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Abstract

We present in this paper a new evolutionary procedure for solving general opti-
mization problems that combines efficiently the mechanisms of genetic algorithms
and tabu search. In order to explore the solution space properly interaction phases
are interspersed with periods of optimization in the algorithm. An adaptation of
this search principle to the National Hockey League (NHL) problem is discussed.
The hybrid method developed in this paper is well suited for Open Shop Scheduling
problems (OSSP). The results obtained appear to be quite satisfactory.

Keywords: Combinatorial optimization, genetic algorithms, natural evolution,
tabu search, scheduling.

1 Introduction

Combinatorial optimization has received the attention of many researchers in the last two
decades. A large volume of literature has been devoted to this field. This ever increasing
interest is due to the fact that many practical real-world problems can be interpreted
as combinatorial optimization problems (COPs) of the following form: given a set X of
solutions s and an objective function f assigning to each solution s in X a real value
f(s), find a solution s* in X for which f(s) is minimum. Much effort has been devoted to
create procedures that can lead the search towards optimal points in the solution space
X. Unfortunately, the size of the solution space of a real-word problem is generally much
too large to allow an exhaustive enumeration of all the points it contains.

Let us cite for example the well known traveling salesman problem (TSP) which is
considered by many researchers as a “benchmark problem”. Given a set of N cities and



the matrix of distances between them, the problem consists of finding a closed tour of
minimum length that passes exactly once through each city. Assuming that the first city
to visit is fixed and that a tour and its reverse are the same, the total number of possible
tours is (N —1)!/2. Although computer technologies keep evolving and get more and more
sophisticated, a complete enumeration of all these tours is not conceivable for large values
of N. There will almost certainly exist a limit above which this problem gets intractable.

The complexity of the solution space due to the various constraints that may be
inherent is another aspect that can cause difficulties when dealing with a COP. Sometimes
it is really not obvious how to enumerate (even implicitly) the points in the solution space.
Because of these difficulties researchers have concentrated their work on heuristics rather
than on exact methods in order to solve large and complex COPs. In practice, it is
generally sufficient to look for a good solution instead of an optimum which could be
found only after a considerable computational effort. The challenge is to produce in a
minimum time solutions as close as possible to optimal ones. Much work has been done
in this field and very efficient heuristics have been developed for many of the well known
COPs. However most of the methods developed are very specific to a particular problem
and cannot be generalized easily to other COPs. Ideally general techniques exploiting
common features in the structure of problems should be defined for approaching a wide
variety of COPs. Genetic Algorithms (GAs), Tabu Search (TS) and Simulated Annealing
(SA) are three flexible and simple algorithms which have this property. All of them have
had some success in dealing with different types of COPs.

GAs are search algorithms based on genetics and biological mechanisms of natural
selection for generating populations of individuals (i.e. solutions) fitter and fitter. This
population evolution approach is composed of three different operators which use prob-
abilistic rules. A general description of the various mechanisms underlying GAs is given
in Section 2. Contrary to GAs, TS and SA are search procedures that deal with only
one solution at a time. Each can be seen as a random step by step walk towards “good
regions” in the solution space. The difference between TS and SA lies in how the step
from one solution to another is selected. SA simulates the cooling of a collection of atoms
by exploiting properties of Statistical Mechanics. On the other hand, TS has recourse
to notions of Artificial Intelligence. It imitates human behavior by applying some learn-
ing rules to direct the search properly and to avoid undesirable loops in the random
walk through the solution space. Both methods would appear to be appropriate for the
scheduling problem treated in this paper. However we will concentrate on TS since it
seems to be more efficient than SA. The superiority of TS over SA was shown in [2, 18]
when dealing with problems related to graph coloring. We expect the same conclusion
with other types of COPs. Detailed explanations about the SA procedure can be found
in the technical literature [3, 20]. The basic ideas of TS are sketched in section 3.

We present in section 4 a mixed optimization method developed by Moscato [22]. In
this approach periods of separate search are interspersed with interaction phases. After
having discussed the advantages of this mixed strategy we consider in section 5 a highly
constrained COP: the National Hockey League (NHL) scheduling problem. An adaptation
of the mixed procedure to this problem, as well as some computational experiments, are
reported in section 6. We show also that our procedure is well suited for solving preemptive



Open Shop Scheduling problems (OSSP) derived from the NHL problem.

