
An evolutionary tabu search algorithmandthe NHL scheduling problemDaniel CostaD�epartement de Math�ematiquesEcole Polytechnique F�ed�erale de LausanneORWP 92-11May 5, 1994AbstractWe present in this paper a new evolutionary procedure for solving general opti-mization problems that combines e�ciently the mechanisms of genetic algorithmsand tabu search. In order to explore the solution space properly interaction phasesare interspersed with periods of optimization in the algorithm. An adaptation ofthis search principle to the National Hockey League (NHL) problem is discussed.The hybrid method developed in this paper is well suited for Open Shop Schedulingproblems (OSSP). The results obtained appear to be quite satisfactory.Keywords: Combinatorial optimization, genetic algorithms, natural evolution,tabu search, scheduling.1 IntroductionCombinatorial optimization has received the attention of many researchers in the last twodecades. A large volume of literature has been devoted to this �eld. This ever increasinginterest is due to the fact that many practical real-world problems can be interpretedas combinatorial optimization problems (COPs) of the following form: given a set X ofsolutions s and an objective function f assigning to each solution s in X a real valuef(s), �nd a solution s� in X for which f(s) is minimum. Much e�ort has been devoted tocreate procedures that can lead the search towards optimal points in the solution spaceX. Unfortunately, the size of the solution space of a real-word problem is generally muchtoo large to allow an exhaustive enumeration of all the points it contains.Let us cite for example the well known traveling salesman problem (TSP) which isconsidered by many researchers as a \benchmark problem". Given a set of N cities and1



the matrix of distances between them, the problem consists of �nding a closed tour ofminimum length that passes exactly once through each city. Assuming that the �rst cityto visit is �xed and that a tour and its reverse are the same, the total number of possibletours is (N�1)!=2. Although computer technologies keep evolving and get more and moresophisticated, a complete enumeration of all these tours is not conceivable for large valuesof N . There will almost certainly exist a limit above which this problem gets intractable.The complexity of the solution space due to the various constraints that may beinherent is another aspect that can cause di�culties when dealing with a COP. Sometimesit is really not obvious how to enumerate (even implicitly) the points in the solution space.Because of these di�culties researchers have concentrated their work on heuristics ratherthan on exact methods in order to solve large and complex COPs. In practice, it isgenerally su�cient to look for a good solution instead of an optimum which could befound only after a considerable computational e�ort. The challenge is to produce in aminimum time solutions as close as possible to optimal ones. Much work has been donein this �eld and very e�cient heuristics have been developed for many of the well knownCOPs. However most of the methods developed are very speci�c to a particular problemand cannot be generalized easily to other COPs. Ideally general techniques exploitingcommon features in the structure of problems should be de�ned for approaching a widevariety of COPs. Genetic Algorithms (GAs), Tabu Search (TS) and Simulated Annealing(SA) are three 
exible and simple algorithms which have this property. All of them havehad some success in dealing with di�erent types of COPs.GAs are search algorithms based on genetics and biological mechanisms of naturalselection for generating populations of individuals (i.e. solutions) �tter and �tter. Thispopulation evolution approach is composed of three di�erent operators which use prob-abilistic rules. A general description of the various mechanisms underlying GAs is givenin Section 2. Contrary to GAs, TS and SA are search procedures that deal with onlyone solution at a time. Each can be seen as a random step by step walk towards \goodregions" in the solution space. The di�erence between TS and SA lies in how the stepfrom one solution to another is selected. SA simulates the cooling of a collection of atomsby exploiting properties of Statistical Mechanics. On the other hand, TS has recourseto notions of Arti�cial Intelligence. It imitates human behavior by applying some learn-ing rules to direct the search properly and to avoid undesirable loops in the randomwalk through the solution space. Both methods would appear to be appropriate for thescheduling problem treated in this paper. However we will concentrate on TS since itseems to be more e�cient than SA. The superiority of TS over SA was shown in [2, 18]when dealing with problems related to graph coloring. We expect the same conclusionwith other types of COPs. Detailed explanations about the SA procedure can be foundin the technical literature [3, 20]. The basic ideas of TS are sketched in section 3.We present in section 4 a mixed optimization method developed by Moscato [22]. Inthis approach periods of separate search are interspersed with interaction phases. Afterhaving discussed the advantages of this mixed strategy we consider in section 5 a highlyconstrained COP: the National Hockey League (NHL) scheduling problem. An adaptationof the mixed procedure to this problem, as well as some computational experiments, arereported in section 6. We show also that our procedure is well suited for solving preemptive2



Open Shop Scheduling problems (OSSP) derived from the NHL problem.2 Genetic AlgorithmsGenetic algorithms de�ne an optimization strategy derived from natural evolution rules.This evolutionary approach, developed by Holland [19] in the 70's, is applicable to a broadrange of COPs. It is beyond the scope of this article to present GAs in detail. We sketchhere the mechanisms of a simple GA. General explanations about GAs can be found in[7, 21].Let us �rst make a short comment regarding the terminology which will subsequentlybe used. The objective function f is often called �tness function in the GAs literature.Even though this notion refers most of the time to maximization problems, we will usethe adjective �t from time to time in this article. A �t solution (resp. population) in ourterminology is a solution with a low value of f (resp. a population with a low averagevalue of f).Generally GAs require each solution s in X to be coded as a �nite length stringover some �nite alphabet A. The solution space is thus of the following form: X =f(a1; a2; : : : ; am)jai 2 A; jAj <1; m <1g. The mechanism underlying standard GAs isextremely simple because it involves nothing more complex than generating random num-bers, copying strings and swapping portions of strings based on some probabilistic rules.Roughly speaking the process consists of generating an initial population of individuals(i.e. strings in the solution space) and letting them evolve and interact according to wellde�ned principles. The size of the population never changes throughout the evolutionprocess. A GA is generally composed of three operators: Reproduction, Crossover andMutation which are applied sequentially to the current population of individuals.The reproduction operator is an arti�cial mechanism based on natural selection, theweakest individuals die o� whereas the �ttest proliferate. During the reproduction phasestrings composing the population are simply copied according to their objective functionvalues. The expected number of a given string in the new population will be proportionalto its �tness. Since the �ttest strings have a higher probability of appearing, futuregenerations will hopefully become �tter and �tter. Once bad parent strings are eliminated,one automatically eliminates their o�spring, the o�spring of their o�spring, and so on.Crossover constitutes the information exchange phase of a GA which produces diversityand innovation within the population. Strings are mated randomly to give birth to newo�spring. Each element thus created will have characteristics derived from both of itsparents. There are di�erent ways of performing a crossover operator. One possibilityamounts to generate two positions p1 and p2 along the parent strings. Two new individualscan be created by swapping all the information contained between positions p1 and p2.This mechanism is illustrated in Figure 1.The mutation operator can be regarded as the mechanism that generates the unavoid-able accidents (or errors) occurring occasionally during a natural evolution process. Itperforms with a very low probability an arbitrary change in one component of a string.3



