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A LINEAR PROGRAMMING APPROACH TO 

THE CUTTING-STOCK PROBLEM 

P. C. Gilmore and R. E. Gomory 

International Business Machines Corporation, 
Research Center, Yorktown, New York 

(Received May 8, 1961) 

The cutting-stock problem is the problem of filling an order at minimum 
cost for specified numbers of lengths of material to be cut from given stock 
lengths of given cost. When expressed as an integer programming prob- 
lem the large number of variables involved generally makes computation 
infeasible. This same difficulty persists when only an approximate solu- 
tion is being sought by linear programming. In this paper, a technique is 
described for overcoming the difficulty in the linear programming formu- 
lation of the problem. The technique enables one to compute always 
with a matrix which has no more columns than it has rows. 

OME linear programming problems arising from combinatorial prob- 
< lems become intractable because of the large number of variables in- 

volved. Usually each variable represents some activity, and the difficulty 
is that there are too many possible competing activities satisfying the 
combinatorial restrictions of the problem. An example of this is the 
cutting-stock problem described below in a form similar to that used by 
EISEMANN. [1] 

The purpose of this paper is to point out that this difficulty can be 
overcome by a method basically identical with the idea that can be con- 
sidered as implicit in references 2 and 3, and whichisessentiallythis. When, 
in the simplex method, we reach the stage of 'pricing out' or looking for a 
new column or activity that will improve the solution, instead of looking 
over a vast existing collection of columns to pick out a useful one, we simply 
create a useful column by solving an auxiliary problem. In reference 2 the 
problem is a shortest-path problem, in reference 3 a problem in linear 
programming. 

In the problem considered here the auxiliary problem will be of the 
integer programming variety, but of such a special type (the 'knapsack' 
type) that it is solvable by several methods (see reference 4). If the same 
technique were applied to the problems discussed in reference 5, the cal- 
culation of WAGNER AND WHITIN 91 would be applicable to the auxiliary 
problem, while for the problem discussed in reference 6 a general integer 
programming technique such as discussed in references 7 or 8 would pre- 
sumably be required. 
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Turning to the cutting-stock problem we assume that a stock of stand- 
ard lengths L1, L2, * Lk of one material is maintained from which one is 
to cut lengths to fill incoming orders. An unlimited number of pieces are 
assumed available in stock for each of the stocked lengths L1, L2, ... I Lk. 
An order consists of a request for a given number Ni of pieces of length ti 
of the stocked material, for i= 17 2 *m* n. As long as for some j and all i, 
Lj>t an order can be filled. A cost is assigned to each of the stocked 
lengths and the cost of filling an order is simply the total cost of the stock 
material cut to fill the order. The problem is to fill the orders from stock 
at the least cost. 

By an activity, we will mean the cutting of a specified stock length in a 
specified manner. Thus, for example, the cutting from a stock length 17 
of three pieces, one of length 5 and two of length 4, is an activity. By 
assigning a variable to each of the possible activities that cut ordered 
lengths t4, - * *, m from stock lengths L1, *i*, Lk, the cutting stock problem 
can be posed as an integer linear programming problem, where the value 
taken by a variable indicates the number of times the activity is to be en- 
gaged in. The variables xi, * x. assigned to activities must satisfy m 
inequalities: 

ail Xl+ai2 X2+ * *+ain Xn > Ni, i (=1, I * w) 

if an order for Ni pieces of length ti is to be filled, where aii is the number 
of pieces of length ei created by the jth activity. The cost function to be 
minimized is then 

Cl X1+C2 X2+* +Cn Xn, (1) 

where ci is the cost of the stock length cut by the ith activity. Introducing 
slack variablesX+l, . * * Xn?m, the cutting stock problem can be described 
as the problem of finding integers x, - - Xn?m satisfying 

ail x1+ +ain Xn - X..i=Ni,(i- 1,m ) (2) 

and xj>O (j= 1, ... * n+m) (3) 

for which (1) is a minimum. 
There are two factors contributing to making this formulation of the 

cutting-stock problem impractical. First is the size of n, which can be 
enormous when the number k of stock lengths and the number m of re- 
quested lengths is any reasonable size. Second is the restriction to integers. 

