z + (ea(N)* = N¥) =0.

This shows that af(.V) = ca(.V) £ V3. and so A = af(N) —cn(V) = +Vi. O

Now by using Lemma 1. we give an estimation for the Fourier coefficient as(n).

Lemma 2 Suppose N is a prime and f € Py. Then

win

lag(n)| < con

where cg is an absolute constant independent of f.

k=1

Proof: If f € Fv we know that |ag(n)| < d(n)n"z

(Deligne’s bound) and therefore
the result is clear.

If f € Py — Fy then from [17] Proposition 3.6 follows that there exists an A € C
such that

f(z) = h(z)+ AR(V=z)

where h is the normalized newform of weight k and level 1 associated to f. Since
A = ay(V)—cp(V). where cp(.V) is the .V-th Fourier coefficient of A. Lemma 1 follows
that |A| = V&.

Now if (n.N) = 1 then ay(n) = ca(n) and therefore the Deligne bound implies

the result. and if (n.N) # 1 then n = mXN and we can write
af(Nm) = co(Nm) + Acn(m).

By using the Deligne bound for the Fourier coefficients of h we get

k=1

laf(Nm)| < d(Nm)(Nm) T + Nid(m)m T
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d(Nm) + d(m)

(Vm):  m

nix

= ( J(Nm)Z.

V|-

The result follows from the fact that d(n) = O(n‘i) with an absolute constant. O

2.3 Critical values on average

Now we give a representation of L f( % ) as a sum of two convergent series for f € Py.

Lemma 3 For any z > 0. let

A(z) = 3 x(rlag(min Y S0 Je 2

n>1 1=0 J:

Where \ is a fized primitive Dirichlet character mod q with (q. N) = 1. Then we have
k . T2
Lf(§‘ x) = A(z) + 6, A(Ng¢* /)

where €, is the root number of L¢(s.\) and A is the conjugate of A.

Proof: Define the function £(r) by

1 1° k ds
Ele)= 5= [, (=) Tls+3)=
2w J(3) L 2 s
then
£y
1 1 2 1 17 1
(——) = —-(— )6—; (2 T)
T(%) r <§, J! z)

This is true because

1 1 1 ® Lk 1 sds dt
—_— _—— ) = — t2 —_ .
ey r(g)/o ° (2m'/(§)(”) )7

But we know that

1 fr>1

1 c+ico p9
2m /c—.oo s S 2 ifr=1
0 fr<l
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Therefore

5—1
1 17 _i
= &(—= e~ dt = (Y =(=) Je~=.
F(L;') .l? )/ JZO _] (.E)
Now by definition of £(r). it is clear that
r sD(s+5%)

1 k
A(z) = ——-_/(;) Li(s+ =.x} () 2057 ds

21 2" 2’ T(%)

moving the line of integration from % to —2 . and using the functional equation (1.2)

1
for Ly(s) vields

k y :
A= L5 0 e |, (ox) =)

Now changing variables s — —s gives the result. O

n

Lemma 4 We have Y72, %; = O(N~*) and =2, n*e™% = O(bF*'), where b >
1.

Proof: We know that the geometric series Y52, r™ is uniformly convergent to 1=

11—z

on any closed sub-interval of (—1.1). Now by using induction and term by term
differentiation of the geometric series. we can show that

> k.n (-1)*'zP(r) _

Z nr- = 1)k+1 ()

n=1 (-L'

where P(z) = z57' + ax_pe*"2 + ... + 1 is a polynomial of degree k& — 1.

Now the result easily follows by substituting £ = V72" and = = e~% in (x). O

From Proposition 1 and Lemma 3. we can get the following asymptotic formula.

Proposition 2 Let \ be a fized primitive character modulo q. Then we have

k ; s
> wrli(3.0) =1+O0(N"3(log N)*™)
fEPN

for N prime. The implied constant depends on q and k.
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Proof: Choosing r = ¢°Nlog NV in Lemma 3 gives

~<
~
<)
N
=
st
i
X

£-1
{ S %(2#71 log .V)J} (V)

7=0

Y ) < 5 lagtnila- % (2mnlog N)E~H (N7

n>1

k 1 £_1 ni-!
< coz(2m)? 7 (log V) Z(Vz,,),,

= n>1 \*°

LN
i 01 2mn J| ___2mn . . e
=2 {zﬁ(qﬂl_og_v) }‘f P¥orvn~E 4 0(N T (log V)i,
n>1 j=0 J° - -
From this. we get
k ag(n) i) 2an | 1
wrLe(5x)=1= 2 x(n) w —41n) —(5v—) ( =€ "V
fez;.v e nzg:l er;N Vo= Jgo.]! q* N log .V vn
L
(22 L 2T ) )o@ s — 14 (Y wp)O(N"(log V)7,
+ —_ — - € Nlog N — "‘Jf (o) 2
! ¢ Nlog N =
Note that
il 1 27 J 2 © 1 dr J ax
(=20 ) )e FNegN -] = S TNl N
(j=0 J'(qz.Vlog.V) )6 £ 1 21( 2V10g\() € [
_2

From Proposition 1. with m =n =1 we get

S wp=140(NTh),

fE€EPN
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Also. by applying m = 1 in Proposition 1 and using the above identities and Lemma

4. we have

k 1 . - 2rn x l 27r J _ 2
IS wiLp(mox) =1 S MENTF Y nf 2T NN | Y (o) | e PR
]EZP;N ar nzz:l 12 jU g Nlog V

+ My V-%(log N)3~! < M3 N3 (log VM) + My(Vlog N)F £ M, N%(log V)E!
where M. M,. M3. M4 are constants. This completes the proof. O

Now let Ps(s) = Lg(s.x1)Lf(s. x2) where \ and \ are fixed primitive Dirichlet

characters mod ¢, and q;. Then we have Pr(s) =35, bs(1)I~*. where

= 3 wulmixa(nlag(m)ag(n).

mn=!
Define for £ > 0 )
gle) = 2—}5 @) (2“)—2{%)”' E (2.8)
and set B(x) = X5, bp (D)™ L). Then we have

Lemma 5 Let f € Py for N > 1 and suppose that x, and \ are primative Dirichlet

characters mod q,. q2 with (q1g2. N) = 1. For any £ > 0. we have

) = Ble) + du o B 2B

I

Py(

o) o

where €y y, = lez(.\f)(r(‘\ll)T(xz))z(qlqz)_l is the root number of Ps(s) and B is the
conjugate of B.

Proof: By the definition of g(z), it is clear that
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Now by moving the line of integration from 2 to —%, and using the functional equation

for Py(s) which is a direct consequence of (1.2). we get

N k é‘(xn (-’VQIQZ)2 - . gar(—s + %) _ ‘ k -
B(x)—Pf(§)+——2m. /__) (———I (27) _[*(E—)Z_ f(_b+§)s ds.
2

Now changing variables s — —s yields the result. O
We come now to the following important proposition.

Proposition 3 Let  be a primitive Dirichlet character. Then

k 2 k . L .
> u;f|Lf(§.»<)| =Y wiP(5) = [I(1—p"log V+c+O(N *log.V)
fEPN fEPN 2 plg

for N prime with (q, N) = L. where ¢ and the implied constant depend on q and k.