2 (Genetic Algorithms

Genetic algorithms define an optimization strategy derived from natural evolution rules.
This evolutionary approach, developed by Holland [19] in the 70’s, is applicable to a broad
range of COPs. It is beyond the scope of this article to present GAs in detail. We sketch
here the mechanisms of a simple GA. General explanations about GAs can be found in

7, 21].

Let us first make a short comment regarding the terminology which will subsequently
be used. The objective function f is often called fitness function in the GAs literature.
Even though this notion refers most of the time to maximization problems, we will use
the adjective fit from time to time in this article. A fit solution (resp. population) in our
terminology is a solution with a low value of f (resp. a population with a low average

value of f).

Generally GAs require each solution s in X to be coded as a finite length string
over some finite alphabet A. The solution space is thus of the following form: X =
{(a1,a9,...,am)|a; € A |A] < co,m < oo}. The mechanism underlying standard GAs is
extremely simple because it involves nothing more complex than generating random num-
bers, copying strings and swapping portions of strings based on some probabilistic rules.
Roughly speaking the process consists of generating an initial population of individuals
(i.e. strings in the solution space) and letting them evolve and interact according to well
defined principles. The size of the population never changes throughout the evolution
process. A GA is generally composed of three operators: Reproduction, Crossover and
Mutation which are applied sequentially to the current population of individuals.

The reproduction operator is an artificial mechanism based on natural selection, the
weakest individuals die off whereas the fittest proliferate. During the reproduction phase
strings composing the population are simply copied according to their objective function
values. The expected number of a given string in the new population will be proportional
to its fitness. Since the fittest strings have a higher probability of appearing, future
generations will hopefully become fitter and fitter. Once bad parent strings are eliminated,
one automatically eliminates their offspring, the offspring of their offspring, and so on.

Crossover constitutes the information exchange phase of a GA which produces diversity
and innovation within the population. Strings are mated randomly to give birth to new
offspring. Each element thus created will have characteristics derived from both of its
parents. There are different ways of performing a crossover operator. One possibility
amounts to generate two positions p; and py along the parent strings. Two new individuals
can be created by swapping all the information contained between positions p; and p,.
This mechanism is illustrated in Figure 1.

The mutation operator can be regarded as the mechanism that generates the unavoid-
able accidents (or errors) occurring occasionally during a natural evolution process. It
performs with a very low probability an arbitrary change in one component of a string.



Although it is relatively unimportant in comparison with the two previous operators, the
role of mutation cannot be neglected. Mutation is sometimes needed to keep strings from
getting stuck in local optima of the search space and to restart a process of evolution that
might have stalled.

Fig 1 - Two individuals (parents) are mated to generate two new individuals (children)
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Many people have doubts about the performance of such a blind algorithm. It seems
indeed very strange that chance should play such a fundamental role in the search. What
guarantee do we have that the populations of individuals created throughout the process
will lead to solutions that are sufficiently fit? How can we expect a system to produce
satisfactory results when it has so little knowledge of the problem to be solved? GA
researchers claim that the answer to these questions can be found in Nature itself. The
fact that Earth is now inhabited by many species which cohabit and thrive naturally in
different environments is nothing else than the result of a long process of evolution having
produced an enormous diversity of genetic information starting from almost nothing a
few billion years ago. GAs simply mimic the mechanisms underlying this fantastic pro-
cess in solving COPs. Partisans of GAs emphasize that a problem solving method does
not have to be smart, but capable of learning from experience, accumulating what seems
to work and rejecting what does not. Besides this biological concept underlying GAs
there exists a theoretical background which has not been mentioned yet in this paper:
the Schema Theorem (or the Fundamental Theorem of Genetic Algorithms). Roughly
speaking this theorem says that highly fit, short-defining-length substrings (we call them
building blocks) are propagated generation to generation by giving exponentially increas-
ing samples to the observed best (see [7] for more details).

The field of GAs has kept evolving since the first developments by Holland. Descen-
dants of GAs embody more and more an evolution that goes beyond the connotations of
the term ”genetic” [11]. Most of the innovations result from the introduction of prob-
lem specific knowledge into standard GAs which have shown their limits when applied
to constrained optimization problems [1]. Grefenstette [14] has shown that it is possible
to exploit problem specific knowledge in virtually every phase of a GA. Another trend in
the evolution of GAs that goes somewhat in the same direction is the incorporation of
local search heuristics into GAs. Miihlenbein et al [23] had some success in developing
parallel GAs that allow individuals in the population to improve their fitness by local
improvement.



