
0018-9162/02/$17.00 © 2002 IEEE36 Computer

P E R S P E C T I V E S

Software
Development: An
Outsider’s View

A thriving debate surrounds competing software development
methods.1,2 Advocates of both traditional software engineering
and craft-based—also known as agile—development approaches
appear no closer to a consensus now than they were when the
controversy began 30 years ago.

Yet, from the outside looking in, the debate—and software development
itself—take on a different perspective. How developers make software is
often a central if not necessarily explicit concern of technical circles and gen-
eral social debates on privacy, trade, patents, innovation, and security.
Building a bridge between the specific technical issues and the broader social
concerns can thus help us move toward a clearer understanding of software
and software development.

Bringing software into nontechnical frameworks involves translating spe-
cific software issues into equivalent social and economic domains. Much in
software is unique, but much also has been debated, discussed, and learned
before. The act of translating and viewing software technologies and prac-
tices through social science domains raises interesting questions: What is
software? Why is it hard to make? Why do we care?

Insiders normally assume that the answers to these questions are obvious
and well understood. However, social science teaches that unstated or unde-
fined assumptions often are the essential issues in any debate. Drawing on
these different traditions offers a worthwhile exercise, not because doing so
will solve the software development debate, but rather because insiders may
acquire new tools and insights for moving the discussion forward.

A LITTLE HISTORY
The ongoing debate has shown clear cycles of alternating strength between

craft-based and engineering approaches to software development. For a
debate to exist so strongly for so long, even as the software industry has
grown to maturity, shows that it touches on fundamental aspects of soft-
ware. In contrast, other modern industries have resolved these fundamen-
tal issues rather quickly. For example, by the time the automotive industry
had reached its 30th anniversary, around 1930, the fundamental issues of
production, as exemplified by Ford’s assembly line; product, as exemplified
by standardized design; and industry, as exemplified by the few dominant
national players like Ford and GM, had all been clearly established.

Much has been made of the 1968 North Atlantic Treaty Organization
conference that defined software engineering.3 Yet, from a sociological per-
spective, the 1969 NATO conference and the report4 it generated prove far
more revealing.

Comparing software
with other disciplines
and industries can help
resolve the perennial
debate between those
who advocate an
engineering approach
to development and
those who advocate a
craft-based approach.

Kyle Eischen
University of California, Santa Cruz

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

May 2002 37

The first meeting, which focused on general con-
cerns and management issues, produced widespread
agreement about the clear need to prevent a soft-
ware crisis caused by increasing software complex-
ity and a lack of skilled software professionals.

The second meeting, designed to focus on the
technical questions of preventing the crisis, saw a
“communication gap” split participants between
the theory versus practice and computer science
versus software engineering approaches. From its
conception as an independent field of activity, soft-
ware thus established a basic pattern that continues
to this day, with serious unresolved tensions
between management, theory, and practice issues.

Discussions then and now tend to focus on the
quality, cost, and practice aspects of software devel-
opment methods. As demonstrated at the 1968
NATO conference, the software community gen-
erally agrees that they should produce the highest
quality software for the lowest cost. However,
defining, estimating, and measuring quality and
cost—as well as the methods to produce such
results—have remained open to question since the
second NATO conference.

The central issue is why software developers
agree on the general problem but disagree on the
specific approaches to solve it. The main answer is
that when they get down to specifics, developers
disagree on the general definition of software qual-
ity and efficiency—much as people will agree that
a code of law is good, but they disagree about the
specific laws it should contain. This fundamental
difference becomes obvious only when developers
discuss methods in detail; as a result, they never ask
basic or first-principle questions about software
quality, cost, and efficiency or place such issues
within a broader context.

RATIONALIZING SOFTWARE?
The broader context is software rationalization.

Since 1776, when Adam Smith advocated the divi-
sion of labor in Wealth of Nations, rationalizing
production has offered a proven method for
increasing quality, lowering cost, and improving
efficiency.