Consider the second factor first. If the restriction were removed, then 
a solution to the cutting-stock problem would in general be noninteger. 
Given a noninteger solution there are several traditional ways that one can 
determine an integer approximate solution; for example, one can round up 
to the nearest integer adding necessarily to the cost or one can round down 
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to the nearest integer and treat the filling of the created unfilled portion of 
the order as a separate problem to be solved by ad hoc methods. If the 
noninteger values are large, the fractional change in the cost caused by 
rounding out will usually be small. Since the cost first obtained is the 
smallest possible with or without the restriction to integers, a small increase 
in it can often be tolerated even though the resulting cost may not be the 
least possible attainable with integers. We will, at any rate, only consider 
in this report the linear programming solution of the cutting-stock problem 
in which the variables are not restricted to be integer, since our purpose is 
the description of an efficient method for dealing with the first factor, the 
very large number n of variables. 

It is worth noting that the removal of the restriction to integers on the 
variables allows one to drop the slack variables from equation (2), since 
for any solution of (2) and (3) in which slack variables take positive values 
there exists a solution with the same cost in which no slack variables take a 
positive value. For let there be a solution (x1, ... * J*,+m) to 
(2) and (3) for which h?+j5Z0. We can assume that for some i, a1i xt _ Xnl; 

that is, that the ith activity contributes in the solution at least as much to 
the order for length A as the order has been over-fulfilled. For if there is 
no such i, let the jth variable be the first taking a nonzero value Xj and let 
the kth activity be the activity that is identical with the jth in all respects 
except that it does not create any pieces of length A; that is, the pieces of 
length tA created by activity j are regarded in activity k as scrap. Then 
another solution (xl', .., nX', $n+1. ? tn+m) of (2) and (3) with the 
same cost as the original is obtained by taking xt' =-, for izj, k, n+1, 

j'=O, xk' =xk+xj, and xi=xn+I -aij Xj since the cost coefficients of xj 
and Xk are identical. In this new solution the value of the slack variable 
xn+1 has been reduced. If it has not been reduced enough to give 
a1,jl x>, +1 for some i, then the above process is repeated until a solution 
is found for which one variable does satisfy this inequality. But if 
a1j Xj_ ->+i then the slack variable xn+] can be given a zero value in a solu- 
tion with the same cost as the given solution. For let the kth activity, as 
above, be the activity which is identical with the jth in all respects except 
that it does not create any pieces of length tA and define the new solution 

' * n', x'n+1 , X?nm) by taking i'-=xi for i9?j, k, n+1, 
Xj'=x;j- (X?+/aj, xk'=jj I+G (x1)/a1J, and x+ =O. Since the cost co- 
efficients are, as before, identical for xj and Xk, the new solution has a cost 
identical with the previous soluttion. 

Although the slack variables can be dropped when the restriction to 
integers is removed, there may be advantages to not dropping them. For 
without the slack variables every minimal solution to the problem will in 
general be in terms of exactly in activities, while with the slack variables a 
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minimnal solution may be in terms of less than m activities. It is therefore 
possible when one considers the final rounding out to an integer solution 
that the solution obtainled with the use of slack variables will be better than 
one obtained without. We will in any case describe a computation routine 
for the problem with slack variables that can be modified to a routine for 
the problem without slack variables by dropping one step. 

The simplex computational procedure when used to determine a solu- 
tion of (2) subject to (3) for which (1) is a minimum provides for any 
given basic feasible solution of (2) and (3) a successor basic feasible solu- 
tion for which the value of (1) is less than for the given solution. 

In particular if a basic solution of (2) and (3) is given, the simplex pro- 
cedure tests each of the other variables in turn until one is found that can 
replace one of the current basic variables. Let us assume that the variables 
in a given basic feasible solution are x1, x2, *.**, x,,,. Let PT be the vector 
(al , a2i, ... , ai) and ci the cost coefficient in (1) associated with the 
variable xi; thus if xi is a slack variable then ci is 0 and the vector has 
a single nonzero coordinate -1. LetP = (al, a2, * * * , a,,) define an un- 
determined new activity that cuts from a stock length L having a cost c. 
Further let A be the matrix with P1, * ., Pm as columns. Since P1, * * *, Pm 
form a basis there is the usual column vector U satisfying the equation 

A*U-P, (4) 

and the new activity can be used in a solution that will be ail improvement 
over the given solution if and only if 

C(U>c (5) 

where C is the row vector with coefficients cl, C2, *c*X cm. Hence if the row 
vector C.A1 has coefficients b1, * * *, bm then from (4) and (5) can be conl- 
cluded that there exists an activity cutting from L that can profitably be 
used if and only if there exist nonnegative integers al, *, a. satisfying 

L_ t? aa+ * * - +Cm am, (6) 

and b1 a1+ * * * +bn arn>c. (7) 

It is of course important that C -A-1 is always on hand as a part of the 
normal simplex computational procedure. 