Although it is relatively unimportant in comparison with the two previous operators, therole of mutation cannot be neglected. Mutation is sometimes needed to keep strings fromgetting stuck in local optima of the search space and to restart a process of evolution thatmight have stalled.Fig 1 - Two individuals (parents) are mated to generate two new individuals (children)Parent 1: a1 : : : ap1 : : : ap2 : : : amParent 2: b1 : : : bp1 : : : bp2 : : : bm Child 1: a1 : : : bp1 : : : bp2 : : : amChild 2: b1 : : : ap1 : : : ap2 : : : bm
Many people have doubts about the performance of such a blind algorithm. It seemsindeed very strange that chance should play such a fundamental role in the search. Whatguarantee do we have that the populations of individuals created throughout the processwill lead to solutions that are su�ciently �t? How can we expect a system to producesatisfactory results when it has so little knowledge of the problem to be solved? GAresearchers claim that the answer to these questions can be found in Nature itself. Thefact that Earth is now inhabited by many species which cohabit and thrive naturally indi�erent environments is nothing else than the result of a long process of evolution havingproduced an enormous diversity of genetic information starting from almost nothing afew billion years ago. GAs simply mimic the mechanisms underlying this fantastic pro-cess in solving COPs. Partisans of GAs emphasize that a problem solving method doesnot have to be smart, but capable of learning from experience, accumulating what seemsto work and rejecting what does not. Besides this biological concept underlying GAsthere exists a theoretical background which has not been mentioned yet in this paper:the Schema Theorem (or the Fundamental Theorem of Genetic Algorithms). Roughlyspeaking this theorem says that highly �t, short-de�ning-length substrings (we call thembuilding blocks) are propagated generation to generation by giving exponentially increas-ing samples to the observed best (see [7] for more details).The �eld of GAs has kept evolving since the �rst developments by Holland. Descen-dants of GAs embody more and more an evolution that goes beyond the connotations ofthe term "genetic" [11]. Most of the innovations result from the introduction of prob-lem speci�c knowledge into standard GAs which have shown their limits when appliedto constrained optimization problems [1]. Grefenstette [14] has shown that it is possibleto exploit problem speci�c knowledge in virtually every phase of a GA. Another trend inthe evolution of GAs that goes somewhat in the same direction is the incorporation oflocal search heuristics into GAs. M�uhlenbein et al [23] had some success in developingparallel GAs that allow individuals in the population to improve their �tness by localimprovement. 4



3 Tabu searchIn the same spirit as GAs, TS is a general heuristic devised for solving large COPs. How-ever, the principles underlying the two algorithms are fundamentally di�erent. WhereasGAs deal with a population of solutions evolving naturally, TS consists of an iterativesearch procedure on individual solutions. This technique was developed independently byGlover [8] and Hansen and Jaumard [16]. For a good introduction to TS, the reader isreferred to [9, 10, 12, 25].Let us de�ne the notion of neighborhood N(s) for each solution s in X. By de�nitionN(s) is the set of solutions in X reachable from s via a slight modi�cation m. Moreformally, N(s) = fs0 2 Xjs0 = s�m;m 2Mg whereM contains all possible modi�cationsand `s0 = s �m' means that s0 is obtained by applying modi�cation m to s. TS startsfrom an initial solution randomly generated in X and moves repeatedly from a solutionto a neighbor one. At each step of the procedure, a subset V � of the neighborhood of thecurrent solution s is generated and the local optimization problem minff(x)jx 2 V � �N(s)g is solved. In order to escape from local minima, the idea is to move to the bestneighbor s0 in V � even if f(s0) > f(s). Unfortunately the algorithm is likely to cycle ifmoves of this type are performed without taking any precaution. In order to limit thisdanger, a cyclic list T is introduced. This list keeps track of the reverses of the last jT jmodi�cations which have been done during the search process. A move from s to s0 willbe considered as tabu if it is performed via a modi�cation contained in T . This wayof proceeding hinders the algorithm from returning to a solution reached in the last jT jsteps. Since only parts of the neighborhoods are explored it might be worth returningafter a while to a solution visited previously to search in another direction. The conceptunderlying the tabu list T is unfortunately much too strict. Solutions may be consideredas tabu even though they have not been encountered yet. An aspiration function Adeals precisely with the rigidity of the tabu list. It permits the tabu status of a moveto be dropped under certain favorable circumstances. For each value z of the objectivefunction we de�ne an aspiration level A(z). Then a tabu move from s to s0 is permittedif f(s0) < A(f(s)) (i.e. f(s0) must be \small enough"). The most common example ofapplication of this principle is obtained in setting A(z) = f(~s) where ~s is the best solutionreached from any solution s such that f(s) = z. Initially A(z) = z for all possible valuesof z = f(s). This aspiration function is updated as follows whenever we move from s tos0: A(f(s)) = min(A(f(s)); f(s0))A(f(s0)) = min(A(f(s0)); f(s))The above shows that the reverse move from s0 to s is considered in the updating of Aeven though it was not done explicitly.Generally the whole process is stopped as soon as a given number of iterations havebeen performed without improving the best solution obtained. Figure 2 outlines thegeneral TS procedure. 5