The expansion of industrial capitalism, the rise of
modern bureaucracy, and scientific management all
accelerated the momentum for creating defined,
quantifiable, repeatable production and organiza-
tional processes. General competition in markets
proved the power of such rational systems and
pushed their general adaptation. Although the
modern automobile industry provides perhaps the
most well-known example, the general logic of

rational organization and production exists
quite broadly in society, from government to
public schools to farming.

Predictably, then, the 1968 NATO meet-
ing—which took place at the beginning of a
true computer revolution and the height of
US industrial manufacturing dominance—
produced general agreement on the increas-
ing importance of software in society and the
need for an engineered approach to its pro-
duction.

Just as predictably, the participants in the
1969 conference could not agree on the
details of a defined, quantifiable, repeatable
process while highly skilled professionals still
crafted most of the world’s software. These pro-
fessionals—often engineers by training and thus
not averse to the title of software engineer—
worked as direct practitioners who were neither in-
volved in nor inclined to build software factories.

Additional assumptions
Assuming that software can be rationalized leads

to a host of additional assumptions that frame the
debate around development methods. Rationali-
zation assumes a quantifiable process, maximized
for efficiency by a distinct division of labor, with
defined inputs and outputs, managed by an effec-
tive rule-bound bureaucratic structure—all of which
results in a process capable of being engineered.

Arguably, the industrial revolution signaled the
rise and dominance of rational approaches to pro-
duction over small-scale, craft-based methods. In
a world of scarce resources, producing more with
less is a positive outcome. Within economics, a
perennial tradeoff exists between the benefits to
society overall and the costs individual producers
must bear from the introduction of new produc-
tion processes or organizations. This tradeoff holds
true for free trade, technological change, and man-
ufacturing methods. Economists make the argu-
ment, with strong evidence behind it, that in the
long term, both individuals and society benefit from
increasing productivity, higher quality, greater vari-
ety, and lower costs.

Engineering software
Given the rationalization of multiple craft indus-

tries over the past two centuries—all of which were
once considered impossible to manufacture or mass-
produce—and the resulting benefits in efficiency
and quality, we can reasonably expect that soft-
ware can and should become engineered as well.
We also can expect that software producers, like

Software
developers agree

on the general
problem but

disagree on the
specific

approaches
to solve it.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

38 Computer

all skilled professionals in the past, will resist
this process vehemently, deeming it impossi-
ble to rationalize software given its unique
nature, which requires skilled training and
unquantifiable knowledge to master.

Rationalization and bureaucracy
At the turn of the 20th century, Max Weber

foresaw a world of “specialists without spirit,
sensualists without heart; this nullity imag-
ines that it has attained a level of civilization
never before achieved.” His comment reflects
the attitude that skilled artisans have always
felt toward rationalization. However, Weber

also recognized that rationalization and bureau-
cracy play essential roles, making them inevitable,
if flawed, features of modern life5 that limit creativ-
ity, innovation, and spirituality—by definition.

Rationalization leads to rule-bound, fixed para-
meters and hierarchies that place control, knowl-
edge, and power in institutions and not individ-
uals. Bureaucracy is essentially an institutional-
ized algorithm that takes general inputs and pro-
duces fixed and anticipated outcomes.

Thus, rationalization and bureaucracy—the
underpinnings of modern manufacturing—have
consistently emphasized management objectives
and goals as the drivers of industrial development.
The more rationalized and explicit a process, the
more it can be managed, moving control of the
process from producers to managers.

The very act of quantifying the process and mov-
ing it toward a manufactured method places skill in
new tools and techniques, opening up the possibil-
ity of replacing skilled professionals with less-
skilled workers. Individual resistance to the process
isn’t sufficient to prevent an overall transformation
of the industry toward engineered methods.

So, we must question why software development
hasn’t been rationalized. Why, even with a tremen-
dous effort to engineer the process from within the
profession and from the industry overall, does soft-
ware development continue to confront the same
issues it did 30 years ago? Why haven’t basic indus-
trial patterns—software industrialization, software
manufacturing, software engineering, and software
assembly lines—become dominant within the
industry? Answering these questions requires
understanding software’s precise nature.