Proof: In Lemma 5. set \; = Y. Y2 = Y. We have B =B and é 4y = 1. By Lemma 5

with r = V¢*. we have

k [
> wiPi(3) = wazbf ~ig voz)
feP~N [>1 Vg
‘ ) mn 1 ag(m) ag(n) .
=2 Y (m)(nlg(w5)—T Z (2.9)

g wf 1"
masl .Vq (Tnn vm k-1 k 1

By Proposition 1. it is clear that

; n2
> *’fPf ) =23 Ix(n)lglz)n ™" + R (2.10)
fEPN n>1 -vq
where
R N T g(m=)(m.n)i(mn)? ™", (2.11)
m.n>1 ‘/qu

Now the first term on the right hand side of (2.10) is evaluated using the definition

of g as

— L(2s+1,x0)(2m)~2 (qu)’%

1 2sL(s +
k
(%) 3
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where Yo is the principal character mod ¢ and L(s, xo) = ¢(s) [14(1 — ;‘;). Since the
integrand has a double pole at s = 0, by moving the line of integration from } to —3.

we see that the above integral is equal to

[I(1 - pH)log N + c+ O(N~%). (2.12)

plg
Now in (2.11) we calculate 3, .>1 9(55 (m.n)%(mn)g_l. It is

1 —23r(s + )2 % —-(s—§+l) .2 sds
ool PN Byl PV (Ng')' =

wfsin

because the integrand does not have any poles in the strip % < Re(s) < &21 and
1 —(s=% . - . .
st (M, n)Z(mn) (s=3+1) {5 absolutely convergent. Next we use the following iden-

tity _
(25 —k+3)0(s = §+1)°

3 —(s=%+1) _
2, (m.n)i(mn) (25 — k +2)

mn>l

(2.13)

(See [5] Lemma 4 ). By moving the line of integration from %l to % — € (e >0) we

get

Z g( ’Vq,l)(m.n);_(mn)%_l ~ cl.‘V§ log .V (2.14)

k

and by (2.11), R K Ni~%log N. This and (2.12) prove the Proposition. O

2.4 A lower bound for the Petersson inner product

To obtain a lower bound for < f, f >v when f € Py. we need to introduce the trace
function which maps Sk(N) to Sk(1). More precisely suppose .V is a prime. we can

show that the elements
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are right coset representatives for [ = ['g(:V)\I'o(1). Then for f € 5;(.V) we define

'S
Tr(f) = Z fl"/J'

=-1

It is clear that Tr(f) € Sk(1). Let Wy be the usual Atkin-Lehner involution. Since
Wy ITo(VYWy = To(V). it is clear that f|Wy € Si(.V). We have the following
lemma regarding the calculation of Tr( f|Wy).

Lemma 6 If h is a normalized newform of weight k and level 1. then
Tr(h|Wy) = N3 cn(V)h

where ci(N) is the N-th Fourter coefficient of h.

Proof: From the definition of trace we have

) N ) ) N-1 0 -1 0 -1
Tr(h|Wy) = S (AWy)ly, = AWy + 5 | Al y |

J==1 J=0

i 0 -1 N O )
But Wy = . since h € Si(1)
1 0 0 1

V-1
Tr(h|W'v) = .\/'%h(.\,':) + .Vr_% Z h(

=0

-~

;J) = N'5Ty(h)

where Ty is the V-th Hecke operator. since A is a normalized newform the result is

clear. O

Now we use the above lemma, to evaluate < h.A(Vz) >v.

Lemma 7 Ifh is a normalized newform of level 1. then

< h.h(Nz)>y = N e (N)< h.h >,
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0 1 N O
Proof: Since ( ) Wy = ( ) and h € Si(1). and the operator Wy is
-1 0 0 1

Hermitian. we have

k

< h.h(Nz) >y = N"i<h|Wy.h(z) >y.

Now let F be a fundamental domain of [o(1)\H. Then since [o(1) = UX 2 To( V).

N-1
F'=|J wF
i=—1
is a fundamental domain of [o(.V)\H. This is because if = € H there exist ' € F
and v € [o(1) such that = = v='. We can write v = v'v; where ' € [(.V). this shows
that = = ~'(+;z"). Therefore any - € H is equivalent to an element in +;F for some :.
Now suppose that for =j.z; € intF"’ there exist ' € [g(.V) such that +'zy = 2.
where z; € v F and z; € v, F. This shows that v,7''7;z)’ = =’ where z\". 2" € F and
v, 'v'v € To(1) which is impossible. this shows that F' = ; v F is a fundamental
domain for [ V)\H.
So we have

dzdy
2

< h h(Nz) >y= N~ Z/ (R|Wy)(=

1=-1 "',) Yy
Using the change of variable = = ;w. where w = u + /v we find that this is

.k — dudv
=N zZ/F (AW ) ) CRF, o =5

1=-1

But h € Si(1) and so h|vy; = h. Hence. by using Lemma 6 the above expression is

NF < Tr(A[Wy).h >1= V' (N)< b h > O

Now we use the above Lemma to get a lower bound for < f. f >v.

25



Lemma 8 If f € Py — Fx and N is a prime then
<f.f>~ 2 (N—4N% +1) < h.h >
Proof: By applying Lemma 7 we have

<ff>v = <h+AR(Nz) h+AR(Nz)>yv > (V+1+ 2AN'Fen (V) < hoh >y
(2.15)

By Lemma 1. |A| = N3 and therefore
|2AN"Fch( V)] < 4NV3 (2.16)

Applying (2.16) to (2.15) gives the desired result. [

Now we are in a situation that we can establish an upper bound for

[(k—1)
(-‘l‘;‘l’)k_1 < f.f >_v‘

qu =
Proposition 4 If f € Py — Fv. for N prime large enough

1
u)f<<kv

with implied constant depending on k.
Proof: This is clear from Lemma 8. U
Proposition 5 If f € Fy for N prime large enough

log .'V
'S

w<Lk

with implied constant depending on k.

Proof: Set ,
. = (af(n})
q(s) = (v(2s +2-2k) Y ———.

s
n=1 n
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The Rankin-Selberg method shows that ¢(s) has a pole at s = &k of residue

w(4m)* (N)

stz <>

(see [21] p. 90). So from the definition of L,yn,2(s)(s) (see the Introduction) it is clear
that for NV prime

Lyym2(py(K) = 215(4—”)) < f.f>n- (2.17)

But the extension of the Main theorem of [9] to holomorphic cusp forms. together

with the fact that for prime N no f € Fy is a lift from GL(1), implies that

1
log N

Loym2(5)(k) >x (2.18)

(see [9] p. 178, remark and paragraph following the Main Theorem). Now the result
follows from (2.17) and (2.18). O

We are in the situation that we can prove the main theorem of this chapter.

Theorem 1 Suppose that x is a fized primitive Dirichlet character mod q such that
(q. N) = 1. Then there are positive constants Cy (depending only on k) and Cgx
(depending only on q and k) such that for prime N > Cg; there ezist at least
CiN(log N)™? newforms f of weight k and level N for which Lf(.%. ) #0.