Figure 2 - The general tabu search||||||||||||||||||Initializationgenerate a random solution s in X ;s� := s ; (best solution reached so far)iter := 0 ; (iteration counter)bestiter := 0 (iteration at which the best iteration has been found)T := ; ;initialize the aspiration function A ;While (iter � bestiter < niter max) doiter := iter + 1 ;generate a set V � of solutions si = s�mi such that either mi 62 Tor f(si) < A(f(s)) ;choose the best solution s0 in V � ;update the tabu list T and the aspiration function A ;If (f(s0) < f(s�)) thens� := s0 ;bestiter := iter ;s := s0 ; ||||||||||||||||||4 Tabu search combined with genetic algorithmsTabu search is one of the most e�cient algorithms for solving COPs among the variousavailable search procedures. The principle of searching repeatedly for a neighbor as goodas possible seems to lead towards interesting areas in the search space quickly and with ahigh probability. It should be pointed out that contrary to SA there exists no convergencetheorem for TS. TS has several desirable qualities: it is powerful, very 
exible and easy toimplement. Unfortunately there is one aspect which is troublesome: various parametershave to be adjusted in the algorithm. From this point of view, TS is not very robust. Theparameters have a direct in
uence on the quality of the �nal solution. A good knowledgeof the problem is required to �x them appropriately. At this level, GAs are to someextent complementary to TS. There are few parameters to adjust and they deal with apopulation of solutions rather than with a single solution.The question which now arises naturally is the following: \Can TS and GAs be com-bined e�ciently to create a new hybrid strategy taking advantage of their complementaryfeatures ?" The answer is yes. Such a concept was developed recently by Moscato [22]for tackling some test problems. His model is based on a set of individuals, called agents,which are arranged topologically around a `ring'. Periods of competition, cooperation6



and individual optimization intersperse throughout the process according to well de�nedrules. A similar approach, closer in a certain sense to GAs, is investigated in this paper.Notions of Arti�cial Intelligence are introduced to guide the natural evolution process.The mutation phase of GAs is replaced by a search in the solution space governed by atabu algorithm. Instead of random mutation changes in its components, each individualundergoes a separate optimization process before interacting again with other members ofthe population. The phases of such an evolutionary TS algorithm (ETS) are schematizedin Figure 3. Figure 3 - TS combined with GAs
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We expect the solutions produced by such a mixed algorithm to be better than thoseobtained without any interaction. The combination of TS with a regular collective ex-change of information is likely to yield a search procedure much more e�cient and robustthan a classical TS.A very highly constrained problem is presented in the next section. The combinedmethod presented in this section will be used to solve it.5 The NHL game scheduling problemConstructing a schedule for a sport league is a very di�cult task. There are generallya large number of entities involved in the process and hence many requirements to takeinto account. The NHL game scheduling problem is certainly a good illustration of thispoint. Because of the various types of constraints involved, it is perhaps one of the mostcomplex applications of its kind.5.1 General descriptionThe National Hockey League includes teams located in North America and is divided intotwo Conferences, each of which is split into two Divisions. The alignement of teams forthe 1993-94 NHL season is shown in Table 1.7



Table 1 - Teams in the LeagueWestern Conference Eastern ConferencePaci�c Division Central Division Northeast Division Atlantic DivisionAnaheim Chicago Boston New JerseyCalgary Dallas Bu�alo NY IslandersEdmonton Detroit Hartford NY RangersLos Angeles St. Louis Montreal PhiladelphiaSan Jose Toronto Ottawa South FloridaVancouver Winnipeg Pittsburgh Tampa BayQuebec WashingtonIn this paper we deal with the 1989-90, 1991-92 and 1993-94 situations. Unless speci-�ed, we use the present tense for the 1993-94 season and eventual comments for the twoearlier seasons are put in brackets. In recent years, the NHL expanded from 21 to 26teams (1989-90: 21 teams/1991-92: 22 teams) and it is expected that up to 28 teamsmay be part of the NHL by the year 2000. A total of 1066 (800/880) regular games areplayed during the season. Each team plays 41 (40/40) games at home (H) and 41 (40/40)away (A). Teams in the Paci�c and Central Divisions play other teams within their owndivision 6 times (3H,3A). In the Northeast and Atlantic Divisions teams play other teamswithin their own division only 5 times (some 3H,2A and others 2H,3A). All teams play 4games (2H,2A) against each of the teams in the other Division of their Conference and 2games (1H,1A) against each of the teams in the other Conference. A procedure based oninteger linear programming to generate game allocation scenarios is proposed in [5]. Theseason begins in early October and ends in early April (26-28 weeks). In 1992-93, theNHL and the NHL Players' Association decided to play extra games in neutral sites forpromotional purposes. For the second successive year, teams play two games in non-NHLcities during the 1993-94 season.The NHL problem consists of assigning each game a date while taking the followingconstraints into account:1) A team cannot play more than one game a day.2) Arena availabilities are handled essentially by the teams. Each team manager pro-vides a set of 56 (50/50) or slightly more preferred home dates from which 41 (40/40)are to be chosen by the scheduler.3) The total distance travelled by the teams should be minimized.4) A team should not play games on three straight days and should not play more thanthree games in �ve consecutive days.5) A team should play regularly while it is not at home. Breaks of more than 3 daysshould be avoided on the road.6) Games cannot be scheduled on certain days, either because of a major event (AllStar Game break) or a holiday (Christmas Eve, Christmas) or the unavailability ofa team (e.g. a special event in which the team is involved).8