3 Tabu search

In the same spirit as GAs, TS is a general heuristic devised for solving large COPs. How-
ever, the principles underlying the two algorithms are fundamentally different. Whereas
GAs deal with a population of solutions evolving naturally, TS consists of an iterative
search procedure on individual solutions. This technique was developed independently by
Glover [8] and Hansen and Jaumard [16]. For a good introduction to TS, the reader is
referred to [9, 10, 12, 25].

Let us define the notion of neighborhood N(s) for each solution s in X. By definition
N(s) is the set of solutions in X reachable from s via a slight modification m. More
formally, N(s) = {s' € X|s' = s®&m, m € M} where M contains all possible modifications
and ‘s’ = s @ m’ means that s’ is obtained by applying modification m to s. TS starts
from an initial solution randomly generated in X and moves repeatedly from a solution
to a neighbor one. At each step of the procedure, a subset V* of the neighborhood of the
current solution s is generated and the local optimization problem min{f(z)|x € V* C
N(s)} is solved. In order to escape from local minima, the idea is to move to the best
neighbor s’ in V* even if f(s') > f(s). Unfortunately the algorithm is likely to cycle if
moves of this type are performed without taking any precaution. In order to limit this
danger, a cyclic list T' is introduced. This list keeps track of the reverses of the last |T|
modifications which have been done during the search process. A move from s to s’ will
be considered as tabu if it is performed via a modification contained in 7. This way
of proceeding hinders the algorithm from returning to a solution reached in the last |T|
steps. Since only parts of the neighborhoods are explored it might be worth returning
after a while to a solution visited previously to search in another direction. The concept
underlying the tabu list T" is unfortunately much too strict. Solutions may be considered
as tabu even though they have not been encountered yet. An aspiration function A
deals precisely with the rigidity of the tabu list. It permits the tabu status of a move
to be dropped under certain favorable circumstances. For each value z of the objective
function we define an aspiration level A(z). Then a tabu move from s to s is permitted
if f(s') < A(f(s)) (i.e. f(s') must be “small enough”). The most common example of
application of this principle is obtained in setting A(z) = f(5) where § is the best solution
reached from any solution s such that f(s) = z. Initially A(z) = z for all possible values
of z = f(s). This aspiration function is updated as follows whenever we move from s to

s

A(f(s)) = min(A(f(s)), f ("))
A(f(s) = min(A(f(5'), £(s))

The above shows that the reverse move from s’ to s is considered in the updating of A
even though it was not done explicitly.

Generally the whole process is stopped as soon as a given number of iterations have
been performed without improving the best solution obtained. Figure 2 outlines the
general TS procedure.



Figure 2 - The general tabu search

Initialization

generate a random solution s in X ;
*

s¥i=s; (best solution reached so far)

iter :== 0 ; (iteration counter)

bestiter := 0 (iteration at which the best iteration has been found)
T:=0;

initialize the aspiration function A ;

While (iter — bestiter < niter_maxz) do
iter (= ter + 1 ;
generate a set V* of solutions s; = s @ m; such that either m; ¢ T
or f(s:) < A(f(s)) :
choose the best solution s’ in V* ;
update the tabu list T and the aspiration function A ;
If (f(s') < f(s*)) then
s* =5
bestiter := iter ;

s:=s";

4 Tabu search combined with genetic algorithms

Tabu search is one of the most efficient algorithms for solving COPs among the various
available search procedures. The principle of searching repeatedly for a neighbor as good
as possible seems to lead towards interesting areas in the search space quickly and with a
high probability. It should be pointed out that contrary to SA there exists no convergence
theorem for TS. TS has several desirable qualities: it is powerful, very flexible and easy to
implement. Unfortunately there is one aspect which is troublesome: various parameters
have to be adjusted in the algorithm. From this point of view, TS is not very robust. The
parameters have a direct influence on the quality of the final solution. A good knowledge
of the problem is required to fix them appropriately. At this level, GAs are to some
extent complementary to TS. There are few parameters to adjust and they deal with a
population of solutions rather than with a single solution.

The question which now arises naturally is the following: “Can T'S and GAs be com-
bined efficiently to create a new hybrid strateqy taking advantage of their complementary
features ?” The answer is yes. Such a concept was developed recently by Moscato [22]
for tackling some test problems. His model is based on a set of individuals, called agents,
which are arranged topologically around a ‘ring’. Periods of competition, cooperation



and individual optimization intersperse throughout the process according to well defined
rules. A similar approach, closer in a certain sense to GAs, is investigated in this paper.
Notions of Artificial Intelligence are introduced to guide the natural evolution process.
The mutation phase of GAs is replaced by a search in the solution space governed by a
tabu algorithm. Instead of random mutation changes in its components, each individual
undergoes a separate optimization process before interacting again with other members of
the population. The phases of such an evolutionary TS algorithm (ETS) are schematized
in Figure 3.