SOFTWARE DEFINED
Rationalizing software development requires first

defining software quality, skill, and professional-

ism. That this is still an open issue after 30 years
explains why software development remains unra-
tionalized and unique from other industries or
processes. However, understanding why arriving
at a definition is difficult does provide a key step
toward understanding exactly what software is.

Patent or copyright?
Consider for example whether software should

be patented or copyrighted. The answer to this
question frames the debate on software methods.

Is software development an invention derived
through a scientific method, or is it an act of speech
and creativity?

Is software an act of engineering or communica-
tion? If software is a rational endeavor, improving
quality involves better and more resources: better
management, better tools, more disciplined pro-
duction, and more programmers. If software is a
craft, improving quality involves the exact oppo-
site: focusing on less hierarchy, better knowledge,
more-skilled programmers, and greater develop-
ment flexibility.

That software has characteristics of both patents
and copyrights helps explain why software devel-
opment debates become so intractable and condi-
tional. It is difficult, especially from the outside
looking in, to separate software into understand-
able and well-defined categories. Our legal system,
assumptions, and experience force software to be
one or the other, losing an accurate description in
the process.

Opening open source
Processes, products, and industries normally

involve relatively separate areas of study. Such
assumptions don’t work for software. The debate
surrounding open source development provides an
example. In many ways, the basic conflict between
open source and proprietary methods stems from
two distinct visions of how software should be
made, distributed, and rewarded. Even questions
of quality—the belief that open, transparent, peer-
reviewed products have higher quality—deal not
with the end product but also eventually with the
structure of software businesses and processes.

When debating software development methods,
a central problem arises from not bringing assump-
tions of quality, organization, and reward clearly
into the open or linking them together. For example,
being adamantly committed to open source for its
quality or organizational aspects still doesn’t address
questions of business or economic rewards.

Software
development

debates become
intractable and

conditional because
software has

characteristics of
both patents and

copyrights.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

May 2002 39

Communicating design
As early as 1974, Fred Brooks6 stated that merely

adding people to a software project didn’t increase
its productivity—a classic diseconomies-of-scale
phenomenon. At some point, when more people try
to use the same tool, the entire process slows down.

From a sociological viewpoint, this situation pre-
sents a fascinating case study into the specific lim-
its of software development. The essential limit is
not the number of tools or lack of organization but,
rather communication. The increase in lines and
quality of communication, not the number of peo-
ple, complicate software development. Yet, bureau-
cracy and rationally managed processes are built
to create rules for communicating and managing
information flows to achieve economies of scale.

Thus, the solution to software development
should be better planning, particularly in defining
a project at its inception to accurately identify
needed resources. As I’ve outlined, however, such
defined, managed processes have yet to become
prevalent—exactly because communication is just
as difficult between developers and users at a pro-
ject’s inception as it is between developers during
the process.7

Communication and sociology
As sociologists know, communication is inher-

ently difficult, mediated by always-contextual
codes, norms, culture, and perceptions. What is
new and surprising is that software has the char-
acteristics of other communication mediums.8

Building basic requirements, for example, involves
a process of tacit knowledge communication,
which explains much of what is difficult in soft-
ware development. Translating knowledge from
one context to another, like translating any lan-
guage, involves not just basic grammar and syntax
rules, but also issues of meaning and intent that are
contextual and subjective.

Sociologists clearly understand the difficulty in uni-
versally defining and quantifying over time anything
that involves human interaction, practice, or belief—
exactly what software development attempts to do.9

Broadly, software offers an exercise in translat-
ing existing algorithms—in nature, organizations,
or practices—into digital form. Much of this
domain knowledge is tacit, undefined, uncodified,
and developed over time, often without being
explicit even to the individuals participating in the
process. More importantly, such knowledge and
practices are dynamic, constantly evolving, and
transforming. It should not surprise us that model-

ing these processes proves exceedingly diffi-
cult and that such efforts are often incomplete,
impractical, or unsatisfactory.