7) Some arenas cannot be used on certain days because of other major activities (circus,music concerts, sporting events, ...).8) There should be an even distribution of games throughout the season. Identicalgames (i.e. the same pair of teams at the same location) involving teams of thesame division should be scheduled at least 14 days apart. When teams come fromdi�erent divisions the minimum allowed lapse of time between revisits is 30 days.9) A team cannot play more than 7 consecutive road games and the duration of a roadtrip cannot exceed 14 days.10) One idle day must be provided between games involving lengthy travel. Two gamescannot be scheduled on two consecutive days if one of the teams involved has totravel more than 900 miles. By convention this applies only to teams coming fromdi�erent divisions.Minor restrictions and constraints speci�c only to certain teams have been purposelyomitted in the above description to make the presentation of the problem clearer. Alsosome points dealing with the 
exibility of the team managers have not been consideredin our approach because they are very di�cult to incorporate in a computer program.As we can expect the NHL scheduling problem is far from easy to solve, even in theslightly simpli�ed form presented above. The problem looks like a highly constrainedmulti-person TSP where each salesperson has to visit each city a given number of times.Despite (or perhaps because of) its complexity the schedule continues to be developed ona manual basis. Once a �rst draft is prepared, the central scheduler gets in touch withthe di�erent team managers for possible suggestions and modi�cations. This negotiationphase deals essentially with the arena availability which is undoubtedly the most di�culttype of constraint to satisfy. The 56 (50/50) possible home dates proposed by the teammanagers are generally not enough to produce a feasible schedule. Some changes areperformed by the team managers to allow the central scheduler to �nd a �nal schedulesatisfying the requirements of all the clubs in the League.To our knowledge the NHL scheduling problem has already been tackled twice in theliterature. W. Fraser [6] developed a `road trip simulator' module which has proven tobe rather in
exible for properly scheduling all games. His conclusion was: \Due to theunpredictability of some constraints and the human relationships involved in others, it isimpractical to expect that a computer program will ever produce a �nal schedule whichwould require no tuning or adjustment". J. Ferland and C. Fleurent [4] on a secondattempt proposed a decision support system for building the schedule in an interactivemanner. Their approach involves at the same time the experience of the program userand sophisticated computerized procedures.5.2 Mathematical formulationThe NHL problem presented above can be formulated as a combinatorial optimizationproblem in the following fashion. 9



Let us split into two categories Ca and Cb the set C of all the constraints described inthe previous section. Constraints in Ca are called essential while those in Cb are termedrelaxed. A schedule is acceptable if it satis�es all the constraints in C. If it satis�es atleast the essential constraints it is said to be feasible.The following objective function (or �tness function) evaluates the unacceptability ofa feasible schedule S: f(S) = Xi2Cb wi � fi(S)f(S) is de�ned through a set of weights wi giving relative importance to each relaxedconstraint. fi(S) computes the degree of violation of the i-th relaxed constraint in theschedule S. The problem amounts to looking for a schedule S� that minimizes the valueof f over the set X of feasible schedules. The size and the structure of X, as well as thecomplexity of f , result directly from the way of partitioning the set C. Some criteria arepresented in [17]. A game should never be scheduled on a day if such an assignementinduces nothing but an unacceptable schedule. On the other hand a con
ict betweentwo games is not a su�cient condition for hindering an assignement. Based on theseprinciples, it was decided to include constraints 6 to 8 in Ca and to relax constraints 4and 5. Constraint 1 should be relaxed but this has to be done with care if we want toavoid manipulating messy schedules. In particular the notions of road trips and homegames need to be di�erentiated properly. Thus we split constraint 1 into three parts asfollows:(1.1) A team cannot play more than one game per day.(1.2) A team cannot play more than two games per day.(1.3) A team cannot play at home and on the road during the same day.In order to have feasible schedules relatively easy to handle, we relaxed (1.1) and put(1.2) and (1.3) in Ca. Constraint 2 has also been relaxed because it is hard (probablyimpossible) to produce a schedule satisfying this constraint accurately. The relaxationof constraint 3 is natural since we are interested in �nding a schedule that minimizesthe distance travelled by the teams. In order to reduce the number of components ficonstraints 9 and 10 have been included in Ca. Their in
uence on the structure of X isnegligible. The role of each component fi(S) is described below:� f1(S) indicates how many times a team plays two games per day.� f2(S) indicates how many times the unavailability of an arena is not respected.� f3(S) indicates the total distance (in hundred of miles) travelled by the teams duringa whole season. 10



� f4(S) indicates how many times a team plays more than two games on three straightdays or more than three games on �ve straight days.� f5(S) indicates how many breaks of more than three days occur while a team is onthe road.We discuss in the remainder of this paper an adaptation of the mixed procedure ofsection 4 to the NHL problem. Despite W. Fraser's pessimism we expect our algorithmto produce implementable results, even though �nal minor manual tunings may alwaysbe necessary to satisfy all the League requirements.6 An evolutionary TS for the NHL problemThe ETS algorithm introduced in this paper is made up of 3 phases which succeed repeat-edly throughout the process. After having explained how to generate an initial populationof schedules, we present the mechanisms underlying each phase of the algorithm used forbuilding the NHL schedule. Various computational experiments are reported at the endof this section.6.1 Generation of an initial population of schedulesThe method we adopted to generate an initial schedule is somewhat similar to the onepresented in [4]. Road trips are built sequentially for each team in the League whilemeeting every essential constraint. The road trip generation procedure which is sketchedin Figure 4 is based on the following notation:(1) Denote by R(t) the set of games remaining to be scheduled on the road for teamt. Initially jR(t)j = 41(40=40) for every team t. Let T = (t1; : : : ; tn) be the list ofteams sorted by decreasing order of jR(t)j (i < j ) jR(ti)j � jR(tj)j).(2) Consider for each team t the set of intervals (d1; d2) where d1 and d2 are two con-secutive available home dates provided by t such that jd2� d1j � 3. These intervalsare called free intervals. In principle a team plays only games on the road during afree interval. The minimum duration of a free interval is set at 3. Let I(t) be thelist of free intervals for team t sorted by length in decreasing order.(3) [t1; t2] refers to a game involving teams t1 and t2 that has to be played in the arenaof team t2.A whole population P of schedules can be obtained with the technique presented inFigure 4 by rearranging the initial list T and ordering somewhat di�erently the various listsof free intervals I(t). We give below the average values of the components fi characterizinga schedule S (for the 1991-92 season) produced by the road trip generator of Figure 4:11



