Welcome to CPSC 4850/5850 - OR Algorithms

Course Outline

Operations Research – definition

3 Modeling Problems

- Product mix
- Transportation

Course Outline

- Instructor: Robert Benkoczi, D520.
- Resources:
 - Text: Operations Research (95), Katta Murty; highly recommended.
 - Papers on course web page.
 - Other links will be posted as necessary.
 - Tutorials & Octave manual (programming).
- Grading:
 - Assignments: problem solving and coding.
 - Paper presentation. A schedule of paper presentations will be posted on the course web page.
 - Project: 3 weeks (view as a larger assignment); topics will be provided, but free to chose your own. Consult your instructor.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Take home exam (24 or 48 h).

Course Outline

GRADUATE VS UNDERGRADUATE WORK:

- Lectures: same.
- Assignments: extra questions for graduate students.
- Paper presentation: if you are undergraduate, guidance will be provided; talk to your instructor before choosing paper.
- Project: if you are undergraduate, consult your instructor before choosing project.
- Take home exam: extra questions for graduate students; same time for completing questions for both graduate & undergraduates.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

What is OR?

OR = techniques for optimizing the performance of systems.

Example

- Product mix problems: planning manufacturing process (maximize profit).
- 2 Machine scheduling (minimize completion time).
- Matching problem (minimize cost of matching).
- Generalized assignment problem: agents and tasks, cost & profit for tasks, budget for agents (maximize total profit)
- Shortest paths in a weighted graph
- Protein-lattice alignment (minimize total error).
- Scheduling for courier company: assign people, vehicles, routes and jobs (maximize profit subject to capacity constraints)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- Using combinatorics
- Using numerical variables and algebra/calculus (mathematical programming).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- Using combinatorics
- Using numerical variables and algebra/calculus (mathematical programming).

Product mix (numerical by nature):

Profits and requirements for products A,B					
	A	В	Availability		
RM1	2	1	15		
RM2	1	1	12		
RM3	1	0	5		
profit	15	10			

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Profits and requirements for products A,B

	A	В	Availability
RM1	2	1	15
RM2	1	1	12
RM3	1	0	5
profit	15	10	

COMBINATORIAL ALGORITHM:

• maximize production for A (largest profit)

<ロト <四ト <注入 <注下 <注下 <

• produce *B* if materials left.

Solution: 5 A and 5 B. Profit: 125.

 x_A, x_B : production (decision variables)

 $2x_A + x_B \le 15$ $x_A + x_B \le 12$ $x_A \le 5$

(日) (四) (三) (三) (三)

æ

Max $15x_A + 10x_B$ (objective function)

OPT profit: 135 at (3,9)

sources

destinations

Given

Supply s_i for source i; Demand t_j for target j; Transportation cost c_{ij} ;

Output

Shipment x_{ij} from source *i* to target *j*

<ロト <四ト <注入 <注下 <注下 <

Objective

Minimize transportation cost

Balanced transportation

Total supply = total demand

COMBINATORIAL ALGORITHMS:

Supply s_i for source i; Demand t_j for target j; Transportation cost c_{ii} ;

Output

Shipment x_{ij} from source *i* to target *j*

Objective

Minimize transportation cost

Given Supply s_i for source i; Demand t_i for target j; Transportation cost c_{ij};

Output

Shipment x_{ij} from source *i* to target *j*

Objective

Minimize transportation cost

Balanced transportation Total supply = total demand

COMBINATORIAL ALGORITHMS:

Brute force (enumeration): O(n^m)
 & split shipment (greedily?)

<ロト <四ト <注入 <注下 <注下 <

Output

Shipment x_{ij} from source *i* to target *j*

Objective

Minimize transportation cost

Balanced transportation Total supply = total demand

COMBINATORIAL ALGORITHMS:

- Brute force (enumeration): O(n^m)
 & split shipment (greedily?)
- Gredy: find cheapest cost, satisfy corresponding demand fully, iterate.

Output

Shipment x_{ij} from source *i* to target *j*

Objective

Minimize transportation cost

Balanced transportation Total supply = total demand

COMBINATORIAL ALGORITHMS:

- Brute force (enumeration): O(n^m)
 & split shipment (greedily?)
- Gredy: find cheapest cost, satisfy corresponding demand fully, iterate. Not optimal!

