Chapter 4

Outline of an Algorithm for Integer Solutions to
Linear Programs and
An Algorithm for the Mixed Integer Problem

Ralph E. Gomory

Introduction by Ralph E. Gomory

Later in 1957, as the end of my three-year tour of duty in the Navy was approach-
ing, Princeton invited me to return as Higgins Lecturer in Mathematics. I had been
a Williams undergraduate and a then a graduate student at Cambridge and Princeton
while getting my Ph.D. I had published 4 papers in non-linear differential equations,
a subject to which I had been introduced by two wonderful people whose support
and encouragement made an unforgettable and wonderful difference in my life: Pro-
fessor Donald Richmond of Williams College and Professor Solomon Lefschetz of
Princeton.

Because of my interest in applied work I had planned to look for an industrial
position rather than an academic one on leaving the Navy, but I decided instead
to accept this attractive offer and spend a year or two at Princeton before going
on. When I returned to Princeton late in the fall of 1957, I got to know Professor
A. W. Tucker, then the department head, who was the organizer and prime mover
of a group interested in game theory and related topics. This group included Harold
Kuhn and Martin (E. M. L.) Beale.

As the Navy had kept me on as a consultant I continued to work on Navy prob-
lems through monthly trips to Washington. On one of these trips a group presented
a linear programming model of a Navy Task Force. One of the presenters remarked
that it would be nice to have whole number answers as 1.3 aircraft carriers, for
example, was not directly usable.

I thought about his remark and determined to try inventing a method that would
produce integer results. I saw the problem as clearly important, indivisibilities are
everywhere, but I also thought it should be possible. My view of linear programming
was that it was the study of systems of linear inequalities and that it was closely anal-

Ralph E. Gomory
Alfred P. Sloan Foundation, New York, USA
e-mail: gomory@sloan.org

M. Jiinger et al. (eds.), 50 Years of Integer Programming 1958-2008, 77
DOI 10.1007/978-3-540-68279-0 4, © Springer-Verlag Berlin Heidelberg 2010



78 Ralph E. Gomory

ogous to studying systems of linear equations. Systems of linear equations could be
solved in integers (Diophantine equations), so why not systems of linear inequali-
ties? Returning to the office I shared with Bob Gunning (later Dean of the Faculty
at Princeton), I set to work and spent about a week of continuous thought trying to
combine methods for linear Diophantine equations with linear programming. This
produced nothing but a large number of partly worked out numerical examples and
a huge amount of waste paper.

Late in the afternoon of the eighth day of this I had run out of ideas. Yet I still
believed that, if I had to, in one-way or another, I would always be able to get at an
integer answer to any particular numerical example. At that point I said to myself,
suppose you really had to solve some particular problem and get the answer by any
means, what would be the first thing that you would do? The immediate answer was
that as a first step I would solve the linear programming (maximization) problem
and, if the answer turned out to be 7.14, then I would at least know that the integer
maximum could not be more than 7. No sooner had I made this obvious remark to
myself than I felt a sudden tingling in two of my left toes, and realized that I had just
done something different, and something that certainly was not a part of classical
Diophantine analysis.

How exactly had I managed to conclude, almost without thought, that, if the LP
answer was 7.14, the integer answer was at most 7?7 As I was working with equa-
tions having integer coefficients and only integer variables, it did not take long to
conclude that the reasoning consisted of two simple steps. First that the objective
function was maximal on the linear programming problem and therefore as large or
larger than it could ever be on the integer problem. Second that the objective func-
tion was an integer linear form and therefore had to produce integer results for any
integer values of the variables, including the unknown integer answer. Therefore the
objective function had to be an integer less than 7.14. Clearly then it was legitimate
to add an additional constraint that confined the objective function to be less than
or equal to 7. I thought of this as “pushing in” the objective function. It was also
immediately clear to me that there would always be many other integer forms max-
imal at that vertex in addition to the given objective function and that they could be
“pushed in” too.