Figure 3 - TS combined with GAs
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We expect the solutions produced by such a mixed algorithm to be better than those
obtained without any interaction. The combination of TS with a regular collective ex-
change of information is likely to yield a search procedure much more efficient and robust
than a classical TS.

A very highly constrained problem is presented in the next section. The combined
method presented in this section will be used to solve it.

5 The NHL game scheduling problem

Constructing a schedule for a sport league is a very difficult task. There are generally
a large number of entities involved in the process and hence many requirements to take
into account. The NHL game scheduling problem is certainly a good illustration of this
point. Because of the various types of constraints involved, it is perhaps one of the most
complex applications of its kind.

5.1 General description

The National Hockey League includes teams located in North America and is divided into
two Conferences, each of which is split into two Divisions. The alignement of teams for
the 1993-94 NHL season is shown in Table 1.



Table 1 - Teams in the League

Western Conference Eastern Conference
Pacific Division | Central Division | Northeast Division | Atlantic Division
Anaheim Chicago Boston New Jersey
Calgary Dallas Buffalo NY Islanders
Edmonton Detroit Hartford NY Rangers
Los Angeles St. Louis Montreal Philadelphia
San Jose Toronto Ottawa South Florida
Vancouver Winnipeg Pittsburgh Tampa Bay
Quebec Washington

In this paper we deal with the 1989-90, 1991-92 and 1993-94 situations. Unless speci-
fied, we use the present tense for the 1993-94 season and eventual comments for the two
earlier seasons are put in brackets. In recent years, the NHL expanded from 21 to 26
teams (1989-90: 21 teams/1991-92: 22 teams) and it is expected that up to 28 teams
may be part of the NHL by the year 2000. A total of 1066 (800/880) regular games are
played during the season. Each team plays 41 (40/40) games at home (H) and 41 (40/40)
away (A). Teams in the Pacific and Central Divisions play other teams within their own
division 6 times (3H,3A). In the Northeast and Atlantic Divisions teams play other teams
within their own division only 5 times (some 3H,2A and others 2H,3A). All teams play 4
games (2H,2A) against each of the teams in the other Division of their Conference and 2
games (1H,1A) against each of the teams in the other Conference. A procedure based on
integer linear programming to generate game allocation scenarios is proposed in [5]. The
season begins in early October and ends in early April (26-28 weeks). In 1992-93, the
NHL and the NHL Players’ Association decided to play extra games in neutral sites for
promotional purposes. For the second successive year, teams play two games in non-NHL
cities during the 1993-94 season.

The NHL problem consists of assigning each game a date while taking the following

constraints into account:

1) A team cannot play more than one game a day.

2) Arena availabilities are handled essentially by the teams. Each team manager pro-
vides a set of 56 (50/50) or slightly more preferred home dates from which 41 (40/40)
are to be chosen by the scheduler.

3) The total distance travelled by the teams should be minimized.

4) A team should not play games on three straight days and should not play more than
three games in five consecutive days.

5) A team should play regularly while it is not at home. Breaks of more than 3 days
should be avoided on the road.

6) Games cannot be scheduled on certain days, either because of a major event (All
Star Game break) or a holiday (Christmas Eve, Christmas) or the unavailability of
a team (e.g. a special event in which the team is involved).
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7) Some arenas cannot be used on certain days because of other major activities (circus,
music concerts, sporting events, ...).

8) There should be an even distribution of games throughout the season. Identical
games (i.e. the same pair of teams at the same location) involving teams of the
same division should be scheduled at least 14 days apart. When teams come from
different divisions the minimum allowed lapse of time between revisits is 30 days.

9) A team cannot play more than 7 consecutive road games and the duration of a road
trip cannot exceed 14 days.

10) One idle day must be provided between games involving lengthy travel. Two games
cannot be scheduled on two consecutive days if one of the teams involved has to
travel more than 900 miles. By convention this applies only to teams coming from
different divisions.

Minor restrictions and constraints specific only to certain teams have been purposely
omitted in the above description to make the presentation of the problem clearer. Also
some points dealing with the flexibility of the team managers have not been considered
in our approach because they are very difficult to incorporate in a computer program.

