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Course Outline

Instructor: Robert Benkoczi, D520.
Resources:

1 Text: Operations Research (95), Katta Murty; highly recommended.
2 Papers on course web page.
3 Other links will be posted as necessary.
4 Tutorials & Octave manual (programming).

Grading:
I Assignments: problem solving and coding.
I Paper presentation. A schedule of paper presentations will be

posted on the course web page.
I Project: 3 weeks (view as a larger assignment); topics will be

provided, but free to chose your own. Consult your instructor.
I Take home exam (24 or 48 h).



Course Outline

GRADUATE VS UNDERGRADUATE WORK:

Lectures: same.
Assignments: extra questions for graduate students.
Paper presentation: if you are undergraduate, guidance will be
provided; talk to your instructor before choosing paper.
Project: if you are undergraduate, consult your instructor before
choosing project.
Take home exam: extra questions for graduate students; same
time for completing questions for both graduate & undergraduates.



What is OR?

OR = techniques for optimizing the performance of systems.

Example
1 Product mix problems: planning manufacturing process (maximize

profit).
2 Machine scheduling (minimize completion time).
3 Matching problem (minimize cost of matching).
4 Generalized assignment problem: agents and tasks, cost & profit

for tasks, budget for agents (maximize total profit)
5 Shortest paths in a weighted graph
6 Protein-lattice alignment (minimize total error).
7 Scheduling for courier company: assign people, vehicles, routes

and jobs (maximize profit subject to capacity constraints)
8 ...



Approaches to solving optimization pb.

1 Using combinatorics
2 Using numerical variables and algebra/calculus (mathematical

programming).

Product mix (numerical by nature):

Profits and requirements for products A,B
A B Availability

RM1 2 1 15
RM2 1 1 12
RM3 1 0 5
profit 15 10
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Approaches to solving optimization pb.

Profits and requirements for products A,B
A B Availability

RM1 2 1 15
RM2 1 1 12
RM3 1 0 5
profit 15 10

COMBINATORIAL ALGORITHM:
maximize production for A (largest profit)
produce B if materials left.

Solution: 5 A and 5 B. Profit: 125.



Approaches to solving optimization pb.

xA ≤ 5

xA

xB

15

xA + xB ≤ 12

2xA + xB ≤ 15

OPT

7.5

xA, xB: production (decision
variables)

2xA + xB≤ 15
xA + xB≤ 12

xA≤ 5

Max 15xA + 10xB (objective
function)

OPT profit: 135 at (3,9)



Other examples. Transportation

dj

sources destinations

si

cij Given
Supply si for source i ;
Demand tj for target j ;
Transportation cost cij ;

Output
Shipment xij from source i to target j

Objective
Minimize transportation cost
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Balanced transportation
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corresponding demand fully,
iterate.

Not optimal!
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MATHEMATICAL PROGRAMMING:
Decision variables

xij : shipment from i to j .
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j
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i
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xij ≥ 0.
Objective
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How useful are mathematical programs?

Computing the optimal solution.

Values of slack variables at optimal solution: critical resource
analysis.
Marginal cost analysis: how to change supplies or requirements to
improve the objective.
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Slack variables at OPT
Recall product mix problem:

max 15xA + 10xB

2xA + xB≤ 15
xA + xB≤ 12

xA≤ 5

We can translate inequalities in equalities using slack variables (useful
for LP algorithms like simplex).

2xA + xB + z1= 15
xA + xB + z2= 12

xA + z3= 5
z1, z2, z2≥ 0
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Slack variables at OPT

level set for objective at OPT

xA

xB

15

xA + xB ≤ 12

2xA + xB ≤ 15

OPT

7.5

xA ≤ 5

z3 at OPT

2xA + xB + z1= 15

xA + xB + z2= 12

xA + z3= 5

z1, z2, z2≥ 0

OPT value: 135 at (3,9)
z3 = 2, z1 = z2 = 0
(slack variables show critical
resources)



Marginal values

d

xA

xB

OPT-2

OPT

xA + xB ≤ 12

xA + xB ≤ 12 + ε

12 + ε

Obj: 15xA + 10xB

max 15x+10xB

2xA + xB≤ 15

xA + xB≤ 12 + ε

xA≤ 5

Marginal value of
constraint (2) is
π2 = 10d .

Definition
Marginal value of constraint (i) = change in optimal cost if RHS of (i) is
perturbed by 1.
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Marginal values

Profits and requirements for
products A,B

A B Av.ity M.V
xA xB

RM1 2 1 15 π1
RM2 1 1 12 π2
RM3 1 0 5 π3
profit 15 10

M.V. IN PLANNING:

Should new product C be
manufactured if it requires, say
2 units RM1, 1 unit RM2, and 1
unit RM3?

Yes, if the sale profit of C is
> 2π1 + π2 + π3.
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