DOMAIN KNOWLEDGE’S KEY ROLE
The ease with which a concept translates is

a function of how well accepted and defined
its specific domain knowledge is. Most chil-
dren can, for example, design a car using
widely known and socially agreed-upon con-
cepts. Although most people have a basic idea
of how a factory operates, asking someone to
design a process for making cars is more difficult.
Asking someone to design the process of designing
a car poses an even greater challenge. Is there one
right way to design? Are there rules? Is it a burst of
inspiration or is it 99 percent hard work performed
by a solitary individual or by a team?

Translation implications
The further away from broadly accepted and

understood domain knowledge we move, the more
difficult translating that knowledge becomes. The
issues are clearly context specific, changing with cul-
ture, location, gender, and experience. Assessing the
importance of domain knowledge to software devel-
opment can bring new understanding to topics such
as the following that developers discuss and prac-
tice within the discipline:

• Organizational development will be structured
around and struggle with the demands of com-
munication, both in the initial project design
and during its development.

• If defining software requirements is difficult,
defining a universal, fixed process will be dif-
ficult as well. This observation suggests that
development modeled on a rational process or
physical principles will always have limited
applicability to software development.

• Because software products often involve unde-
fined domain knowledge, the more social the
development process the better. Arguably,
tools like peer-review networks and extensive
beta testing focus tacit knowledge.

• Because software development’s end result will
be both a defined product and an aspect of a
translation process, it will have characteristics
of patents and copyrights.

• Questions of quality will often be individually
subjective, changing over time and place. The
social nature of software ensures that even
measuring quality will be difficult, involving

Communication
is inherently

difficult, mediated
by always-

contextual codes,
norms, culture,

and perceptions.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

40 Computer

mixed and relative costs, reliability, and
look-and-feel aspects.

• How well we define domain knowledge—
beyond issues of organization, cost, and
development time—plays a large role in
structuring development. When develop-
ers thoroughly understand the processes
they are modeling, and when algorithms
are most transparent, they can create soft-
ware with greater ease. Arguably, then,
existing well-engineered processes lend
themselves to engineered software de-
velopment.

• The software development methods they
choose, and the sides they take in software
debates, generally reflect developers’
assumptions and experiences regarding
how well defined, and thus translatable,
knowledge domains are.

Overall, the software debate would benefit from
addressing a basic design process that is inherently
difficult, social, and based on domain knowledge.
Design presents a challenging intellectual activity
in any industry, but this maxim is especially true
for software, exactly because it involves an almost
pure design process.

Design assumptions
Software engineering and software methods like

the Software Engineering Institute’s Capability
Maturity Model arise from a government and mil-
itary tradition of dealing with clearly defined prob-
lems and needs. Issues of management, cost, and
robustness—not how to define the problem
domain—are central.

Agile or craft-based methods, on the other hand,
originate in university and programmer communi-
ties, where solutions to problems evolve collectively
over time, based on a transparent, open-ended
process. Both engineering and craft-based methods
address the specific demands of translating domain
knowledge, but they differ in their design assump-
tions and problem definitions. This shifts the soft-
ware development debate to consider what
software is expected to do, how to structure a
design process to define and meet these needs, and
what methods and tools support that process.

BRINGING SOFTWARE INTO SHARP FOCUS
When debating software development, the analo-

gies used to describe a specific method’s benefits
can cause confusion. Both engineering and craft-
based analogies have limitations. Engineering meth-

ods stem from a tradition that describes domains
according to physical laws and defined parameters,
not dynamic evolving systems. Craft-based ap-
proaches highlight the centrality of individual pro-
ducers, but they do not necessarily address the
demands of a global industry.

While the scenarios in the “Software Develop-
ment Analogies” sidebar are in some ways limited,
they don’t need to provide an ideal fit. Rather, they
highlight the assumptions underlying software
methods and help to locate possible scenarios that
better reflect software reality.