One method of determining whether there exist positive integers ai 
satisfying (6) and (7) would be to determnine nonnegative integers satisfy- 
ing (6) for which bi a,+--- +bm a,, is a maximum, for if such integers did 
not satisfy (7) then none would. Hence the problem of choosing a new 
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variable in the simplex procedure for the cutting-stock problem can be 
expressed as the problem of finding a solution for up to k auxiliary prob- 
lems (one for each of the stock lengths L1, * * , Lk) each one of which is 
an integer linear programming problem. We will show that these k 
auxiliary problems can be solved by a single dynamic programming com- 
putation or in some cases by an even more rapid ad hoc method. 

Since the problem of maximizing b1 al+,** +bm am subject to (6) is a 
generalization of the knapsack problem, it can be solved by dynamic pro- 
gramming in a manner very similar to that described by DANTZIG in 
reference 4. Defining F,(x) to be the maximum of b1 a,+* +b8 a, sub- 
ject to the inequality x> {l al+ * - -+1s as, then 

F,+i (x) =maxr,rbs?++Fs(x-r4+i)}, 

where r need only be chosen such that 0< r < [x/44+i], and square brackets 
are used to denote the largest integer part of the argument appearing within 
them. That only one complete dynamic programming computation is 
necessary in order to introduce a new variable in the simplex procedure 
can be readily seen, for if say L1 is the largest of the stock lengths then in 
the course of computing Fm( L1) one has automatically also computed 
Fm(L2), . * Fm(Lk). 

But even this amount of computation will frequently be more than is 
necessary since one need only find some al, ***, am satisfying both the in- 

equalities (6) and (7) when L is taken to be one of the stock lengths 
Li, * * *, Lk and c is taken to be the cost of the stock length. Thus, any 
simple ad hoc method of solution may be used until the method does not 
yield a solution to (6) and (7) when the dynamic programming computa- 
tion may be made. For example, one can use the following simple method 
adapted from one described by Darntzig [4] for the knapsack problem: 
Let i1, i2, *.** im be such that b1/tiC _ b i2/fi2 >. > bi/.fi, Choose 

a=i L/til], ai2=[(L-Cil ail)/i2[I, ai3+[(L-fN a1-+ i-2 ai2)/fi3], and so 
on. Only when this simple method has failed to provide a solution to (6) 
and (7) for all of the stock lengths would it be necessary to use dynamic 
programming to try to find a solution or show that no solution existed for 
(6) and (7) for any of the stock lengths. 

In detail, a routine for determining a solution of (2) and (3) for which 
(1) is a minimum is the following: 

(1) Determine m initial activities and their costs as follows: for each 
i, choose a stock length Lj for which Lj> li and define the ith activity to 
be the one cutting ai = [Lj/fi] pieces of length fi from Lj. The cost of 
the ith activity will be the cost cj of the stock length Lj from which the 
ith activity cuts the pieces of length Ci. 
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(2) Form the m+lXm+1 matrix B: 

1 -C1 -C2 - Cm 

O all 0 0 

O 0 a22 O 0 

O 0 0 a.m 

where aii is the number of pieces of length li cut in the ith activity from a 
stock length whose cost is ci. Record in some manner for each of the last 
m columns of B what activity corresponds to it. This record will be up- 
dated as improved solutions are found, and hence must also be able to 
indicate a correspondence between a column and a slack variable. 

Form also mm+1 dimensional column vectors S1, ***, Sm correspond- 
ing to the slack variables, where the Si has zeros everywhere except in the 
(i+1)st row where it has -1, and the m+? dimensional column vector 
N' with 0 in the first row and Ni in the ith row and compute BIF which is 
simply 

1 cl/all c2/a22 Cmlam 

O 1/all 0 0. O 
O 0 1/a22 0 0 

o o 0 I//amm 

Let N = B-1 -N. Given the current B-1 and the column vector P of a varia- 
ble not used in the current solution (i.e., the first row of P is minus the cost, 
the other m rows are the coefficients aij ; or in the case of the ith slack 
variable, P is SO) to determine whether the current solution can be improved 
by making use of the variable it is only necessary to compute the first 
element of B-1 P; if it is not positive then no improvement will result, 
while if it is positive an improvement will result. Hence: 

(3) The ith slack variable if it is not appearing in the current solution 
will lead to an improved solution if and only if the (i+ 1) st element of the 
first row of BW1 is negative. 