Greatly excited I set to work and within a few days had discovered how to gener-
ate maximal integer forms easily from the rows of the transformed simplex matrix.
It became clear rapidly that any entry in a given row of the tableau could be changed
by an integer amount while remaining an integer form, that these changes could be
used to create a form that was maximal, as that simply meant that all the row entries
had to become negative (in the sign convention I was then using). It also was clear
that, once an entry became negative, it strengthened the new inequality if the entry
was as small as possible in absolute value; so all coefficients were best reduced to
their negative fractional parts. This was the origin of the “fractional cut.”

Within a very few days, I had worked out a complete method using the fractional
cuts. I thought of this method as the “The Method of Integer Forms.” With it I was
steadily solving by hand one small numerical example after another and getting the
right answer. However, I had no proof of finiteness. I also observed that the fractional
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rows I was creating seemed to have a lot of special properties, all of which were
explained later in terms of the factor group.

Just at this time I ran into Martin Beale in the hall. He was looking for a speaker
for the seminar we had on game theory and linear programming. I said I would be
glad to give a talk on solving linear programs in integers. Martin said “but that’s
impossible.” That was my first indication that others had thought about the problem.
During the exciting weeks that followed, I finally worked out a finiteness proof and
then programmed the algorithm on the E101, a pin board computer that was busy
during the day but that I could use after midnight. The E101 had only about 100
characters of memory and the board held only 120 instructions at one time, so that I
had to change boards after each simplex maximization cycle and put in a new board
that generated the cut, and then put the old board back to re-maximize. It was also
hard work to get the simplex method down to 120 E101 instructions. But the results
were better and more reliable than my hand calculations, and I was able to steadily
and rapidly produce solutions to four- and five-variable problems.

During these weeks I learned that others had thought about the problem and that
George Dantzig had worked on the traveling salesman problem and had applied spe-
cial handmade cuts to that problem. Professor Tucker, who was enormously helpful
to me during my entire stay at Princeton, gave me the time he had for himself on
the program of a mathematical society meeting. There early in 1958 I made the first
public presentation of the cutting plane algorithm. This produced a great deal of
reaction, many people wrote to me, and Rand Corporation invited me to come out
to California for the summer.

In the summer of 1958 I flew west to Los Angeles, where Rand was located, car-
rying the first edition of the manual for Fortran, then a brand new language. I spent
one month at Rand and succeeded in producing a working Fortran version of the
algorithm for the IBM 704. During my stay at Rand, I renewed my acquaintance of
graduate student days with Lloyd Shapley and with Herb Scarf and met for the first
time George Dantzig, Dick Bellman, and Phil Wolfe. Phil, already well known for
his work on quadratic programming, generously took on the assignment of orienting
me during my visit at Rand. He helped me in every conceivable way.

The Fortran program seemed to be debugged about two days before I left Rand
so I was able to do larger examples. Larger meant something like ten to fifteen vari-
ables. Most of these problems ran quickly, but one went on and on and producing
reams of printout but never reaching a final answer. I thought at the time that per-
haps there were still bugs left in the program, but in fact it was the first hint of the
computational problems that lay ahead.

It seems likely that it was during that summer that I worked out the mixed integer
method, which I never sent in to a journal but appeared later as a Rand report. At the
time I regarded it as a pretty straightforward extension of the original cutting plane
method. Having done so many hand problems I was aware that, despite its obvious
strengths in some of its computational detail it lacked some attractive properties
of the all integer calculation. However at this late date I am quite reconciled to
the mixed integer cut by (1) its computational success in a world of larges scale
computing and (2) a rather recent result in which I have shown that it provides the
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only facet for the one dimensional corner polyhedron problem that is a facet both
for the continuous and for the integer variables case. This finally locates the mixed
cutting plane in its proper theoretical setting.
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The following article originally appeared as:

R.E. Gomory, Outline of an Algorithm for Integer Solutions to Linear Programs,
Bulletin Of the American Mathematical Society 64 (1958) 275-278.