In each analogy, issues of design, quantifying qual-
ity, efficiency, skill, and complexity dominate the
development process. In each, the final product’s suc-
cess and the development process itself are suscepti-
ble to complex interactions that are difficult to
control, anticipate, and quantify. Thinking through
various examples of intellectual, domain-knowledge-
based work opens the ongoing software debate to
the consideration of new development models.

LINKING THE INSIDE AND OUTSIDE
From the outside, a few things seem clear.

Developing high-quality software consistently, at a
reasonable cost, presents a real challenge. Software
combines creativity, translation, skill, and a disci-
plined method. The various aspects of software as
industry, product, and process push for and simul-
taneously resist rational, standardized methods.

Industrial constraints
Software as an industry must confront the same

market forces, accounting practices, and govern-
ment oversight as all other industries. Software
products combine both functional and subjective
aspects that make standard assessment difficult.
Even basic issues of security, privacy, and look and
feel are relative and situational.

Rationalizing software processes involves stan-
dardizing intellectual work, which is historically
difficult and most likely counterproductive.
However, these obstacles raise tremendous chal-
lenges for the industry, whose market expects ratio-
nal management and calculation. Improving
software involves considering each of these aspects.

As our society and economy become more infor-
mation- and knowledge-based, demands on software
and its producers will increase. As an increasingly
central means of producing, storing, transforming,
and distributing knowledge,8 software demands ever
increasing numbers of solutions and professionals.
The original articulation of this trend at the 1968
NATO conference has proven correct.

Overall, this debate
would benefit from
addressing a basic

software design
process that is

inherently difficult,
social, and based on
domain knowledge.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

42 Computer

Global implications
Software also forms part of a broader trend

in which multiple industries face similar chal-
lenges to produce intellectual work on a global
scale. Software development can learn from
work on the characteristics of information
economies and intellectual or information
industries.

Networked together by flows of people,
ideas, and finance,10 the global economy fits
well with the basic patterns that structure soft-

ware as an industry. This environment bases com-
petition on the management, development, and
control of innovation and knowledge in both prod-
ucts and people.11 To achieve these aims, firms and
organizations must be structured to promote learn-
ing, innovation, and general goal-setting, thus break-
ing with past bureaucratic, fixed models.12

Certain industries and organizations, like phar-
maceuticals, film, or universities, can adapt more
easily to such an environment exactly because they
are structured around basic issues of intellectual
production and management. Design, innovation,
and intellectual work are basic issues in an infor-
mation economy. The work detailing these trends
is extensive and well documented, including quan-
titative and qualitative factors of R&D, productiv-
ity, commercialization, entrepreneurship, learning,
and network organizations.

Manufacturing legacy
All of these examples provide resources that soft-

ware development can draw upon and apply.
Historically, software developers have indeed done
so, but usually in the context of methods like
manufacturing’s Total Quality Management or
engineering’s Statistical Quality Control—method-
ologies based on defined processes linked to quan-
titative tools. TQM and SQC have a place in
software development, but applying these method-
ologies should follow from an understanding of
design as the central software activity.

The design issue changes the tools and the ques-
tions. TQM, an important tool for manufacturing
cars, is far less effective for designing them. Even
manufactured products suffer from poor industrial
design, resulting in product recalls or failure in the
market.

Generally, questions of design, domain knowl-
edge, and specification don’t lend themselves easily
to pure statistical analysis. We shouldn’t expect soft-
ware to differ from other industries in this regard.
Neither should we ignore the possibility that soft-
ware—as a leading design and intellectual activity—

could be an innovator that generates new combi-
nations and insight into tools and resources arising
from intellectual work in an information age.

FUTURE ISSUES
Short-term concerns in software development

clearly focus on cost, efficiency, and quality. How-
ever, putting design and domain knowledge at the
discussion’s center will highlight the following
issues:

• Software benefits from peer review. Is peer
review benefical early in the process, as in an
open source model, or late in the process
through beta testing or public review? Private
software will continue to be a factor, so a key
question is funding third-party or public mon-
itoring. Universities have an obvious role to
play here, especially in terms of protecting
security and privacy. But the process should
also be democratized, so that general user com-
ments and perspectives can be included, and
tradeoffs between cost, quality, and appropri-
ateness are openly understood and chosen.