(4) If no slack variable will improve the current solution it is necessary 
to determine whether the introduction of a new activity will improve the 
current solution by determining whether there is a stock length L with 
cost c for which inequalities (6) and (7) have a solution, where b1, * *, bm 
are the last m elements in the first row of B-'. If these inequalities have 
no solution no matter which of the given stock lengths L1, * * *, Lk with costs 
respectively c1, * * , cl is tried, then the current solution is a minimum. 
The current solution and its cost is then given by the current N, where 
the first row of this vector is the cost and the remaining in rows are, in 
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order, the values of the variables corresponding to the m columns of BW'. 
If a new activity will improve the current solution form its column vector 
P with coefficients, in order, -c, a, a2, * *, am. 

(5) The introduction of either a slack variable or a new activity will 
improve the current solution. In either case let P be the column vector 
of the variable. To determine the new B-1 and N, which determine an 
improved solution and its cost, and which permit an iteration of these 
steps (3), (4), and (5) one proceeds as follows: Compute B-1 P; let the 
elements of this vector be yi, , ym, ym+l and let the elements of the 
current N be xi, ***, xm, Xm+?. Determine the i, i>2, for which y>O, 
xi > 0, and xi/yi is minimum and let it be kc; should the minimum ratio 
be zero one must use the method for degeneracy outlined in the next para- 
graph. If the minimum ratio is not zero then the /cth element of P, Yk , will 

be the pivot element in a formal process of Gaussian elimination carried out 
simultaneously on B-1, B-1 P and N; that is elimination on the (m+ 1) X 
(m+3) matrix G formed from B-1 by adjoining as new columns N and B-1. 
P in that order. (For each i#k the /cth row is multiplied by Yi/Yk and 
the resulting row subtracted from the ith; the kth row is simply multiplied 
by 1/Yk.) The first m+1 columns of G' then form the new B-1 and the 
m+2nd column of G' forms the new N. The record of correspondence 
between columns of B-1 and activities or slack variables is updated by 
removing the current correspondent of the kcth column and replacing it by 
the new activity or slack variable, whichever the case may be. 

Degeneracy, should it occur, can be handled in much the usual way. 
Some precautionary device must be introduced to prevent the possibility 
of cycling. A new column N' of positive elements xi', x, Xm, x'+1 inde- 
pendent of N is adjoined to G and the choice of which yi>O for which 
xi=0 is to be the pivot element is made on the basis of which such i has 
xi'>O and Xi'/yi minimum. When the pivot element has been chosen, 
Gaussian elimination proceeds as before but now on the enlarged matrix G. 
The additional column is maintained in G until an i exists for which X/lyi 
is positive and finite when the column can be dropped. Shouild it be the 
case that there is no i for which either xi/yi or xi'/yi is positively finite then 
another column N2 of positive elements independent of N and N' must be 
introduced and used in the decision of the pivot element until suich time as N 
or N' can be used. Similarly any number of columns N, N', N2, ... can 
be introduced as needed and dropped when no longer needed. Since the 
columns are independent when introduced and remain independent after 
Gaussian elimination, no more than mn such columnns need ever be intro- 
duced. Each column that is introduced defines a new linear programming 
problem that will prevent cycling as long as degeneracy does not occur 
within it. 
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EXAMPLE 

THE MAIN steps in the computation of a solution of the following example 
are given below. An order for 20 pieces of length 2, 10 pieces of length 3 
and 20 pieces of length 4 is to be cut from stock lengths 5, 6, and 9 with 
costs respectively of 6, 7, and 10. 
Initially: 

1 -6 -6 -6t 0 
0 2 0 0 2 0 0 ? 0' 1'o 

0 0 0 1 20 

1 3 6 6 240 

IV-0 /2 0 0 N=JV'*1 N'- 10 
0 0 1 0' 10 
0 0 0 1 20 

The stock lengths will be tried in order of decreasing size siniee the longer 
stock length permits the definition of a larger number of activities. The 
first inequalities are therefore: 

(1) 9>2a1+3a2+4a3 and 

(2) 3a,+6a2+6a3> 10. 