Copyright (© 1958 The American Mathematical Society.

Reprinted by permission from The American Mathematical Society.
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RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant
new results, with some indications of proof. Although ordinarily a research announce-
ment should be a brief summary of a paper to be published in full elsewhere, papers
giving complete proofs of results of exceptional interest are also solicited.

OUTLINE OF AN ALGORITHM FOR INTEGER
SOLUTIONS TO LINEAR PROGRAMS

BY RALPH E. GOMORY!
Communicated by A. W. Tucker, May 3, 1958

The problem of obtaining the best integer solution to a linear pro-
gram comes up in several contexts. The connection with combina-
torial problems is given by Dantzig in [1], the connection with prob-
lems involving economies of scale is given by Markowitz and Manne
[3] in a paper which also contains an interesting example of the effect
of discrete variables on a scheduling problem. Also Dreyfus [4] has
discussed the role played by the requirement of discreteness of vari-
ables in limiting the range of problems amenable to linear program-
ming techniques.

It is the purpose of this note to outline a finite algorithm for ob-
taining integer solutions to linear programs. The algorithm has been
programmed successfully on an E101 computer and used to run off
the integer solution to small (seven or less variables) linear programs
completely automatically.

The algorithm closely resembles the procedures already used by
Dantzig, Fulkerson and Johnson [2], and Markowitz and Manne [3]
to obtain solutions to discrete variable programming problems. Their
procedure is essentially this. Given the linear program, first maximize
the objective function using the simplex method, then examine the
solution. If the solution is not in integers, ingenuity is used to formu-
late a new constraint that can be shown to be satisfied by the still
unknown integer solution but not by the noninteger solution already
attained. This additional constraint is added to the original ones, the
solution already attained becomes nonfeasible, and a new maximum
satisfying the new constraint is sought. This process is repeated until
an integer maximum is obtained, or until some argument shows that
a nearby integer point is optimal. What has been needed to transform
this procedure into an algorithm is a systematic method for generating

! This work has been supported in part by the Princeton-IBM Mathematics Re-
search Project.
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the new constraints. A proof that the method will give the integer
solution in a finite number of steps is also important. This note will
describe an automatic method of generating new constraints. The
proof of the finiteness of the process will be given separately.

Let us suppose that the original inequalities of the linear program
have been replaced by equalities in nonnegative variables, so that the
problem is to find nonnegative integers, w, %1, - * *, Xm, f1, * * *, tn,
satisfying

Il

w a0,0 + ao,1(—1t1) - -+ don(—1t),

) T = 810 + a1,1(—t) - - - ara(—ta),
km = am,0 + dm.l(_tl) vt am.n(_'tn)

such that w is maximal. Using the method of pivot choice given by
the simplex (or dual simplex) method, successive pivots result in
leading the above array into the standard simplex form,

w = ao,o + aoa(—11) - - - aon(—1n),
! 7 1 7
1 =a0+ - - ara(—ta),
(2) :
Tn=Gmo+ o0+ ama(—1n)

where the primed variables are a rearrangement of the original vari-
ables and the a§,; and a}, are nonnegative. From this array the sim-
plex solution ¢/ =0, x{ =a/, is read out.

An additional constraint can now be formulated. The constraint
which will be generated is not unique, but is one of a large class that
can be produced by a more systematic version of the following pro-
cedure.