• Much is already right with software develop-
ment. Developers generally agree on many
methods that work, usually rules of thumb
such as test early, test often; perform daily
builds; and focus resources early on require-
ments. We also need to articulate why these
methods work, specifically as they relate to the
core activity of translating domain knowledge
and managing intellectual work. This will facil-
itate comparing software to existing case stud-
ies of other informational industries. It will
also help in developing basic concepts that can
make software understandable to other eco-
nomic and social sectors.

• Competition in the market is essential, regard-
less of specific development methods. Empha-
sizing that monopoly as an impediment to
innovation misses an equally essential point:
Markets can also evaluate cost and quality
tradeoffs efficiently. Well-functioning markets
will eventually support well-functioning devel-
opment processes. However, we can learn
much from studies of the media industry’s con-
trol over content and distribution. Keeping dis-
tribution channels open, particularly as
software becomes more service oriented, will
be key to ensuring innovation in products as
well as processes.

• Build and borrow tools for evaluating and
transferring domain knowledge. Simple met-

Design, innovation,
and intellectual
work are basic

issues in an
information
economy.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

May 2002 43

rics or models that quantify how well a process
is defined will in turn help generate estimates
of time and cost. Such efforts will also help
determine the resources needed to define the
domain originally. We can build on tools from
the social sciences to evaluate simple questions
of how well codified a process is, how well such
codes transfer to digital form, and how well
individuals can communicate such knowledge.

• Design, an inherently buggy process, is diffi-
cult across the board. Software as a pure
design activity will never be perfect, especially
as it models and interacts with human activi-
ties in a dynamic environment. It will also
never be manufacturing, except to the extent
that manufacturing is a design activity. We
must decide what we expect from software.
Tools that define and rank requirements are
essential. The nature of design, as a human-
centered process, also means that mistakes,
bugs, and unforeseen and unintended conse-
quences will occur, just as they do in other
industries. Developing mechanisms to correct
these problems, and creating incentives to
avoid them, must be part of the ongoing dis-
cussion. The increasing pervasiveness of soft-
ware in society will make such issues central,
whether software quality and reliability
increase or not.

Longer-term issues involve creating development
support that reflects both the increasing importance
of software in society and the unique demands
made in transferring domain knowledge into effec-
tive software:

• Software education should include general
skills. These skills include communication,
social analysis, design processes, and team-
work between both software developers and
nontechnical users. In addition to developing
strong software skills, this training should
instill the means to analyze, communicate, and
work within a design environment.

• Cross-disciplinary education will create exper-
tise in new domain knowledge areas. This
training will let developers combine their soft-
ware skills with specific understanding of prob-
lem domains. Biology, finance, film, and
management all provide examples of areas in
which software skills will be needed in the
future. Applied projects, especially in nontech-
nical environments—such as creating infor-
mation systems for nonprofit organizations or

in developing countries—would build
expertise and benefit from becoming a
standardized part of curricula. These
measures would most likely increase par-
ticipation and interest in software devel-
opment as a dynamic, socially engaged
profession.

• Cross-disciplinary training should extend
to nontechnical fields. An understanding
of technology generally, and software
practices in particular, will help facilitate
communication about needs and prod-
ucts. Until understanding and apprecia-
tion of software extends beyond the
computing industry and computer sci-
ence departments, the ability of future admin-
istrators, managers, financiers, consultants,
educators, and policymakers to see software’s
potential benefits and effectively implement
new software-related projects will remain lim-
ited.

• Cross-disciplinary research merits increased
support. This work should focus on software
processes, products, and industries. Cross-
disciplinary teams and closer ties between all
scientific disciplines would help developers
understand specific issues in process and prod-
uct innovation, the effects and optimal direc-
tion of R&D funding, and aspects of public
regulation and support. This knowledge would,
in turn, help provide an overall map of software
that extends from the present forward. In-
creased interdisciplinary awareness would also
expand the general understanding of software
and help incorporate key lessons from software
development into broader disciplines.