f1 ' 230; f2 ' 60; f3 ' 8200; f4 ' 1100; f5 = 0;Constraint 5 happens to be satis�ed in every initial schedule contrary to the other relaxedconstraints. The value of f4 is relatively high because of the f1 ' 230 teams playing twogames on the same day in the schedule. More e�ort could be put into establishing a �tterinitial population of schedules. This was not done since there is no guarantee that thiswill eventually lead to better results. We observed that the initial population does notsigni�cantly in
uence the quality of the �nal generation of solutions. As the availabilitiesof the arenas in neutral sites are not known, neutral games in the 1993-94 season arescheduled according to the o�cial schedule established by the League. ETS is not allowedto move these games. Figure 4 - Generation of an initial schedule|||||||||||||||||||||{ngames to schedule := 1066 (800/880);ngames[t1; t2] := number of games [t1; t2] remaining to be scheduled;While (ngames to schedule > 0) do- t1 := �rst team in the list T ;- Pick the �rst free interval (d1; d2) in I(t1) containing a feasible and available homedate d for a team t2 such that ngames[t1; t2] > 0. If no interval can be found in thisfashion, then the requirement of arena availability on day d is dropped;- If team t2 is not unique, pick the one which is located the furthest away from t1;- If day d is not unique pick the one which is the closest to the middle of theinterval (d1; d2);- Schedule game [t1; t2] on day d ;- Complete the trip by scheduling games [t1; t] in the intervals I1 = (d1; d) andI2 = (d; d2) alternatively while meeting the essential constraints. The arenaavailability constraint is taken into account whenever it is possible. Days in I1(resp. in I2) are considered by decreasing (resp. increasing) order starting from d.When scheduling a new game [t1; t] in I1 (resp. in I2) priority is given to teams tlocated close to the last team tI1 (resp. tI2) scheduled in I1 (resp. I2). InitiallytI1 = tI2 = t2.- Update T; I(t1); ngames to schedule and ngames[t1; �] ;|||||||||||||||||||||{6.2 The reproduction phaseWhen solving a maximization problem, the easiest way to implement a reproductionoperator is to associate to each schedule S a probability p(S) equal to its �tness f(S)divided by the sum of the �tnesses of all the members of the population. In our case the12



probabilities p(S) need to be de�ned di�erently. We need a function such that p(S) ismonotonically decreasing with f(S). Let M = fmax + (fmax � fmin)=n where fmax (resp.fmin) denotes the �tness of the worst (resp. the best) schedule in the current populationP of size n. A new population P is created by copying a schedule S according to thefollowing reproduction probability:p(S) = M � f(S)n �M � X~S2P f( ~S)The most popular way of implementing this competition process is to create a biasedroulette wheel where each schedule has a roulette wheel slot sized in proportion to p(S).A simple spin of the wheel yields a reproduction candidate. The repoduction phasesconsists then of n spins of the wheel. In the new population thus created the expectednumber of o�spring of a given schedule S is clearly equal to n � p(S). The constant Mhas been chosen in order to give a positive but relatively small reproduction probabilityto the least �t schedule in P.6.3 The crossover phaseThe de�nition of an e�cient crossover operator is the crucial point when implementinga natural evolution process for solving optimization problems. A good knowledge of theproblem under study is required. Various attempts were made before �nding an operatorthat properly guides the cooperation phase in the NHL problem context.Exchange of information occurs between two schedules on the basis of a cooperationrequest of one schedule to the other. A new schedule is created every time a schedule Saaddresses a cooperation request to a schedule Sb. Let us denote such a request by Sa ! Sb.In order to make things more explicit when describing the crossover operator underlyinga cooperation request let us introduce some de�nitions. � denotes a permutation of theelements 1; 2; : : : ; n: ndays is the number of days in a regular season. The frame FS;t ofthe schedule of a team t in S is a string of length ndays with 0-1 components. FS;t[d] = 0if team t is at home on day d in the schedule S: FS;t[d] = 1 whenever team t is on theroad. By convention, a team is at home between the last game on the road (resp. athome) and the next game at home (resp. on the road). Also a team is assumed to be athome before its �rst game and after its last game of the season. Without going too muchinto detail, let us say that the cost of a game g in a schedule is a measure based on thedegree of violation of the relaxed constraints due to game g. Finally the word redundantwill be used in the following sense. For a given visitor-home team pair, if the number ofsuch games scheduled is greater than the number speci�ed by the league, then all of thegames scheduled are called redundant.Before every cooperation phase, a random permutation � is used to rearrange sched-ules S1; S2; : : : ; Sn within the population. Then every schedule S�(i) (i = 1; 2; : : : ; n) sendsa cooperation request to S�(i modn+1) (S�(i) ! S�(i modn+1)). Roughly speaking this con-sists of putting together within a single schedule S�i as many games as possible without13