If the ai, are not all integers, select some %, with a;,, noninteger,
and introduce the new variable

=n
3) s1= = fino = 2 funi(—1)

=1
where ff ;=aj ;—n4,; with ng,; the largest integer =Zay ;. This new
equation is added to the Equations (2), obtaining a new set which
will be referred to as (2*). A feasible solution to (2*) is a vector,
w, x{, -+, Xn, t, - -, td, 51 of nonnegative components. The
values of %{, - - -, %, t{, - - -, . determine the s, value through
(3), so there is a natural correspondence between a solution
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%, ), Xy i, -+, ta of (2) and the (not necessarily feasible)
solution that these values determine for (2*). Clearly any feasible
solution to (2*) determines a feasible solution to the equations (2)
simply by dropping the s;.

It should be noted that if f;,0 is #0, then there is at least one
fi,,; 70, with 720, otherwise the equation

i=n
x‘lio = a':'o-O + Z a:'o,i(—t;')
j=1
can have no solution in integers, and the program has no integer
solution.

Since the simplex solution to (2), ¢/ =0, x! =a{, determines,
through Equation (3), a negative value, —f;,,o for s;, the correspond-
ing solution to (2*) is not feasible, i.e. the new restraint cuts off the
old maximum. However, any nonnegative snfeger solution to (2) does
give rise to a nonnegative integer solution to the equations (2%).

To see this suppose w’’/, x{’, - - -, xh, t{’, + + -, td' is any solution
in nonnegative integers to (2). The s{’ determined is

i=n

— fio — 2 froi(=1)

=1

123
S1

j=n n
= g + 2 mias(—8) = aio = 2 aini(—15)

=1 =1
which using (2) becomes s{’ =n,+ Z}Ll 14,;(—#{’) —x;,. Since the
4,5, the ¢/’ and the x;] are all integers, the s{’ determined is also an
integer. Furthermore, since the fj ; and the ¢/’ are all nonnegative,
(3) shows that s{’ is = —f; > —1. Since s/’ is an integer, this shows
it must be nonnegative.

This reasoning establishes a one-one correspondence between non-
negative integer solutions ', x{’, - - -, a1, t{’, -+ +, ta' to (2) and
the corresponding nonnegative integer solutions w", x{’, - - -, .,
W, .- td", si’ to (2%). Since the w value is the same for both solu-
tions, the problem of maximizing w over nonnegative integer solu-
tions to (2) can be replaced by the problem of maximizing w over
the nonnegative integer solutions to (2*). The solution to the original
problem is obtained by dropping the s;.

The procedure now is to maximize w over the solutions to (2%).
This is done using the dual simplex method because all the ag; and
ajy are already nonnegative, and —f;, is the only negative entry
in the zero column of the equations (2*). This fact usually makes
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remaximization quite rapid. The process is then repeated if the new
simplex maximum is noninteger.

Of course the Equations (2*) involve one more equation than the
Equations (2), and an equation is added after each remaximization.
However, the total number need never exceed m+n-+42. For if an
s-variable, added earlier in the computation reappears among the
variables on the left hand side of the equations after some remaxi-
mization, the equation involving it can simply be dropped, as the
only equations that need be satisfied are the original ones. This limits
the total number of s-variables to #4-1 or less.

It should be noted that even the process just described involves an
element of choice, any of the rows 7 of (2) with a;,, noninteger might
be chosen to generate the new relation. Some choices are better than
others. A good rule of thumb based on the idea of “cutting” as deeply
as possible with the new relation, and borne out by limited computa-
tional experience, is to choose the row with the largest fractional
part fi, in the zero column.

The class of possible additional constraints is not limited to those
produced by the method described here since it is easily seen that
some simple operations on and between rows preserve the properties
needed in the additional relations. These operations can be used to
produce systematically a family of additional relations from which a
particularly effective cut or cuts can be selected. A discussion of this
class of possible additional constraints together with a rule of choice
of row which can be shown to bring the process to an end in a finite
number of steps—thus providing a finite algorithm—require some
space and will be given as part of a more complete treatment in
another place.
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The following article originally appeared as:

R.E. Gomory, An Algorithm for the Mixed Integer Problem, Research Memorandum
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SUMMARY