MATHEMATICAL PROGRAMMING: Decision variables x_{ij} : shipment from *i* to *j*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Output

Shipment x_{ij} from source *i* to target *j*

Objective

Minimize transportation cost

Given Supply *s_i* for source *i*; Demand *t_j* for target *j*; Transportation cost *c_{ii}*;

Output

Shipment x_{ij} from source *i* to target *j*

Objective

Minimize transportation cost

MATHEMATICAL PROGRAMMING: Decision variables x_{ij} : shipment from *i* to *j*.

Constraints

$$\sum_{j}^{j} x_{ij} = s_i, \quad \forall i$$

 $\sum_{i}^{j} x_{ij} = t_j, \quad \forall j$
 $x_{ij} \ge 0.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Given

destinations

Supply s_i for source i; Demand t_i for target j; Transportation cost c_{ii} ;

Output

Shipment x_{ij} from source i to target j

Objective

Minimize transportation cost

MATHEMATICAL PROGRAMMING: Decision variables x_{ii} : shipment from *i* to *j*. Constraints $\sum x_{ij} = s_i, \quad \forall i$ $\sum_{\substack{i\\ x_{ij} \geq 0.}} x_{ij} = t_j, \quad \forall j$ Objective min $\sum_{i} \sum_{j} c_{ij} x_{ij}$

How useful are mathematical programs?

• Computing the optimal solution.

How useful are mathematical programs?

- Computing the optimal solution.
- Values of *slack* variables at optimal solution: critical resource analysis.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

How useful are mathematical programs?

- Computing the optimal solution.
- Values of *slack* variables at optimal solution: critical resource analysis.
- *Marginal cost* analysis: how to change supplies or requirements to improve the objective.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Slack variables at OPT

Recall product mix problem:

 $\max 15x_A + 10x_B$ $2x_A + x_B \le 15$ $x_A + x_B \le 12$ $x_A \le 5$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Slack variables at OPT

Recall product mix problem:

 $\max 15x_A + 10x_B$ $2x_A + x_B \le 15$ $x_A + x_B \le 12$ $x_A \le 5$

We can translate inequalities in equalities using slack variables (useful for LP algorithms like simplex).

$$2x_{A} + x_{B} + z_{1} = 15$$
$$x_{A} + x_{B} + z_{2} = 12$$
$$x_{A} + z_{3} = 5$$
$$z_{1}, z_{2}, z_{2} \ge 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Slack variables at OPT

$$2x_A + x_B + z_1 = 15$$

$$x_A + x_B + z_2 = 12$$

$$x_A + z_3 = 5$$

$$z_1, z_2, z_2 > 0$$

OPT value: 135 at (3,9) $z_3 = 2, z_1 = z_2 = 0$ (slack variables show critical resources)

(日) (四) (三) (三) (三)

- 2

 $\max 15x + 10x_B$ $2x_A + x_B \le 15$ $x_A + x_B \le 12 + \epsilon$ $x_A \le 5$

Marginal value of constraint (2) is $\pi_2 = 10d$.

< □ > < □ > < □ > < □ > < □ > < □ >

æ

 $\max 15x + 10x_B$ $2x_A + x_B \le 15$ $x_A + x_B \le 12 + \epsilon$ $x_A \le 5$

Marginal value of constraint (2) is $\pi_2 = 10d$.

Definition

Marginal value of constraint (i) = change in optimal cost if RHS of (i) is perturbed by 1.

Profits and requirements for products *A*,*B*

	A	В	Av.ity	M.V
	XA	x _B		
RM1	2	1	15	π_1
RM2	1	1	12	π_2
RM3	1	0	5	π_3
profit	15	10		

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Profits and requirements for products *A*,*B*

	A	В	Av.ity	M.V
	XA	x _B		
RM1	2	1	15	π_1
RM2	1	1	12	π_2
RM3	1	0	5	π_3
profit	15	10		

M.V. IN PLANNING:

Should new product *C* be manufactured if it requires, say 2 units RM1, 1 unit RM2, and 1 unit RM3?

Profits and requirements for products *A*,*B*

	A	В	Av.ity	M.V
	XA	х _В		
RM1	2	1	15	π_1
RM2	1	1	12	π_2
RM3	1	0	5	π_3
profit	15	10		

M.V. IN PLANNING:

Should new product *C* be manufactured if it requires, say 2 units RM1, 1 unit RM2, and 1 unit RM3?

Yes, if the sale profit of *C* is $> 2\pi_1 + \pi_2 + \pi_3$.

<ロト <回ト < 国ト < 国ト = 国