Proof: By the Cauchy-Schwarz inequality and Proposition 4. we have
k 2 k 2
| > wils(5,0)l < ) wf + )3 wy | D2 wrlLs(5.0)]
f€PN FEFNLy (% X)#0 FEPN—FniLy(5.x)#0 fEPN 2

k 2
> ‘-‘"f|Lf(§~.Y)|

fePN

log N

< (b7 € 7 L5 # VB +aimsi g )

Now theorem follows from Propositions 2, 3 and 5. O



2.5 Non-vanishing of product of twisted modular
L-functions

We may try to use the above trick to find a lower bound for the number of newforms
f for which Pg(s) = Lg(s.x1)Lf(s.x2) is non-zero at the center of the critical strip.
Here we assume that y; and y; are real and distinct such that y;y(—.V) = 1. To do

] oy 2
this we need to derive asymptotic formulae for 3" ;cp., wy Pf(%) and 3 rep, wrl Pyl % )|

Proposition 6 Let y; (mod q) and x2 (mod qz) be distinct real primitive Dirichlet

characters such that x,x2(—N) = 1. then for N prime we have

k L .
> u—'fPf(;) =2L(1.x1x2) + O(N "= log V)
fEP~ -

where the implied constant depend on q,. ¢ and k.

9 2

Proof: In Lemma 3 we have é,,,,. This is because (7(x1})” = i(—=1)q1 and (7(x2))" =
va(—1)q1 (see [20] p.91). and therefore &y, = Yix2(V)T(x1)7(x2)) (q1g2)™" =
xi1x2(—N) = 1. So we may repeat the proof of Proposition 3 line by line. The

result follows with the observation that

L Dis + &) ds
Ll Los + 1)@ ”—k—) -
w1 J(3) ]._'(5) N

is equal to
2L(1.x1x2) +O(N"7). O

We recall from (2.8) the definition of g(r) as
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Let for £ > 0 and a non-negative integer v

0
.r{.,(x)=§/ e~ F )y ot gy,
2Jo

4

be the A’,-Bessel function.
In the next lemma we give a representation of g(z) as a sum of the A-Bessel

functions.
Lemma 9 g(r) = Fé_) I J,(2Tﬂ2+JAk (47/)

Proof: From definition of g(r) and I' function we have

k2 , —ads
[ = F(E 5= / / / £t et gy gy (amip) TS
211 J(3) s
By interchanging the order of integration we get
[= [t e [ ettt dt,)d
= 1 € ( 4”216 tzz (t-z) tl.
0 T
Now by integration by parts we have
ki
[=T(3) F(4‘,.%)’/0 pEls e 3T gy (2.19)
1=0
But we know that
k_
/ £5-1 = 2dm?e) IR (4mVT) (2.20)

(see [22] p. 235. Formula 9.42).
Substituting (2.20) in (2.19) vields the result. O

1 for £ <1

Lemma 10 g(r) K
ri~ieV™T for r>1

Proof: By moving the line of integration from % to —%. we have

g(2) = 1 + O(z¥)
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which proves the Lemma if z < 1.

If £ > 1. we know
s %

Ko(z) = (5-)

e *[14+0(= )]

(see {24] p. 202). Now applying this identity to Lemma 9. yields the result. [J

Lemma 11 Let f € Py then

ag(m)ag(n) = Y dk—laf(?)

d|(m.n)

if (m, N) = 1.

Proof: We consider the collection of operators {T,, (n.N) = 1. n € N} such that
{T,, (p. N) =1, p prime} is the collection of the classical Hecke operators as defined
in section (1.3). Also we assume that Ty, (n..V) =1 satisfies the following identities

(1) TinTy = Trun if (m.n) =1,

(ii) TpTpn = Tpnt1 + p* 1 Tpn—1 if (p, N) = L.

From here it is clear that if (m,N) = 1, T, is the classical Hecke operator. Now
if f € Pn, f is an eigenform for T,, and T,,(f) = ag(m)f. But we know that if
f(z) = 2, ag(n)e(nz) then

ag(m)f(z) = Tm(f)(2) Z (> f( = ))e(nz) (2:21)

n=1 d|(m.;n)
(d,N)=1

(see [12] p. 163). Equating the n-th Fourier coefficient of the two sides of (2.21) and
noting that (m, N) =1 yields the result. O

Lemma 12 Under the assumption of Proposition 6, for f € Py and X = Nqq:(log N2,

we have

z aas(l) + O( N~
<X

where ¢ K di; log N and the implied constants depends on q1g; and k.
; g p
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Proof: In Lemma 5 set £ = Nq1¢;, then we have

l
v‘ll‘h

Pf( —2be ).

Now by using Lemma 10 and the fact that bf(l)§c02d(l)l§. we can estimate

[
2) be(l)l™2 )
:L; ! Nqiq
using the integral
/m —;,,th‘% T dt
Naiaz2(log NV (Ngqyqy)2 74
which is O(N~!"). Therefore
k -% ! r—11
Py(z5) =23 bDI7g(5——) + O(NTH). (2.22)
1<x Va1 q2
In (2.22) the sum can be written as
> 272 ) 3 xi(m)xa(n)ag(mlas(n) = (x) + (1) (2.23)

I<X \‘1 92 mn=t

where (%) is the sum over the terms with (m..V) = 1. and (f) is the sum over the
terms with .V|m.

Using Lemma 11 in (2.23) yields

x [
= 2 2g( ) > xi(m)xa(n) > dk—laf(—l-)-
d?

\
<X N 192 mn={[.(m.N)=1 d|(m.n)

Now by setting j = T.lﬂ‘ and rearranging the above sum. we have

[ W]

(=3 | X 13905, X almhaln) el) =2 aarly) (2

J__ X J 2 d Vql q2 mnz=3d? ]< X
<4/ 5 d|(m.n)

[SV]
N
N
—

where a; < g—g—) log N by using Lemma 10.
J
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Now suppose that V|m. Since m < X = Nq1¢2(log V)2 for V large enough we
can assume that m = mgN where (mg, V) = 1. Using the multiplicative property of

as(n)’s. we have

=Y 25 g( ) S alm)xa(n)ag (V) Y dFagl V ).

l<X Vqlq mn={.m=mqN d'(mo nj

Now set Vl7 = j. Rearranging () yields

2N~ 2Zae(NV d? ) .
(t) = > .5;( ) a(Z=) > xi(m)xa(n) | agly) = Jyar(J)
JS-’\‘% d(ﬁ .]2 QIQZ mn:?‘fdfar‘r:‘fmo.\l JSL\YJ'
(2.23)

where J; <« i‘;}l log .V. here again we are using Lemma 10 and the fact that {af(.V)| <
]2
cO.Vg.
Now the result follows from (2.22). (2.24) and (2.25). O

We now employ the following mean value result.

Lemma 13 For N prime and complez numbers ¢, we have

Z u.f|chaf 1+0(\—1.Y10gY ZI|C1|

fEPN <X <X

with an absolute implied constant.