An algorithm 1s given for the numerical solution of the
"mixed integer" linear programming problem, the problem of
maximizing a linear form in finitely many variables constrained
both by linear inequalities and the requirement that a proper
subset of the variables assume only integral values. The
algorithm 1s an extension of the cutting plane technlque for

the solution of the '"pure integer' problem.
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AN ALGORITHM FOR THE MIXED INTEGER PROBLEM

The problem discussed here is an integer programming
problem, i.e., the problem of maximizing
J=n
z =2, + Jil ao,J(_tJ)’
subject to the inequalities

J=n
(1) 5 oa, .t.<a

s i=1, ...,
2y 2% ! n

and subject to the additlonal condition that some specified
subcollection of the variables appearing above should be
integers.

If the inequalities above are changed into equations in
nonnegative variables by the addition of m "slack" variables,
and the whole set 1s enlarged to form a set in which all the
variables are expressed in terms of the independent or "nonbasic"

ones, we have

J=n
z =2, ,+ Jil ao’J(—tJ)

J=n
Sy =ay o+ Jil ai,J(_tJ) 1=1, «e., m
ty = =1(-t,) j =1, ..., n.
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For the sake of a more uniform notatlion we wlll rewrite this as

J=n
(2) Xy = ai,o + Jil ai,J(—tJ) 1 =0, ..., min,
where the X, now are all the variables and the ai,J are all
the coefficlents.
The usual1 linear programming problem 1s solved by apply-—
ing G. B. Dantzig's simplex method. 1In thls method a series

' "changes of basis,"

of "pivot steps," "Gaussian eliminations,'
or "changes to different sets of nonbasic variables" bring the
equations (2) into a form in which, denoting the new coeffi-

clents in the equations by primes,

>0 1i=1, ..., myn
and

'
(11) 8,5 2

4
(=]
L
]
[

vee, N

obtained by putting all the nonbasic variables equal to zero,
the values that result for all the varliables are nonnegative.
The second condition makes certain that the objective function

is in fact maximal when the variables are gilven the values they

The usual method terminates when conditions (ii) first
hold. It 1s necessary here that the pivoting continue until
all columns J > O become lexicographically positive. The
procedure for dolng this is described in [1].

The first condition is the condition that in the "trial solution"

attain in this trial solution. The solution obtained is of course
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xi=a 1 =0, ..., mn.

This solution may very well 233 satisfy the integer requirement;
1.e., some Xy that 1s required to be an integer 1s assigned the
noninteger value ai)o.

If this occurs we will be able to deduce a new inequality
that will be satisfied by any integer solution, 1.e., by any
solution having integers where they are required, but will not
be satisfied by the current trial solution.

Then, jJust as in [1] and [2], this new inequality will
be added to the original set of inequalities, and the new set
then remaximized by the simplex method. This remaximization
1s usually quite rapid,as adding the new inequality maintains
dual feasibility and introduces just the one unsatisfied
inequality.

If the new maximum solution still contains integer vari-
ables which are assigned noninteger values the process is
repeated.

To deduce this new inequality we make use of the equation

1 1
(3) Xy o=ay o+ 5 ai,J(_tJ)
]
where the Xy 1s an integer variable, 3y o 1s noninteger, and
2
'

the tJ are the current set of nonbasic varlables. Since ay o

R

is noninteger 1t can be wrlitten uniquely as the sum of an

] 1
integer ni, and a fractional part fi,o’ 0 < fi,o < 1.

o
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We now lmagine that we have an integer solution to the
1] 1
problem and use ) tJ to denote the values given to the vari-

ables in (3) by this solutlon. Hence

! ' 1 ]
Xy =8y o+ b ai,J('tJ)

and using & & b to mean a and b differ by an integer (equiv—
L}

] 1)
alence modulo 1), we have, since Xy = 0 and ai,o = fi,o’

(%) Sa, ;t,=f

We will group the constants on the left in (4) according
to thelr sign. Let s* ve the set of indices J for which ai 3 20,
s
]
and S~ the set for which ay 4 < 0. Then
)

' 1 ] ] 1
(5) J}és“ 8y 4y + J:;:S__ ay 4ty =Ly o

There are now two possibilities to conslider. The expres—
slon on the left 1s eilther (1) nonnegative or (11) negative.