modifying the frame of schedule S�(i modn+1). A feasible schedule is obtained by sequen-tially removing the most costly redundant games in S�i . In order not to lose the frameof the best schedule involved in a cooperation request, a request S�(i) ! S�(i modn+1) isaccepted under certain circumstances only. If S�(i) is �tter than S�(i mod n+1) and if arequest S�(i mod n+1) ! S�(i) has not been performed yet in the current cooperation phase(as a reminder, a schedule may appear more than once in the population) then the reverserequest S�(i modn+1) ! S�(i) is used instead.The detailed mechanism underlying a cooperation request Sa ! Sb is presented inFigure 5. The schedules S�i thus created make up the next population of individualswhich will go through the next stage of the ETS algorithm.Figure 5 - Creation of a schedule S� via a cooperation request Sa ! Sb||||||||||||||||||||||||||||||||- Make a copy of Sb and call it S�- FS�;t = FSb;t for every team t- For every day d and for every game [t1; t2] played on day d in Sa, insert[t1; t2] on day d in S� if the corresponding frames are compatible(i.e if FSa;t1[d] = FS�;t1 [d] and FSa;t2 [d] = FS�;t2 [d])- Establish a list L of all the redundant games in S�- Sort the list L by cost in decreasing orderWhile (L 6= ;) do- Remove from S� the �rst game g in L- Remove game g from L- If games identical to g (same visitor versus same home team) are nolonger redundant in S� then remove them from L- Resort the list L if any remaining costs have changed||||||||||||||||||||||||||||||||6.4 Tabu SearchWe present in this section an adaptation of the general TS procedure to the NHL problem.The neighborhood N(S) of a schedule S consists of all the schedules that can beobtained from S by moving a single game from one day to another. In order to morequickly reach good regions of the set of feasible schedules, only games violating at least onerelaxed constraint (except for the distance constraint whose violation is hard to evaluatefor a single game) are moved around during the TS process. These games are calledcon
icting games. A maximum number nneigh of pairs (gi; wi) are generated at each stepof the search. gi is a con
icting game and wi is a week di�erent from the one in whichgame gi is currently scheduled (we do not consider moves within the same week becausethe game was probably moved earlier into its current position at which time the best date14



within the week was selected). For every game gi, we look for the best feasible day di inweek wi. The best of the moves (gi ! di) thus created will be retained for building the nextschedule. In order to reduce the time spent for choosing a neighbor, we move directly tothe best neighbor found after having generated at least bnneigh=2c neighbors if it happensto be better than the current solution S. The number of neighbors to enumerate at eachstep should depend on the size of N(S). It was decided to set nneigh = propN � jN(S)jwhere 0 < propN < 1.In order to prevent cycling, the reverses of the last moves are memorized in the tabulist T . If a game g is moved from day d1 to day d2 at a given step of the algorithm thenthe move (g ! d1) is considered as tabu for the next jT j iterations. To diversify a bitthe exploration in the search space once in a while, the size of the tabu list is randomlygenerated between two given bounds tmin and tmax [2]. The aspiration criterion presentedin section 3 has been slightly modi�ed in this adaptation of TS. Instead of consideringthe function f(S) = Pi2Cb wi � fi(S) when implementing A(z) we have concentrated onthe �rst two relaxed constraints and have used the function g(S) = f1(S) + f2(S).The weights w1; w2 and the components f3; f4; f5 have been omitted in the de�nition ofg to reduce signi�cantly the number of values A(z = g(S)) that we have to keep trackof throughout the TS process. Finally it was decided to stop every TS procedure after agiven number niter of iterations independently of the iteration at which the best solutionwas found.A population of individuals is likely to converge prematurely if either niter or n aresmall. We say that a population goes through a diversity crisis when it contains morethan bn=3c copies of a same solution S after a cooperation phase. For half of thesecopies, if the �tness of S has not been increased in the next individual optimizationphase after bniter=2c TS iterations then the solution we retain at the end of each of thesearches considered is the best solution (di�erent from S) obtained in the last bniter=2cTS iterations. Hopefully the diversity incorporated in this way will propagate in thesubsequent generations giving birth to �tter solutions.6.5 Numerical results for the NHL problemThe experiments presented here have been performed on a Silicon Graphics workstation(9 M
ops). In order to select appropriate values of the parameters governing the searchvarious trials have been carried out with the computer code using the data of the 1989-90 and 1991-92 NHL seasons. Let us call TSn an algorithm composed of n classicalTS procedures running separately (i.e. without any interaction between two processes).Similarly ETS dealing with a population of size n is denoted ETSn.In the de�nition of the objective function we chose w1 = 26; w2 = 13; w3 = 1; w4 = 10and w5 = 2. These weights give solutions which are comparable to the schedules obtainedmanually by the NHL schedulers. Increasing (resp. decreasing) a weight wi would givemore (resp. less) importance to the associated relaxed constraint.To �nd appropriate values for the tabu list size jT j, we investigate the behaviour of TS5with jT j ranging from 0 to 300. Figures 6 and 7 show the average results produced after15