Proof: See [6] Theorem 1. [

Proposition 7 Under the assumption of Proposition 6 we have

k ? "5
S wlPE) < (log V)
fEPN <

for k > 2.

Proof: Apply Lemma 13 to Lemma 12. OO
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Note: In the case k = 2. since ¥, x d*(D)I' <« (log V). we have

k 2
Y w5 < (log VY.
fEPN=F~ =

We can now state and prove the following theorem.

Theorem 2 Letk > 2 and x| (mod q;) and x, (mod qz) be fized real distinct primai-
tive Dirichlet characters such that y,x2(—.V) = 1. Then there are positive constants
Ci (depending only on k) and Cy 4,1 (depending only on q,. g2 and k) such that for
prime N > Cy 4,k there ezist at least C, N (log N)"° newforms f of weight k and level
N for which Pr(§) = Li(5.x1)Li(5.x2) #0.

Proof: By the Cauchy-Schwarz inequality and Proposition 4. we have

)

k ? k)
D3N 7C T IE-S B ST D SO1 L e
fePy “ fEFNPi(5)30 fE€PN—Fn:Py(5)#0 J&Px )
| k logV . 1 ko
< (HfeFvi PU3) # 0} +2dimSu(1) ) 3 wsl Py(5)
2 AY N/ jery 2

Now theorem follows from Propositions 6. 7. 4 and 5. O

Note: In the case k = 2 we get the lower bound C,.V(log V)7'° for the number of

non-vanishing Py(%) (see [5] Theorem 2).
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Chapter 3

A “Semi-Orthogonality” Relation
for S (N) and Its Applications

3.1 Poincaré series for S;™ (V)

We know that if k is odd, Sk(V) = {0}. So as we mentioned before we assume that

L is even and consider the following subspace of Si(V).
ST(N) = {f € Sk(N): fIWy = (_1)§+‘f}

where Wy is the Atkin-Lehner involution. We know that for every element f of
S~ (V) if we set
Li(s) = 3 ay(n)n™

n>1
then L;(s) has an analytic continuation to the whole plane and satisfies the functional

equation A(s) = —A(k — s) where

As) = (

LA TIE

(see section 1.2 or [12] p. 140). In other words Si~ (V) is the subspace of cusp forms
with root number —1.

In Chapter 2 we mentioned that Sx(N) equipped with the Petersson inner product
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is a finite dimensional inner product space spanned by the Poincaré series

e(nvyz)
P.(z.k.N) = Z —  — n>1
+€F o\Fo(V) (€2 + d)k

_ x %
where e(z) = e*™*. v = and [, is the stabilizer of (oo in [o(.V). We know
c d

that for £ > 2 the above series is absolutely convergent. From now on we assume

that k is even and k > 2. We define

P (= k. N) = Pa(z. k. N) + (=1)FH Po(z k. V)| Wy

) ) - -V 0
Note that since (Wy )" = . then
0o -V

P (2. k. N)|[Wy = Pa(z. k. N)|[Wy + (=1) 3 Py(z k. V)

= (—1)5*! (P,,(:.k. V) + (=1 P (= ke .V)IWV) — (—1)E P (= k).

So. P, (z.k.N) € S, (N).
As we mentioned before. the operator Wy is Hermitian with respect to the Pe-

tersson inner product. We continue with giving a proof of this fact.
Lemma 14 For f.g € Si(NV). < fIlWy.g >=< f.g|Wx >.

Proof: Let F be a fundamental domain for Co(NV). Since Wy 'To( VYW = [o(V).

we have

—_— dzd
< fagWy> = [ A g =
F y
dzd
= [ AWETEW T
Wa—lF y

— ,dzd

=[ (AW

‘VAV F y

— ,dzxd .
(FIWw)(2)g(=)y"* y2y= < flWy.g>.0

./WN-l Co(NYWN\H
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Lemma 15 If {fi..... fs} is an orthonormal basis for Si.™(N).

) 2k — 1)
P (s k. N).fi> = — .
< ( ) fi > pe— ag(n)
Proof: Let P,~(=.k.N) =Y, cifi. Then
= < Po(zk N)Lfi> = < Pa(zk.N).fi >+ < (=1)FF' Pz k. M)Wy £, >

By Lemma 14.

= < Pz k. N) fi >+ < (=1)EF Py(z. k. N). il Wy >=2 < Po(z.k. V). fi >

From (2.1) we know < P,(z.k.N).fi> = hﬂ-k—;'-i .(n). This completes the proof.
4d
From Lemma 13. we deduce that if {f,..... fs} Isan orthonormal basis for 5.7 (.V).
then .
(dmn) -t
—— P, (z.k.N) = .
T AR z,:“"(")f

Let Pn'(m.k..\/') denote the m-th Fourier coefficient of P, (.. A..V). By comparing

the m-th Fourier coefficients on both sides. we set

Mp kE.N)= Z 3.1
TS TR as(n (3.1)

This shows that to get a “semi-orthogonality™ relation for 5t (.V). we need to com-

pute P (m.k. V).

3.2 A “semi-orthogonality” relation for S, (N)

Now we calculate P,(m. k. N)|Wyx. To do this, we set

Fm={U'=(l l)ero(.v):IEZ}
01
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and recall the definition of the Poincaré series

e(ny'z)
P.(z.k,N) = > _
veratom (¢ + )

a b
where v/ = .

If we set S = [',\['o(V) then we can decompose S with respect to WalWy™!
in the following way. Let R = [o\[o(N)/WnTx Wx~!. and suppose (R) is a set of
representatives for R in [o(V). For any v’ € ['x\[o(V) thereexist v € (R) and l € Z

= WU Wy~ = a—bNl b '
c—dNl d

a b 1 1
Here v = and U' = . So we have
c d 01

Ix n’yWNL Wy~ ._)

Pu =2 2

vye€(R)I=—o0 C - ‘Vl)" + d)

such that

Now we apply the Wy operator to P,(z,k..V) to get

Pz k. N)[Wy = N5 (=Nz)*P(Wyz.k. V)

=Nz = = V2 la~{(2). (3.2
vE(R)I=—c0 (dN(= + l) - C)k Y€(R) ’

Since the function h, - is periodic with period 1, it has a Fourier expansion
an., (mz), Imz2>a>0.

Now we follow the method of [19] to calculate b, (m).




Considering the uniform convergence of the series defining h,,(z). we see that

+m0 e( bN-—a)

bn(m) = /01 hno(z)e(—mz)dz = / MdNz=c

e (dN= - TN

Ifw=dNz—c= u+ iv, then v > 0. This is because we can assume that d > 0.

Note that d # 0 because ¥ € ['4(V). Therefore we have

du.

() = (22 T [+ B 5

dN d d -0 U)k

Since d > 0 and v = A (a fixed positive number). b,.,(m) is defined by the above

convergent integral, because

du < x<.

m)| < /+°° exp(3(% — 75=2))
n7 - dN u2+v2)2

The following lemma gives an exact expression for b, (m).