Case (1[. Since the left side 1s nonnegative and equiv—
alent to fo, its value can only be f;, or 1 + f;, or 2 + f;, ete.
Hence

1 1

|l ] ! i 1
oS Zartrg®s * B 2,08 S T fsty
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Case (ii). If the right-hand side 1s negative and equiv—
q

1
alent to fi it can only be fo -1, fo — 2, etc. So in every
)

o
case

1 [ 1 ' '
by -1> 2 a t, + 2 a t, > 2 a t
i,O - J€S+ 1:J J JES_— 1:J J - JES— 1:J J,

' '
or, multiplying by — fi o/1 - f1 0’
3 k]
fl
' i ' '
£, 08 £ —=0— (—a 3ty -
’ JeS 1 - fi ° ’
k]

Now either (1) holds or (i11) holds so always

1 1 1 flo ! 1
(6) £5,0% J§S+ ay 4ty + Jis_ T (—ay,4)ts

since the right side is the sum of two nonnegative numbers,
1

1,0°

This inequality then 1s satisfled by any integer solution

one of which 1s > f

but not by the present trial solution, since substituting
tJ = 0 for all J into (6) makes the right—hand side 0.
Of course the inequality (6) can be rewritten as an equation

by introducing a nonnegative slack s. Then (6) becomes

£

' ' i,0 !
s=—f, - % a, ,(-t,)—- = _—=29— (-a, )(=t,).
i,0 JeS+ i, J jeS 1 —f 1,0 J

1,0
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In obtaining (6) we have used only the fact that x, was

1
required to be an integer. If some of the nonbaslic variables

t, are also integer variables, the inequality (6) can be

1iproved in a manner entirely analogous to the reduction

that 1s always possible in the strictly integer problem. The
improvement willl take the form of a decrease in the coefficients
on the right in the resulting inequality (6). It 1s clear that
for fixed fi,o the smaller these coefficients, the stronger

the inequality.

Let us suppose then that some tJo is requir?d to be
integer an? hence 1s assigned an integer value tJo in (5).
Changing ai’Jo by an integer amount then changes the left
side of (5) by an integer, and hence preserves the equivalence.
Thus we may replace a;’Jo by any new value a* = ai’Jo and
proceed just as before to deduce an inequality like (6).

If a* > 0, the coefficient of t in the resulting in—

* * Jo 1 ] »*
equality is simply a . If a 1s < 0, 1t 1s —f, o/(1 -1, o)a .
] 2
1
Among a* > 0, a* = fi the fractional partl of ay clearly
- ’JO JJO

gilves the smallest coefficlent to t in the resulting in—

J
o
equality. (This may even be 0.) Among a* < 0, the smallest

1
coefficlent is obtained from a¥ = fi 3= 1, and 1s
3
o

£
€9 —L0 - ).
1-¢f 1,3,
i,0
S

By the fractional part of both positive and negative
numbers ay 3 we will mean the nonnegative fraction f1 3 < 1 such
k] 2
th = .
at ai,J ni,J + fi,J with ni,J integer
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To obtain the smallest possible coefficient we choose the
1
smaller of fi 3 and (7) which, because an expression of the
2
[}

form x/1 — x increases monotonically with x is seen to be

ir

1 1]
£ £
o 1,5 S fio

1,3 o

and
1

‘1,0 <1 £ ) if . !
-1, 1, 3, 1,3, > fo,0°
’