The ad hoc method of solution gives (0, 3, 0) as a solution to (1) so that 
the new column vector P has elements -10, 0, 3, 0. Hence: 

1 3 6 6 240 8 
0 0 0 10 0 
0 0 1 0 1 0? 
0 0 0 1 20 0 

where the last column is B--1 P, with the pivot element circled. After a 
Gaussian elimination on the pivot eleinent 

1 3 103 6 6403 0 2 

G' = 0/2 0 0 t10 0-, g P = 0 0 0 ?/~0 10Y31I 0 
0 0 0 1 20 0 0 

Since none of the elements 3, 103, and 6 in the first row are negative, the 
introduction of a slack variable will not improve the cost. The inequality 
(2) is therefore replaced by 3a1+1% a2+6a3> 10. The ad hoc method 
gives (4, 0, 0) as a solution so that BI'. P is the vector listed next to G' 
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above with the pivot element circled. Thus, 

1 35'~ io3 6 6i3 0 2 3 

0 ? 0 0 5 1 0 o 0 O 1 ('0. 
00 01 20 0 (i) 

Again the introduction of a slack variable will not improve the cost and 
therefore the inequality (2) is replaced by 59 al+13 a2+6 a3> 10. The ad 
hoc method of solution gives (0, 0, 2) as a solution so that B-' P is the 
vector given next to G', with the pivot element circled. Thus, 

1 %5j 0 5 59 0 & l 

-= 0 1s4 0 0 5) 0 ' -1p 
0 0 j/3 0 U 3 0 

0 0 0 1.0 1 0 

Again the introductioln of a slack variable will not improve the cost and 
therefore the inequality (2) s replaced by 5 al + 1 3 a2 + 5 a3> 10. Now 
the ad hoc method of solution yields no solution to the inequalities. How- 
ever, the ad hoc method can still be tried on the inequalities arising from 
the other stock lengths. The stock of length 6 gives rise to the inequalities: 

(3) 6>2a1+3a2+4a3, 

(4) 5?al+]0?a2+5a3>7 

for which the ad hoc method gives (3, 0, 0) as a solution. Therefore, 
B-1*P is the vector next to G' above with the pivot element circled. 
Thus, 

1 / 1% 5 54% 0 % 
_ 0? 00 

29~~~~~~I 
1 1 0 0 0 I 0 13 , 

O O 0 I/A 1.0 0 ii 

and again since the introductioni of a slack variable will not improve the, 
cost, the inequality (4) is replaced by 7f al+ '0/3 a2+5a3>7. The ad hoc 
method yields (1, 0,1 ) as a solution so that B-1 P is the vector as is 
given above with the pivot element circled. Thus, 

1 2 1% 5 529% 0 l 

G_ 
1 0 0 201 1.B'P 

020 0 R<j 0 .1 ( 
0 -G 0 ? 0 0 0 
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and again since the introduction of a slack variable will not improve the 
cost the, inequality (4) is replaced by 2 a,-V 103 a2+5a3>7. Trhe ad hoc 
method no longer yields a solution to the inequalities. Looking again at 
the other stock lengths, consider first inequality (1), together with: 

(5) 2a+1% 3a2+5a3>10. 

The ad hoc method yields no solution. Consider next, the inequalities 

(6) 5>2ai+3a2+4a3, 

(7) 2a,+l 1%3 a2+5a3>6, 

which also have no solution by the ad hoc method. It is therefore neces- 
sary to use dynamic programming to maximize 2ai+ 1 % a2+5a3 subject to 
(1), (3), or (6). Computing F3(x) we get F3(5) =53X3, F3(6) =7, F3(9)= 
10>. Since 51 < 6, 7<7 the inequality pairs involving standard lengths 
5 and 6 have no solution, but since 10% > 10 the inequalities (1) and (5) 
involvinig length 9 do have a solution (1, 1, 1), which has in fact been 
produced by our calculation. Therefore, B-' P is the vector listed above 
next to G' with the pivot element circled. Thus: 

1 2 3 5 170 0 

GI= 0 1 -1 0 10 0 
0 0 1 0 101' 
0 -'~ 0 ?' 0 0 

and again since the introduction of a slack variable will not improve the 
cost the inequality (2) is replaced by: 2a,+3a2+5a3>10. The ad hoc 
method of solution yields no solution to these inequalities, nor does it 
yield a solution to the inequalities (3) and: 2a,+3a2+5a3>7, nor to the 
inequalities (6) and: 2ai+3a2+5a3>6. 