M,,(m) m>0
Lemma 16 We have, b,,(m) = . where
0 m<0

-1

1 i 4 e nu.
.M,,‘.,(m) = d—Ne( V /u o dN — ))dw.

Ay
Proof: First of all suppose m > 0 and consider the following diagram.

Co® iA

C z(f)

For s = 1,2, 3, set

m -1
e — :[w+nw )
-  d

Is(r) = /C.(,.) wk dw.
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We will show that for s =1,2,3

2 ytnw!

lim |L,(7)| = lim | [ i S sl Y )
r-—+nolo s —r—glo C.(n) wk wy=v.
If r > maz(1. \/%). then
m R4
.Vr r >
and on the C;(r) and Cy(r). v
0< 242 <l
So
< 1 n 27 m n._ . 046 T
[ (r)| < gl A exp(—j(.vr - :)sm )df < g
and for s = 1.3
(Zzme(]
4 e rmy — 5B 1 A 2;
| I,(r)] S/ LA L ritv ))dv < —k/ exp( ot v )de.
0 (r2 +v2)2 rc Jo dN

Therefore. we can evaluate b, . (m) by integrating clockwise around a circle with center

at origin. for example the circle ww = % This shows that b, (m) = M,,(m).
If m = 0. again we can show that lim._ |[,(r)| = 0 for s = 1.2.3. and therefore

1  nb e(—4)
busl0) = el ) J —

where C is the unit circle. Calculation of the residue of
e(;—{ ) at w = 0 shows that b,,(m) =0if m =0.

Now suppose m < 0 and consider the following diagram.

C 4(p)
Col| iA
/ )
B
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For m = —u(p > 0). we have

rr—23 A

1 n T
) € 2, exp(=g (e + 2)

Since the integrand is analytic in the region enclosed by Cy(p) and Cy(p). we deduce
that b,,(m)=0if m < 0. O

From Lemma 16 and (3.2). we have

P.(z. k. N)|Wy = Vi Z {Z .\/[n,.,(m)e(m:)}

¥€(R) \m>0

By using the integral representation

1 exp(5(z—=7"))
el =g T w
of the Bessel function of order k& — 1. and substituting ¢ = 4—?\/@; and : = —i/Hrw.

we get

Lk 1 nb m(—v) e,m 51 di7\/mn _
=Nz —e(— - 27 — Jie- e(mz).
{ ) d;Ve( p R ) (27 ) (n) v Jie—1( VA )¢ e(mz)
Y€{R)
(3.3)

b
Now let v = ( ¢ ) € (R). Since (R) is a set of representatives for [ \y( N/ Wyl Wy
c d

we can assume that
0<b<d 0<(—c)<dN. (d.N)=1. N|(—c). ad —bc=1.

So in (3.3) we can express the inner sum in terms of d. For d > 1 with (d..V) = 1.

we are dealing with the following exponential sum

Z e(nb-*-f;l(—ﬁ)) (3.4)

0<b<d,(b.d)=1.V|(—c)
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Since ad — bc = 1 and the exponential sum (3.3) depends on b and — only mod d.
we can substitute N?@-1} for —%. where o is the Euler function and b is the inverse
of b mod d. Note that

—5; = Vo915 (mod d). (3.3)

a b
Since v = ( ) € [o(V), for given d and b (0 < b < d. (b.d) = 1) there exists ¢
c d

such that V|c and ad — bc = 1. If we assume that 0 < (—c) < d.V then (3.3) shows
that such c is unique.
Substituting (3.5) in (3.4) shows that (3.4) is actually a Kloosterman sum in the

following way

ro(d)~1\F
2 (P mNTT ) 5(n. m N1 ), (3.6)

0<b<d.bb=1 (mod d) d

Therefore (3.3) and (3.6) vields
P.(z.k.N)|Wxy

_ { V-iemi ™) T Y S(n m N d) g (Frymn } e(mz).
m>0 n d. (d.N)=1 A
(3.7)

Now we are in the situation that we can derive a “semi-orthogonality™ relation for
the Fourier coefficients of an orthonormal basis of S, 7 (.V).

Let {fi,.... f,} be an orthonormal basis for S 7(.V). and let P,7(z.k..V) = 3, i fi.
From Lemma 15 we get

4 k=1
%%I:)_—UP,.-(..IC. V) = Zaﬂ(n)f,.

Now if 13,,‘ (m.k.N) is the m-th coefficient of the Fourier expansion of P,7(z.k..V),
we have

(47n)*t .
mpﬂ Zaf, af‘(m
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and by definition of the Poincaré series for S~ (V) we have
B (m k. N) = Pa(m b, N) + (—1)3 By(m. k. V)| Wiy (3.8)

so by applying (2.3) and (3.7) in (3.8) we get

Theorem 3 Let {fi,..., fs} be an orthonormal basis for S, (N). Then

iE
S

k—1 ~
Z\/_ﬁ\/(kl)l— (47) ) {Jmn+27ri'k Z c—l~5'(rn.n:c).]k_1(-ll

c=0{mod N)

~27N": Y d7'S(n.mNo@d) ], (Fvme, L
d, (d.N)=1 dv'N

As a consequence of the above theorem we have

Proposition 8 If {fi..... fs} is an orthogonal basis for S;,™(N) and m.n are positive

integers, then we have the inequality

-

a 1 _k
|5 o AL S50 < MAN)N )

=

{mn

rk—1
an)~ "< >

number of dzm.sors of N.

where wy = M is a constant depending only on k. and d(.N) is the

Proof: Similar to Proposition 1. the result follows easily from the following bound for

the Bessel function Ji_;(z) for = > 0

~k=1

| Ji—1(2 |_m

(see Proposition 1) and the Weil bound for the Kloosterman sum (see [7}). i.e.

[
|-

|S(m,n:c)| < (m.n.c) .O

d(c)c

Note In the case of kK = 2, one does not have absolute convergence of the Poincaré

series. Nevertheless, Theorem 3 and Proposition § are valid in this case as well. To
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see this, we use a method of Hecke and define

e(nyz)
P.(z,2+2s,N) = E -
oo \Fa(N) (ez + d)2|cz + d[2

for a positive real number s.