It follows that the strongest inequality 1s obtained by
a simple two—stage process. (1) Flrst replace coefficients

of integer variables by thelr fractional parts 1f these are

1

i,o'

greater than f, . (11) Then deduce the inequality (6) as
3

less than [ , or by the fractional parts less 1 1f they are

before. The final result obtalned from the equation
1 '
Xy =ay o+ b ai,J(—tJ)
by this procedure is the inequality represented by the equation
8 \ *
( ) 8 = "fi,o -2 fi,J(_tj)

where the f; 3? all nonnegative, are given by the followlng
2

formulae:
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.
1
ai J if ai,J 2> 0 and tJ noninteger variable
i
f,l
1
1.0 (_ai J) if a; 4, <0and ty noninteger variable
— 2 ’
o 1-1 ,
=
9% Bl A : .
fi,J ir fi,J S'fi,o and tJ integer variable
]
fi fo) 1 ] 1
—_— (f1 —-1) if £y 4 > f; , and t, integer variable
1 -~ fi o :J »d »0 J
3

Equation (8) 1s then added and the problem is remaximized.
It seems sensible to use the dual simplex method at this point

1)
as all the a, 3° J > 1, are nonnegative, and there is only one
k]
]

1,0’
If the dual simplex method is applied, the O—column is

negative element, —f in the O-column.

decreased lexlcographically at the next step, and furthermore,
denoting by double primes the coefficients after the next
pivot step and by Jo the column in which the pivot step takes

place, we have

A\l
a3 o < N0 ir ai:Jo >0
(9)

3 5 >n

'
1,0 +1 if ai:Jo <0

1]
where n 1s the integer part of a, the index 1 in (9) is

1,0 1,0’
that of the row figuring in equations (3) through (8).
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This means that after the next pivot step the value as—
signed to Xy by the new trial solution 1s either > the next
highest integer, or < the next lowest integer.

To see this we consider the mechanism of the dual simplex
method. The dual simplex method willl pick a pivot in the new
row represented by (8). If the pivot element 18 chosen in
this row and in the Jo column then the formula for the a:,o
that results after a pivot step 1s

1
" ' fi,oai,,jo

8,0 "% ,0~ o *
1,4,

Now the formulas for f' show that if a 1s positive
1,3 1.,
and tJ noninteger we have
o

(10) 8,0 8%, 0" T =My *

1
If ay J is negative and tJ noninteger we have
’
o

" 10iJ

D ()

(11)
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To cover the cases when tJ is an integer variable we
o
need only remember that in this case the f; J 1s deduced by
El

o
a two—stage process, part (ii) of which is ‘exactly the same as
¥ when t is noninteger.
iijo Jo
Consequently if part (1) leaves ay 3 unchanged, either (10)

s

the process used to deduce the f

or (11) holds just as above. Part (i) will have ai g un—
El
changed only if either

] ]
8,5 = T1,4
or

1 ] ] ] 1
83, $O0s 8y g=1y y—1, andfy y>1,

Otherwlise part (1) makes a change which results in a
strictly smaller final f; 3 So in these cases we have the
3

strict inequalities

1]
ai,o < ni,o if ai;Jo >0
! ! if a' 0
84,0 01,0 1 1,3, < O
The remaining possibility, ai 3= 0, can not occur because
s’

'
ai,Jo = 0 implies fI,Jo = 0 and so ri,Jo can not be the pivot
element. Thus (9) holds in all cases.

Now (9) 1s exactly the property required for a finiteness
proof—i.e., a proof that the solution 1s attained in a finite

number of steps—provided that the objective function z 1s one

of the integer variables. To see this we arrange the original
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equations so that the integer variables on the left in (2)
are the first rows following the objective function z. (This
means that they rank higher lexicographically in the dual
simplex method.) Given property (9), the reasoning in the
first finitness proof in [1] (pp. 33-35) now goes through
unchanged. Of course one must stop now on attaining the
required integer values in the O-column, as an all-integer

matrix 1s not generally obtained.
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