O ur ultimate goal should be to simply and
directly raise the profile of software gener-
ally, respecting and making explicit its

unique structures and important role in society, and
creating training opportunities, research projects,
and tools to support it. Such efforts move software
not only beyond current methodology debates but
also closer and more understandably to the world
outside looking in. �

References
1. A. Cockburn and J. Highsmith, “Agile Software

Development: The Business of Innovation,” Com-
puter, Sept. 2001, pp. 120-122.

2. S.R. Rakitin, “Letters,” Computer, Dec. 2001, p. 4.

As software
becomes more

service oriented,
keeping distribution
channels open will
be key to assuring

innovations in
products and

services.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

3. P. Naur and B. Randell, eds., “Software Engineer-
ing: Report on a Conference Sponsored by the
NATO Science Committee,”http://www.cs.ncl.ac.uk/
peoplebrian.randell/home.formal/NATO/nato1968.
PDF.

4. J.N. Buxton and B. Randell, eds., “Software Engi-
neering Techniques: Report on a Conference Spon-
sored by the NATO Science Committee,” http://
www.cs.ncl.ac.uk/people/brian.randell/home.formal/
NATO/nato1969.PDF.

5. M. Weber, The Protestant Ethic and the Spirit of Cap-
italism, 1920, reprint, Routledge, London, 1992.

6. F.P. Brooks, The Mythical Man-Month: Essays on
Software Engineering, Addison-Wesley, Reading,
Mass., 1995.

7. P. McBreen, Software Craftsmanship: The New
Imperative, Addison-Wesley, New York, 2002.

8. P.G. Armour, “The Case for a New Business Model,”
Comm. ACM, Aug. 2000, p. 19.

9. K. Eischen, “Information Technology: History, Prac-
tice and Implications for Development,” Center for
Global, International and Regional Studies, Univer-
sity of California, Santa Cruz, Working Paper 2000-
4, 2000, http://www2.ucsc.edu/globalinterns/wp/
wp2000-4.pdf.

10. M. Castells, The Information Age: The Rise of the
Network Society, Blackwell Publishers, Cambridge,
Mass., 1996.

11. P.F. Drucker, Management Challenges for the 21st
Century, HarperBusiness, New York, 1999.

12. C.A. Bartlett and S. Ghoshal, “Beyond the M-Form:
Toward a Managerial Theory of the Firm,” Carnegie
Bosch Institute for Applied Studies in International
Management, Working Paper 94-6, Pittsburgh, 1994,
http://www.gsia.cmu.edu/bosch/bart.html.

Kyle Eischen is associate director of Regional and
Informational Research at the Center for Global,
International and Regional Studies, University of
California, Santa Cruz. His research interests include
innovation and design processes and the social and
economic impact of information technology. Cur-
rently he is codeveloping the Technology and Human
Development Initiative, a UC systemwide “skunk
works” for applied technology projects in the devel-
oping world. Eischen received an MA in sociology
from UC Santa Cruz and an MPIA in international
affairs (applied economics) from the Graduate School
of International Relations and Pacific Studies at UC
San Diego. Contact him at kbe@ieee.org.

computer.org/join/
Complete the online application and

• Take Web-based training courses in technical areas for free
• Receive substantial discounts for our software development professional

certification program
• Get immediate online access to Computer
• Subscribe to our two new publications, IEEE Pervasive Computing and

IEEE Transactions on Mobile Computing, or any of our 22 periodicals at
discounted rates

• Access the entire Computer Society digital library for only $50*
• Attend leading conferences at member prices
• Sign up for a free e-mail alias—you@computer.org

*Regular price: $99. Offer expires 15 August 2002.

Join the IEEE Computer Society online at

T H E W O R L D ' S C O M P U T E R S O C I E T Y

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 7, 2009 at 23:15 from IEEE Xplore. Restrictions apply.