We can show that as s — 0% the above series tends to a cusp form of weight 2

(see [18] pp. 183-191 for details). So we define

P.(z.2,N) = lim P,(z,2 4+ 2s. V).

s—0t

It can be shown that

Pa(m.2.N) = (%)% {6,,,,, P> 1 S(m.nz )y Cmn)}

¢=0 (mod N)
(see [18] p. 188). To obtain a semi-orthogonality relation in the case k = 2. we need
to calculate 15,,(:,2, N)|Wx. the m-th Fourier coefficient of P,(m.2..V)|Wy. Since

Pa(z.2.N)[Wy = lim (Pn(2.2 + 2s. N)Wy)

we start by finding the Fourier expansion of Pn(z,2 + 2s..V)[Wy.
Following the notation of the beginning of this section, let (R) be a set of repre-
sentative for R = Foo\[o(V)/ Wy F..Wx~!in [o(N). Then we have

Pa(z,242s,N) = >_ Z e(nYyWxU'Wy™'z)
’ '16(R)l—-°o ((c—dNl)z + d)?|(c — dNID)z + IS

1 1 b
where U! = and v = ¢ .
01 c d

Now we apply the Wy operator on P,(z,2 + 2s, N) to get

Po(2,2 + 25, N)|[Wy = N2z 3 Z e(n‘;f(,(ii’,’,:‘;)
nl<, + 2s, N=1 ° ’ - r 2s°
~€(R) I=—c0 (dN(z+1) - )’ |dN(z +1) — ¢’
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Now in (*) set = = (¢ + then we have

K ] ) 2 e(nt) tx  e(— m—'('cm)
Pa(C+—=.2425. N)|Wy = N7 + — —d . ()
di d/V é\_"’(m dN)**? 1_§;ka + D¢+

Let

+0o0

: e(—Fxicrn)
Fi(¢) = - —
I=Z—:oo (C+ l)zk +l|2

To sum this series we make use of the Poisson summation formula

+0 +20 ~c
Z f Z /+ —muw)dw.

l=—nc m=-—o0

This is valid for any function f defined on R for which f” exists and is continuous.
f(z) and f'(r) tend to zero as |z| — oo and |f|. [f'| and |f"| are integrable over R.

This is true for
el —~iera )
flw) = ——Stke)
(¢ + w)’|¢ + wl

1

for real w and s > —;. Therefore by applying the Poisson summation formula to

F,(C) we get
+oc

where

dw.

Im(C.8) =

/+oo e(—W&m)e(—m(C + w))

e ((Hw)I¢ +wl”
In this integral s > —3 and ¢ is any point of H .

Using [m(¢.s). () can be written as

2s e("—b) +
—_— = VH.Z" —d—— m " 7).
Pal¢ o+ 2+ 25 V)W = N0+ o ;‘(m v 2 In(Csletmd)
Substituting ( = = — 75 in In(¢,s) and noticing that [n(¢.s) = Im(z + 75.5) =
I.(z.s) in the above identity yields to
6( nb+m(——:!) +00
Pa(2.2 4 25, N)|Wy = N'¥2 |22 3 _—W 3" Ln(z.s)e(mz).
v€(R) (dN) m=-—0o0
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Similar to the case k > 2, the above identity can be written as

. . s = 5 Nold-t. 4
P(.2425. W)Wy = N2z Sy 2R mVTE )
d. (d.N)=1m=—x (dN)

In(z.5)e(mz). (*%)

Now suppose cqg is any positive number and let Im = > 2¢q then we can prove that

20(HT(s + 1)
C023+l F(S + 1)

~2m(|ml— 25 )eo

[Im (2, s)e(mz)| <

(see [18] Theorem 35.7.1 for a proof).
By applying this upper bound and also the Weil bound for the Kloosterman sum.
it is clear that the double series on the right of (**) is uniformly convergent for s > 0

and any n = Im =z > 2¢9 > 0. Therefore

P,(z.2. N)|Wy = hm(P(:.2+2.s W)

s—0+

2 S(n.mN°W@-l4) ‘
= Z Z .V'dz ‘31—13:(?" Im(:.s))e(m:)_ (***)

d.(d.N)=1m=—c

But it can be proved that

lim Io(.s) = In(=.0) = 4 ° m=0
m Iyl 2.8) = I, 2. = . "
0% —27dNH(Z)T [ (2R m >0

(see [18] Theorem 3.7.1 for a proof).
Now by substituting the above expression for lim, .o+ [m(=.5) in (* * *) we derive
(3.7) in the case k = 2. Now it is clear that Theorem 3 and Proposition 8 are valid

in the case k = 2 too.

Note From now on for simplicity we assume that ¥ = 2 and .V is a prime.
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3.3 Non-vanishing of the derivative of modular L-

functions

Here we follow [16] and apply the explicit formula method to get an upper bound for

> st

J€FNT

where ry = ord,=; Ly(s). To start, let us write

foe) -1
Lo(s) = -yl w1
f(S ~ QIHN qa ) pl;‘\[[( ps + p23—1)
-1 _ - 1
_ 1_“!(‘1)) %\t % T
ql[}( pe ,,Ith( o) (=20

This is true because f is a newform and therefore it has an Euler product (see 1.3)

Now set
a,*+a* if n=p*andpt .V

cf(n) =4 (ag(q)® ifn=¢" and ¢V
0 otherwise
Here ap + @, = ay(p), with |op| = \/p.
Lemma 17 (Weil's ezplicit formula) Let F : R — R satisfy the following conditions:
(a) there is an € > 0 such that F(z)exp((1l + €)z) is integrable and of bounded

variation,

(b) the function ﬂﬂgﬂﬂ ts of bounded variation.

Define
®(v) = /_Z F(z)e™dz.

Then,

Y <1>()—2F(0)1og£+ / 1+t t)dt — 226’ F(logn)

L[(1+l"l)—0
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where A(n) is Von Mangoldt function and the sum on the left hand side is over ¥
such that Lg(1 +1v)=0,1 < Re(l+1v) < %

Proof : See [14]. O

We choose T > 0 and define

Fo) ={ oT — |z| if |z| < 2T
0

otherwise

Then F satisfies the conditions of Lemma 17 and

2sin “/T)Z

®(v) = ( -

Moreover. the corresponding integral involving the logarithmic derivative of the gamma
function is easily estimated to be O(T). To see this. let T > 1 and consider the fol-

lowing integral

=T 2sintT ? L e
r=[" S+t smT)dt=4/’+4/ =L+,
0 F t 0 ’lf

Since sinz < r if £ > 0. I is O(T) as the gamma function is bounded in this range.

Also we know that

’

-f,—(l +it) = O(log (|t| + 2))

(see [3] p. 73). Therefore

< log ( t+2)

12<<4/ dt = 4T log (2 + = +/

+2)

&

This shows that I = O(T'). Also, we have

2sin “/T)2 _ 4T

®(0) = T lim (

¥—0 vy

and therefore choosing T = i'f%ﬂ, we will have ®(0) = (log r)’. On the assumption
of the GRH (Generalized Riemann Hypothesis) 7 is real and so ®(y) > 0. Thus from
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the explicit formula we get

—22 c, Iog + Ollog ). (3.9)

n<xr

rs(log r)? < 2(log z) log

Before continuing we state some analytic estimations which will be used in future.
Lemma 18 1. 3, logplog§ X r.

2. e, 82 (log £) ~ L(logz).
Proof: Set

0 otherwise

b(n) = { 1 1« prime

Then by using partial summation we get

T dt
2 logt

S logp=)_b(n)logn = n(r)logr —/; Ti )dt ~r —

p<z n<z

L (3.10)

where 7(r) ~ 73 I the number of prime less than r. Now using (3.10) and partial

summation yields

Zlogplog— Zb(n Iognlog—<<.r

p<r n<r

The second formula is derived in a similar fashion by using the partial summation

formula. O

Now we have the following theorem

Theorem 4 Let N be prime. Suppose that for each newform f € Fx~. Ly(s) satisfies

the analogue of the Riemann hypothesis. Then

3 _
Y wyry < 7 +0((log V)7
feFN~

Proof: From (3.9), we get

vy
(logz)* 3 wsry < 2logz)(log 5—) > w
fEFNT fe€FNT
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Iog ( > wyres(n)) + O((log ) Z Wil

"ZZ n

n<z feFNT feFNT

Note that Proposition 8 with m = n =1 gives

Therefore.

vN
(log z)* Z wyry < logl:)log-—— —Zz log Z wreg(n)) + O(log x).
2 n
feFN~ n<z fEfv

(3.11)
We now study 3., - wecp(n).