It is therefore necessary to use dynamic programming again to maxi- 
mize 2a,+3a2+5a3 subject to (1). This single computation yields F3(5) = 
5, F3(6) =7, F3 (10) = 10, which shows that none of the pairs of inequalities 
are compatible. The solution is therefore to cut each of 10 pieces of stock 
length 6 into 1 piece of length 4 and 1 piece of length 2 and each of 10 
pieces of the stock length 9 into 1 piece of length 2, 1 piece of length 3, 
and 1 piece of length 4. The cost is 170. 

That integers should resuilt as the solution of the example is, of course, 
fortuitous. 

REFERENCES 

1. KURT EISEMANN, "The Trim Problem," Management Sci. 3, 279-284 (1957). 
2. L. R. FORD, JR. AND D. R. FULKERSON, "A Suggested Computation for Maximal 

Multi-Commodity Network Flows," Management Sci, 5, 97-101 (1958). 



Cutting-Stock Problemit 859 

3. GEORGE B. DANTZIG AND PHILIP WOLFE, "Decomposition Principle for Linear 
Programs," Opns. Res. 8, 101-111 (1960). 

4. , "Discrete Variable Extremum Problemns," Opns. Res. 5, 161-310 (1957). 
5. ALAN S. MANNE, "Programming of Economic Lot Sizes," Management Sci. 4, 

115-135 (1958). 
6. A. CHARNES AND M. H. MILLER, "A Model for the Optimal Programming of 

Railway Freight Train Movements," Management Sci. 3, 74-92 (1956). 
7. R. E. GOMORY, "An Algorithm for Integer Solutions to Linear Programs," 

Princeton-IBM Mathematics Research Project Technical Report No. 1, 
November 17, 1958. 

8. , "All-Integer Integer Programming Algorithm," IBM Research Report 
RC-189, January 29, 1960. 

9. HARVEY M. WAGNER AND THOMSON M. WHITIN, "A Dynamic Version of the 
Economic Lot Size Model," Management Sci. 5, 89-96 (1958). 


	Article Contents
	p. 849
	p. 850
	p. 851
	p. 852
	p. 853
	p. 854
	p. 855
	p. 856
	p. 857
	p. 858
	p. 859

	Issue Table of Contents
	Operations Research, Vol. 9, No. 6 (Nov. - Dec., 1961), pp. i-x+771-940+xxi-xxx
	Volume Information [pp.  927 - 940]
	Front Matter [pp.  i - x]
	Double Queues and Impatient Customers with an Application to Inventory Theory [pp.  771 - 781]
	Inclusion of Detection in Probability of Survival Models [pp.  782 - 801]
	A Traffic Counting Distribution [pp.  802 - 810]
	Bargaining Strategy in a Production and Distribution Problem [pp.  811 - 827]
	Comments on the Highway-Crossing Problem [pp.  828 - 840]
	Parallel Sequencing and Assembly Line Problems [pp.  841 - 848]
	A Linear Programming Approach to the Cutting-Stock Problem [pp.  849 - 859]
	The Distribution of Urban Population and an Application to a Servicing Problem [pp.  860 - 874]
	Priority Assignment in Waiting-Line Problems under Conditions of Misclassification [pp.  875 - 885]
	The Face of Bargaining [pp.  886 - 897]
	Letters to the Editor
	The Maximum Capacity Route Problem [pp.  898 - 900]
	Note on a Paper by Hanssmann [pp.  900 - 901]
	Some Properties of a Disguised Poisson Function [pp.  901 - 903]
	A Criterion for Realism in War Games [pp.  903 - 904]
	Comment on Lack of Communication between U.K. and U.S. [pp.  905 - 906]
	Information Theory and Search Theory as Special Cases of Decision Theory [pp.  907 - 909]
	Comments on a Paper by Thomas Healy [pp.  909 - 910]
	Report on International or Activities [pp.  910 - 912]

	The Analyst's Bookshelf
	Periodicals [pp.  923 - 925]

	Letter to the Editor
	New Developments and a New Operations Research Journal in Germany [pp.  913 - 914]

	Books
	untitled [pp.  914 - 916]
	untitled [pp.  916 - 917]
	untitled [pp.  918 - 919]
	untitled [p.  919]
	untitled [p.  920]
	Books Received [pp.  920 - 921]
	Comments [pp.  921 - 923]

	Back Matter [pp.  926 - xxx]