As we can expect the NHL scheduling problem is far from easy to solve, even in the
slightly simplified form presented above. The problem looks like a highly constrained
multi-person TSP where each salesperson has to visit each city a given number of times.
Despite (or perhaps because of) its complexity the schedule continues to be developed on
a manual basis. Once a first draft is prepared, the central scheduler gets in touch with
the different team managers for possible suggestions and modifications. This negotiation
phase deals essentially with the arena availability which is undoubtedly the most difficult
type of constraint to satisfy. The 56 (50/50) possible home dates proposed by the team
managers are generally not enough to produce a feasible schedule. Some changes are
performed by the team managers to allow the central scheduler to find a final schedule
satisfying the requirements of all the clubs in the League.

To our knowledge the NHL scheduling problem has already been tackled twice in the
literature. W. Fraser [6] developed a ‘road trip simulator’ module which has proven to
be rather inflexible for properly scheduling all games. His conclusion was: “Due to the
unpredictability of some constraints and the human relationships involved in others, it is
impractical to expect that a computer program will ever produce a final schedule which
would require no tuning or adjustment”. J. Ferland and C. Fleurent [4] on a second
attempt proposed a decision support system for building the schedule in an interactive
manner. Their approach involves at the same time the experience of the program user
and sophisticated computerized procedures.

5.2 Mathematical formulation

The NHL problem presented above can be formulated as a combinatorial optimization
problem in the following fashion.



Let us split into two categories C, and C} the set C of all the constraints described in
the previous section. Constraints in C, are called essential while those in C} are termed
relazed. A schedule is acceptable if it satisfies all the constraints in C. If it satisfies at
least the essential constraints it is said to be feasible.

The following objective function (or fitness function) evaluates the unacceptability of

a feasible schedule S:

f(S) =" wi- fi(S)

ieC’b

f(S) is defined through a set of weights w; giving relative importance to each relaxed
constraint. f;(S) computes the degree of violation of the i-th relaxed constraint in the
schedule S. The problem amounts to looking for a schedule S* that minimizes the value
of f over the set X of feasible schedules. The size and the structure of X, as well as the
complexity of f, result directly from the way of partitioning the set C'. Some criteria are
presented in [17]. A game should never be scheduled on a day if such an assignement
induces nothing but an unacceptable schedule. On the other hand a conflict between
two games is not a sufficient condition for hindering an assignement. Based on these
principles, it was decided to include constraints 6 to 8 in C, and to relax constraints 4
and 5. Constraint 1 should be relaxed but this has to be done with care if we want to
avoid manipulating messy schedules. In particular the notions of road trips and home
games need to be differentiated properly. Thus we split constraint 1 into three parts as
follows:

(1.1) A team cannot play more than one game per day.
(1.2) A team cannot play more than two games per day.

(1.3) A team cannot play at home and on the road during the same day.

In order to have feasible schedules relatively easy to handle, we relaxed (1.1) and put
(1.2) and (1.3) in C,. Constraint 2 has also been relaxed because it is hard (probably
impossible) to produce a schedule satisfying this constraint accurately. The relaxation
of constraint 3 is natural since we are interested in finding a schedule that minimizes
the distance travelled by the teams. In order to reduce the number of components f;
constraints 9 and 10 have been included in C,. Their influence on the structure of X is
negligible. The role of each component f;(.S) is described below:

e f1(S) indicates how many times a team plays two games per day.
e f5(S) indicates how many times the unavailability of an arena is not respected.
e f3(S) indicates the total distance (in hundred of miles) travelled by the teams during

a whole season.
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e f,(S) indicates how many times a team plays more than two games on three straight
days or more than three games on five straight days.

e f5(S) indicates how many breaks of more than three days occur while a team is on
the road.

We discuss in the remainder of this paper an adaptation of the mixed procedure of
section 4 to the NHL problem. Despite W. Fraser’s pessimism we expect our algorithm
to produce implementable results, even though final minor manual tunings may always
be necessary to satisfy all the League requirements.

6 An evolutionary TS for the NHL problem

The ETS algorithm introduced in this paper is made up of 3 phases which succeed repeat-
edly throughout the process. After having explained how to generate an initial population
of schedules, we present the mechanisms underlying each phase of the algorithm used for
building the NHL schedule. Various computational experiments are reported at the end
of this section.