In the case n = p prime. cs(p) = as(p) and therefore by Proposition 8

> wrag(p) =0(N"'p)
feF~N—

which by Lemma 18 contributes

Zlogplog N"H=0(N""r)

p<zr

to the second sum in (3.11). The contribution from n = p® with @ > 3 is at most

A lo
Z (n )log—<< (log r) Z —p§£<<logz

n=p2<zr.a>3 ﬁ a>3.p

We still have to deal with n = p*. Note that
ci(p?) = a,[,2 + df, = (ap + c"x,l,)2 - 2apGp = af(p)2 - 2p.

But as(p)® = as(p?) + p. By the Rankin-Selberg method.

58P, (o)~

p<z P
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Therefore, by partial summation, we deduce that

lo
5 9820, 7 g

p<r

and so.

Again, by partial summation,

lo 1 .
> 3P llog)ay(p)’ ~ {llog2)"
p?<z

In addition by Lemma 18,

log —)~ ——(log z)?

_22

p?<r

so that

lo T . 1 .
> 22P(1og Z)(as(p)* ~ 2p) ~ —>(log )’
P 4
P2 <z

as r = ooc. Summing over f with weights wy. we obtain a contribution of
1 2 V-l 2
Z(logz) + O(N"'(log £)%).

At last, we have

Z lo g 2,.» 1 -1 =2 -1
wyry < + -+ ON'"+ N z(logz)™" + (logz)™)
fe€FNT log z 4
which simplifies to

1 logN =2

2 + Slog z +O(N'z(log£)™").

Choosing z = N, we get

> wf"f<( + O((log N)7%))

f€FN™



which completes the proof. OJ

Note In the Proof of Theorem 4 we estimated ZfEf.V— wrep(n) for n = p*(p { V).
We can show that the above estimations are valid in the case n = ¢%(¢|.V) too. Note

that ¢f(q) = 1 (see [1] p. 147).

Now we are going to give an asymptotic formula for the Petersson inner product
on average. To do this we start with reviewing some fact about the symmetric square
L-function. which we denote by L,ymz2(s)(s). The value of L, 2¢5)(s) at s = 2 and

the Petersson inner product are related with each other as follows

873
= < f f> (3.12)

3

L‘sym’(f)(z) =

'

(see [21] p. 90). So to find an asymptotic formula for 3°, r - < f. f > it is enough
to find one for 3 ;. r - Loymz2(s)(2).

We start by recalling the following identity

2 x

where (y(s) is the Riemann zeta function with the Euler factors corresponding to
p | V removed (see 1.4 for details).
Consider the integral

! s = gs(n) n
2 2) Loyym2()(2 + s)T°T(s)ds = Z ", exp(—T)

n=I1

and this is
1

= Loym2(1)(2) + 5—

/( | L) (2 + ST T(5)ds. (3.14)
-z

In (3.14) the integral is easily estimated as

O(N°T-%)

on the assumption that L,ymz2(s)(3 + it) < N°.



From the Phragmén-Lindelof theorem it follows that
3 . L 3
L’!I'"z(f)(_i “+ lt) <4 .Vz (].Og .V)

(see [13] p. 336 for details). Also assuming the Lindelof hypothesis (which is a
consequence of the generalized Riemann hypothesis for Lgymz( £(s)). 8 can be any

positive number. Therefore from (3.14)

x

Loman(@) = 3 20 exp(—7) + O(N°T %), (3.13)

n?

n=1

Now we derive an expression for gg{n). From (3.13) we have

20 x 2 0 2 x 0 UZ
R SR S )= (3 ey 2,
n=1 n=1 v=1

n.N)=1

s
n=1 n u=| u !

Here
{ £ ifu=d&. (d.N)=1
Ay =

0 otherwise

and

gs(n) = Z agag(v?) = Z d*as(€e?).

uv=n (d.Ni=1
d2e=n

Substituting the expression for g¢(n) in (3.15) gives

Proposition 9 L,m2(5)(2) = XyedN)=t 5d1,(—:z—)exp (—LTEH-O(.\"”T‘%) where § is the

positive number satisfying L,ymz(,)(% +it) « NY.

From Proposition 9. it is clear that to find an asymptotic formula for -,z - Leym2(5)(2).
we need an estimation for 3_ . . - @ s(€?). By using the Selberg trace formula we have

the following proposition.

Proposition 10 For N prime and e prime to N

Y ap(ed) = ¥-1l.o ((e2d(e®) + Nied(e?)) (logeN)*) .

feru- 24
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Proof: It is clear that

s as(e?) = tr(Te )+7;7' (T2|W)

Here tr(T.z) is the trace of the e?-th Hecke operator on S3(.V) and estimation of the
trace of the Hecke operators as given in Proposition 2.8 of [2]. O

We need the following two lemmas in the proof of our asymptotic formula for

Zfe}‘_v L,ymz(f)(Q).

Lemma 19 If d(n) is the number of divisors of n. then
(1) o d(" ) = C(”\)( ")(’). where ((s) is the Riemann zeta function and n(s) and
A(s) are Dirichlet series which are absolutely convergent for Re(s) > %

(i) £, d(n?)exp(—%) < T(logT)".
(i) 22, A exp(—2) < (log T).

Proof: Since d(n) is a multiplicative function. we have

> d(n?) = 27j+1 5)
= ( y =TI+ =+ +-)
P ) A
3 *k 3 ! * x %
=1{1+ =1+ + +.9=][(1l=-=) (1- (1 4+ + + o)
IpI( ps) 2s p3.! 1;-[ ps 2s 2s pSs
3 -1 = an
=[a--) —. (f)
P p n=1 n
Let n(s) = 02, 2. then a, = 0 if n has a prime factor with multiplicitv one. This
shows that n(s) is absolutely convergent for Re(s) > % Now we have
1 7 3 3 1 !
o= II -2 =Mo-=+-—75-=)
p prime p P D pz pJ
3 ! X X -1 3 &b,
=T[(-= 1+—+ ) =110 ==) —-
]-:;[ pa) p33 I}JI p n=1 n®




Let A(s) = Yoo, %‘,l, again similar to n(s), A(s) is absolutely convergent for Re(s) > %

Substituting

in (1) yields (i).

(ii) Since

we have

By part (i) this integral is

1 (Cs)Pas)
_27ri/(2) Gy T ().