niter = 5; 000 iterations for propN = 0:05, propN = 0:2 and propN = 0:4. We observethat the best solutions are obtained when jT j lies in [10,80]. In a more general way jT jshould be chosen proportionally to the number of possible moves (i.e. ngames � nweeks)in the search space. Since this number does not change much in the 3 NHL probleminstances considered in this paper it has been decided to generate T between tmin = 10and tmax = 80 once every 50 iterations independently of ngames and nweeks. WhereaspropN = 0:2 and propN = 0:4 yield similar results, we notice that there is a signi�cantlyloss of quality when considering propN = 0:05. Other tests have shown that generatingat most a �fth (i.e. propN = 0:2) of the con
icting games is a good compromise betweenelapsed CPU time and average quality of the solutions obtained.Figure 6 & Figure 7Let ngen be the number of generations created in ETSn (each generation goes through areproduction phase, a cooperation phase and a TS phase) and nitertot (= ngen� niter)the total number of TS steps performed by a member of the population. The parametersngen and nitot need now to be tuned in such a way that ngen � niter = nitertot. Thelarger nitertot is, the higher the quality of the results obtained is likely to be. We havedecided to set nitertot = 20; 000. Experiments with 5 di�erent initial populations of size8 (5 � ETS8) have been conducted. The results obtained with ngen ranging from 1 to80 are shown in Table 2. A number of generations smaller than 4 is clearly insu�cient.On the other side, considering a large number of generations does not allow TS to seeke�ciently in a given direction. The best results are obtained with decompositions 8�2500,10� 2000, 20� 1000 and 40� 500. We will use decomposition 20� 1000 in the remainingalgorithms. Table 2 - Number of generations versus number of TS iterationsngen� niter 1989-90 1991-921 � 20000 9,003.82 9,509.272 � 10000 8,911.17 9,465.024 � 5000 8,779.33 9,331.405 � 4000 8,784.75 9,346.978 � 2500 8,746.27 9,258.3210 � 2000 8,699.42 9,273.8020 � 1000 8,708.07 9,254.5740 � 500 8,711.72 9,313.6550 � 400 8,832.62 9,312.8080 � 250 8,851.97 9,359.27The last parameter to study is the size n of the population. To that purpose we runETSn 5 times with n varying from 1 to 50. As it can be seen in Table 3, the quality of the�nal solutions increases when n goes from 1 to 8. For larger values of n this progressionis less pronounced. We think that the size of the population does not have a signi�cantin
uence on the results for values of n larger than 30-40. Because of the high CPU time16



required, no experiment has been carried out with n > 50 (it takes about 10 minutes torun 20; 000 TS iterations on a single individual).Table 3 - In
uence of the size n of the populationn 1989-90 1991-921 8,923.60 9,457.402 8,799.60 9,390.403 8,771.79 9,336.535 8,728.40 9,166.648 8,619.00 9,155.1010 8,626.64 9,158.4020 8,534.84 9,072.7030 8,515.79 8,952.8140 8,441.30 9,049.1150 8,482.62 8,882.83In order to measure the performance of ETS we compare in Table 2 the results pro-duced by ETS8 and TS8 with the data of the 1989-90, 1991-92 and 1993-94 NHL seasons.For each of these 3 instances, ETS8 and TS8 are given the same initial population ofschedules. The �rst three columns of Table 4 report respectively the average �tness, the�tness of the worst schedule and the �tness of the best schedule in the �nal populationobtained after ngen = 20 generations (nitertot = 20; 000;niter = 1; 000). The last �vecolumns give the values of the di�erent components fi characterizing the �ttest schedulein the population. Table 4 - NHL resultsseason method fav fmax fmin f1 f2 f3 f4 f5ETS 8,531.00 8,556 8,513 0 91 7,262 3 191989-90 TS8 8,970.25 9,059 8,827 0 91 7,550 4 27O�cial Schedule - - 10,210 0 148 8,176 4 35ETS 9,055.00 9,111 9,032 0 80 7,916 3 231991-92 TS8 9,519.63 9,704 9,437 0 95 8,114 4 24O�cial Schedule - - 10,963 0 150 8,889 3 47ETS 12,384.75 12,392 12,347 0 105 10,896 2 331993-94 TS8 13,028.63 13,284 12,863 0 124 11,091 7 45O�cial Schedule - - 13,293 0 111 11,718 3 51We observe that the principle of inserting cooperation and competition phases duringa TS process increases signi�cantly the performance of the algorithm. The various ex-periments we have carried out on the NHL problem show us that the �nal population ofschedules produced by ETS8 is on average between 3 and 6 % �tter than the one obtainedby TS8. As expected, ETS8 provides a population of schedules more homogeneous thanTS8 does. The range of the values f in the �nal population is equal to 45 (43/79) for ETS817



and to 421 (232/267) for TS8. The higher variability of the �nal population achieved byTS8 is due to the fact that there is no exchange of information between the schedulesthroughout the algorithm. Thus, the in
uence of the initial population on the �nal oneis more important in TS8 than in ETS8.The characteristics of the o�cial NHL schedules are also reported on Table 5. It isimportant to point out that 4 out of the 5 essential constraints are not satis�ed thoroughlyin these schedules. According to the data we obtained, 1 (6/6) game(s) is (are) scheduledon a day when the home team arena is supposed to be busy, 0 (0/2) team(s) has (have)to play while it is (they are) supposedly unavailable, minimum spacing between identicalgames is violated 25 (44/33) times and 12 (6/3) teams are involved in two consecutivegames requiring a long journey (> 900 miles). As mentioned earlier, a NHL schedule isobtained after lengthy discussions involving the central scheduler and the team managers.Various concessions are made by both sides in this negotiation phase. This explainspartially why the original arena availability constraint and most of the essential constraintsare not well respected in the o�cial schedule. From a �tness function point of view theschedules produced by ETS8 are much better than the o�cial ones. It turns out that wemanaged to reduce by 82,200 (91,400/97,300) miles the total distance travelled during aregular season. Because of the contradictory objectives expressed by the arena availabilityconstraint and the distance constraint, the total distance travelled by the teams in theLeague can be reduced even more by decreasing w2 and increasing w3 somewhat. Thisdepends on which constraint has higher priority.Unfortunately, it is impossible to evaluate precisely the gap existing between the ob-jective expressed by f and the real goals of the team managers. The central schedulercould use the calendar produced by ETS as a �rst draft before beginning the unavoidableinteraction phase with the team managers. Despite this, the ETS schedules are quitereasonable in our opinion.The running time of an ETS algorithm is negligible in comparison with the amountof time spent by the central scheduler in developing a schedule. Twenty generations of 8schedules have been achieved in approximately 80 minutes of CPU time on a sequentialcomputer. Due to its asynchronicity and intrinsic parallel nature, ETS is well suitedfor parallel computation. The use of a parallel MIMD machine would have signi�cantlyreduced the execution time of the algorithm. Investigations to evaluate the speed-up ofthe algorithm have not been carried out in this study.6.6 A variant of the NHL problemThe NHL problem can be seen as a generalization of two problems commonly related inthe technical literature: the multi-person traveling salesman problem (m-TSP) [15] andthe open shop scheduling problem (OSSP) [13]. In order to demonstrate the e�ectivenessof ETS method in a more general way we generate here a variant of the NHL problemthat can be seen as a multiple-constraint preemptive OSSP. Let us split the teams in theleague into two sets M = (M1;M2; � � � ;Mr) and J = (J1; J2; � � � ; Js). Teams in M playonly on the road whereas teams in J stay always at home. In the open shop context,18



machines and jobs identify with teams in M and J respectively. Each job Jj consistsof tasks T1j; T2j; � � � ; Trj which have to be processed on M1;M2; � � � ;Mr respectively. Theorder of the processing is not �xed. The processing time pij (given in periods) of eachtask Tij is an integer randomly generated between 1 and 10. Preemptions are allowed, i.e.a task Tij in process on Mi can be interrupted and continued later. All tasks have to beprocessed within nperiods = 2 �max(maxi2M(Pj2J pij);maxj2J (Pi2M pij). The distancedkl (in hundred of miles) between team k and team l (k; l 2 J ) refers now to the set upcost for a machine Mi to process Til after Tik (cf [24] for an application of such a model).Every machine needs a maintenance service once in a while. The cost of a service on Miis equal to dki + dil where Tik is the last task processed on Mi before the service and Tilthe task processed just after the service. Among the constraints mentioned in section 5.1only the four sketched below are taken into account here :1) No two tasks of the same job can be processed simultaneously and each machineworks on at most one task at a time.2) Because of external availability and/or delivery constraints (e.g. release dates, anddue dates) the tasks of every job should be processed on some speci�ed periods. Aset of mj = b32 � (Pi2M pij)c randomly generated periods is provided for each job Jj.3) The sum of set up costs and service costs over all machines should be minimized.9) A machine cannot process tasks for more than 7 periods without any maintenanceservice. It follows that the number of tasks processed between two services isbounded by 7.Except for the generation of an initial solution where �cticious unavailable periods forthe machines are considered, the method presented in the previous sections can be usedfor the above OSSP without modi�cation. As mentioned earlier the size of the tabu listshould be tuned according to the number of possible moves in the search space. Based onthe results presented in Figures 6 & 7 and on the average ratios tmin=ngames � nweeksand tmax=ngames � nweeks obtained when dealing with the 1989-90 and 1991-92 NHLproblems we set tmin = b0:0005 � ntasks � nper7c and tmax = b0:0036 � ntasks � nper7cwhere ntasks = Pi2MPj2J pij is the total number of tasks and nper7 = bnperiods=7cthe number of 7 period intervals. The 22 teams in the NHL during the 1991-92 season andthe matrix of distances associated are taken into account in this application (jMj + jJ j= 22). The parameter nitertot is reduced from 20,000 to 5,000 and the decomposition(ngen � niter) is chosen proportionally to the one retained for the NHL problem, i.e.ngen = 10 and niter = 500. The weights w1; w2; w3 are kept unchanged (w4 = w5 = 0).Table 5 shows the average results produced by ETS8 and TS8 when considering a setof 4, 8 and 12 machines. For a given number of machines, ETS8 and TS8 are run 10times, each time with a new set of machinesMi and di�erent processing times pij. All theschedules we obtain are overlap free (i.e. f1 = 0). �fmin (resp. �fmax) reports the average�tness of the best (resp. worst) solution in each of the 10 �nal populations achieved. �f isthe average value of f over all the solutions obtained. The ranges of f; f2 and f3 are alsoindicated in Table 5. 19



We notice once again that ETS8 performs signi�cantly better than TS8. The conclu-sions achieved in the previous subsection are the same here, i.e. ETS8 gives birth to a�nal population of schedules which is �tter and more homogeneous than TS8.Table 5 - Results obtained by ETS8 and TS8 on the OSSPr obj. function ETS8 TS8�fmin 3,181.10 3,443.60�fmax 3,226.10 3,731.60�f 3,204.55 3,589.904 f 2,620 ! 3,604 3,159 ! 4,002f2 4 ! 34 8 ! 31f3 2,438 ! 3,279 2,951 ! 3,781�fmin 3,338.30 3,446.00�fmax 3,382.40 3,679.40�f 3,359.59 3,562.368 f 2,826 ! 3,670 2,920 ! 3,939f2 0 ! 7 0 ! 7f3 2,757 ! 3,639 2,881 ! 3,913�fmin 3,125.40 3,268.20�fmax 3,167.60 3,481.20�f 3,151.75 3,364.0112 f 2,794 ! 3,654 2,859 ! 3,971f2 0 ! 2 0 ! 2f3 2,794 ! 3,654 2,859 ! 3,9717 ConclusionThe main purpose of this paper was to introduce an evolutionary approach capable oftackling a wide variety of problems. We asked ourselves whether the TS method might beimproved by modelling some aspects of biological optimization strategies. After havingsketched the basic mechanisms underlying GAs and TS, we have shown that the prin-ciple of mixing these two fundamentally di�erent search procedures leads to interestingoptimization properties. The blend of the advantages of GAs and TS yields a new evo-lutionary procedure which is expected to enhance the performance of both algorithmsrunning separately. The originality of an ETS algorithm lies in the succession of inter-action phases (competition + cooperation) and individual search phases throughout theprocess.We have seen that ETS performs signi�cantly better than TS when dealing withtwo highly constrained scheduling problems. The results we have obtained for the NHLproblem would appear to be quite promising. All the constraints we have taken intoaccount happen to be satis�ed in the ETS calendars better than in the o�cial onesestablished manually by the NHL. Even though it is hard to evaluate the real objectivesof the various people involved in the process of establishing the schedule we expect the20
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