By moving the line of integration from 2 to 2 we get

%0 " 1 - 3 .
Z d(n?)e~T = O(T(log T)z) + o /(3) @(—)ﬁs?—(slT’F(s)ds < T(log T).
n=1 ! 3
This completes the proof of (ii).
(iii) Similar to part (ii), we set
2 d(n?) _n 1 > d(n?)
T = — *T(s
et o /(2)(:{,1 )T T(s)ds

1 s+ 1) n(s+ 1),
/m T°T(s)ds.

T 2m As +1)
The result follows by moving the line of integration from 2 to —i and the calculation

of the residue at s = 0. O
Lemma 20 dim$,”(N) = & + O(VN).
Proof: 1t is known that for ¥ > 3 a prime the exact number of forms in Fy is given

by §Fn = 35(N + a(N)), where a(N)=-13, -5, —7.or 1 according to whether
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N =1. 5. 7. or 11{mod 12). Now the result follows from the fact that
. |
dim $,7(N) = =dim Sy(N) + O(VN)

(see [16] p. 276). O

Now we can give an asymptotic formula for the Petersson inner product on average.

Theorem 5 If we assume Lyym2(s)(3 + it) € NE=", for some n > 0. then

S < fof >= S (dimSyT (V) + O(N*E),
feEFNT

Proof: By Proposition 9 we have

2

d*e
P €Xp (— ) 2 - L
E, Loymz()(2) = E _dz—ezT_ Z ag(e )+ O( N7 =),
feFy— d.e(d.N)=1 fe€F~N—

Since f is a newform with root number —1. we have ag(V) = —1 and for (€. .V) = L.
ap(N*™meg?) = (af(.V))zmaf(eoz) = as(eo?) (see [1] p. 147. Theorem 3). Therefore the
above identity can be written as

L pery- Laman(2)

_dze.'V .
=( Y el T }p_;_u) S aplel 0N T ),

d,e d,e -
(d.N)=1,{e.N)=1 (d.N}=1.{e.N)=1 feFN

By Proposition 10

Zfe}',v— L yym2(5)(2)

N e‘cp ( exp (— L) x
= _— d+O( NI T3
24 ( ; +mz_:1 .Vz”‘ ; d?e +U+0( =)
{d.N)=1.,{=.N)=1 (d.N)=1.[e. N)=1
where 2
exp (—57)
) < (ﬁ‘: ——d2e2




1 (_d’eN

o) exp
+ Z V2m dz:

m=1

)) (d(e?)e*(logeN) + ed(e?)N(logeV)?)

T
e?
From Lemma 19 we know that

. d’e T T?
2 — — — cm—
Ee d(e®) exp ( T)<<d2(10gd2)

and
d(e?) d4? T3

€
. exp(——T—) < (log i)

2

e

Therefore by using the partial summation formula. we deduce that
) < T(log T)* + T(log T)?(log V) + N#(log T)® + N3 (log T)’(log V)

The main term is deduced by an estimation of

exp(—%£2)
y o7

(d.N)=1

From the integral formula we have

exp(—£) 1
Z T/ _

(=1 d? 2T

which gives us

Therefore

N exp(—-£8) N I T i

d.e ~
(d,N)=1,(«,N)=1 (2. N)=1
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(3.16)




This is easily seen to be equal to

' 7\'2 2 1
.— - .‘V —5+( .
(g TONTE)

Hence from (3.12). for any T > 0. we have

2 2
7r2

3
el (Z) + O(T(log T)* + T(log T)*(log N)?

~ Y <fif>=;

feEFNT

| =

+N¥(log T)® + Vi(log T\ (log V)*) + O(N**'T~7).

Now by the assumption of theorem. § = % — . Therefore setting T = N'~7 we have

S < fof >=15(dimS, (V) + 0V O
fEFNT

Now from Theorems 4 and 5 we can deduce the following upper bound for the
Lrery-Ts7
Corollary 1 Let N be prime. Assume the Riemann hypothests for L¢(s) and suppose

that L,,szm(% +1it) K Nz n, for some n > 0. then

Y rsE < SdimS, (V) +o( V)
feEFNT -

as N — oc.

Proof: By the Cauchy-Schwarz inequality we have

-




By Theorems 4 and 3. this is

[N] 1]

-

27 (2 o) (FSdimSa (V) + 0V ))

which is

4

< —=dimS,7(N) + o(.N)

VIR

as N = . O

Note The upper bound given in Corollary 1 is actually weaker than what we can
deduce from a result of Brumer. In [2] Brumer proved that under the assumption of

the Riemann hypothesis for Lg(s).

3 . .
> s < (5 +¢€) dimS,~(N)
feF~~

for any € > 0 and .V sufficiently large (see [2] Theorem 3.15). By using the Cauchy-

Schwarz inequality. this yields

The following non-vanishing result is a direct consequence of Corollary 1.

Corollary 2 Under the assumptions of Corollary I for Lyymzs)(s) for any f € Fx™.
and for prime N large enough a positive proportion of elements of Fx~ (and therefore

Fv) have order 1 at s = 1.

3.4 An approximate trace formula for S;™ (V)

In this section as another application of “semi-orthogonality” relation. we use Theo-

rem 3 to derive a formula for

> ag(n)

Fn—
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where Fy~ is the set of newforms in S;7(.V). We follow [16] closely.
Proposition 11 Suppose that L,m2(s(s) < N?. for some § > 0. Ifn is not a

square, we have for any T >0

>~ ag(n) =0(nTd(n) + ﬁd(n).\[“"’]‘-%)
f€FNT

where d(n) is the number of divisors of n. If n is a square. we have

> asln)= p {Qv(2) + O(T-%ﬂnl-—é)}

fEF~NT
+0(nTd(n) + V/nd(n)N'"*T 1) .

Proof: From (3.12) we have

ag(n)
Z —V Z S.n.z<!ff>[‘sum(f)()

feEFNT FEFNT

Now from Proposition 9 and definition of wy = -7 we get

Lo exp (%) :
.—V:(27r2) > as(n)= z _%;_2—( > .ufaf(n)af(e')>

fe€F~NT de(d.N)=1 fEFN—

+ Z u.'faf(n)O(.VgT_% ).
feF~N~

Now by applying Proposition 8 and the Deligne bound for as(n). we get

V,27r2) > ag(n > (- ("82\/—F

2 2
fEFN" de.(d.N)=1 d%e

1

+O(N"'ne(n.e?)?) + O(Vrd(n)N°T 7))
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Here we are using the fact that 3 ., —ws = % + O(N7Y). and also :Fyv~ = O(.N)

(see Lemma 20). The error term arising from the sum is

= w5

din

where ;(d) is the Mébius function. From the Mobius inversion formula we know that

mi =3 g(d)

dim

Now using the definition of g(n). we can rewrite the above sum in the error as

__d%e e
V"lnzg(s) Z ) =N~ nZg J)Z Ze\(p_[_

Sin d.eble? 8in e.dle?

It is easily seen that the above expression

<« N-lary 49 g(é) _ V_lnTZZ#(d) V-l TS A
§in \/_ Sin dié d

which is
L N~'nTd(n).

This proves the Proposition when n is not a square.

When n = 2. substituting (3.16) into the main term gives the desired result. ]
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