6.1 Generation of an initial population of schedules

The method we adopted to generate an initial schedule is somewhat similar to the one
presented in [4]. Road trips are built sequentially for each team in the League while
meeting every essential constraint. The road trip generation procedure which is sketched
in Figure 4 is based on the following notation:

(1) Denote by R(t) the set of games remaining to be scheduled on the road for team
t. Initially |R(t)| = 41(40/40) for every team t. Let T = (¢y,...,t,) be the list of
teams sorted by decreasing order of |R(t)| (i < j = |R(t;)| > |R(¢;)]).

(2) Consider for each team ¢ the set of intervals (dy, ds) where d; and dy are two con-
secutive available home dates provided by ¢ such that |dy — d;| > 3. These intervals
are called free intervals. In principle a team plays only games on the road during a
free interval. The minimum duration of a free interval is set at 3. Let I(¢) be the
list of free intervals for team t sorted by length in decreasing order.

(3) [t1,ts] refers to a game involving teams ¢; and ¢, that has to be played in the arena
of team t,.

A whole population P of schedules can be obtained with the technique presented in
Figure 4 by rearranging the initial list 7" and ordering somewhat differently the various lists
of free intervals I(t). We give below the average values of the components f; characterizing
a schedule S (for the 1991-92 season) produced by the road trip generator of Figure 4:
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f1 = 230; fy ~ 60; f3 ~ 8200; f, ~ 1100; f5 = 0;

Constraint 5 happens to be satisfied in every initial schedule contrary to the other relaxed
constraints. The value of f; is relatively high because of the f; ~ 230 teams playing two
games on the same day in the schedule. More effort could be put into establishing a fitter
initial population of schedules. This was not done since there is no guarantee that this
will eventually lead to better results. We observed that the initial population does not
significantly influence the quality of the final generation of solutions. As the availabilities
of the arenas in neutral sites are not known, neutral games in the 1993-94 season are
scheduled according to the official schedule established by the League. ETS is not allowed
to move these games.

Figure 4 - Generation of an initial schedule

ngames_to_schedule := 1066 (800/880);
ngameslty, ty] := number of games [t1, t5] remaining to be scheduled;

While (ngames_to_schedule > 0) do

6.2

t, := first team in the list T

Pick the first free interval (d;,dy) in I(t;) containing a feasible and available home
date d for a team t, such that ngames|ty,t5] > 0. If no interval can be found in this
fashion, then the requirement of arena availability on day d is dropped;

If team t, is not unique, pick the one which is located the furthest away from t;
If day d is not unique pick the one which is the closest to the middle of the
interval (dy, dy);

Schedule game [t1, t;] on day d ;

Complete the trip by scheduling games [t;,t| in the intervals I; = (d;,d) and

I, = (d, d,) alternatively while meeting the essential constraints. The arena
availability constraint is taken into account whenever it is possible. Days in I;
(resp. in I,) are considered by decreasing (resp. increasing) order starting from d.
When scheduling a new game [ty,t] in I; (resp. in I3) priority is given to teams ¢
located close to the last team t;, (resp. t7,) scheduled in I; (resp. I). Initially

t]l - tlz - tz.

Update T, I(t,), ngames_to_schedule and ngames|t,, ] ;

The reproduction phase

When solving a maximization problem, the easiest way to implement a reproduction
operator is to associate to each schedule S a probability p(S) equal to its fitness f(S5)
divided by the sum of the fitnesses of all the members of the population. In our case the
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probabilities p(S) need to be defined differently. We need a function such that p(S) is
monotonically decreasing with f(S). Let M = fr00 + (finaz — fmin)/n Where fr.. (resp.
fmin) denotes the fitness of the worst (resp. the best) schedule in the current population
P of size n. A new population P is created by copying a schedule S according to the
following reproduction probability:

__ M-F(S)

The most popular way of implementing this competition process is to create a biased
roulette wheel where each schedule has a roulette wheel slot sized in proportion to p(S).
A simple spin of the wheel yields a reproduction candidate. The repoduction phases
consists then of n spins of the wheel. In the new population thus created the expected
number of offspring of a given schedule S is clearly equal to n - p(S). The constant M
has been chosen in order to give a positive but relatively small reproduction probability
to the least fit schedule in P.

6.3 The crossover phase

The definition of an efficient crossover operator is the crucial point when implementing
a natural evolution process for solving optimization problems. A good knowledge of the
problem under study is required. Various attempts were made before finding an operator
that properly guides the cooperation phase in the NHL problem context.

Exchange of information occurs between two schedules on the basis of a cooperation
request of one schedule to the other. A new schedule is created every time a schedule S,
addresses a cooperation request to a schedule Sy. Let us denote such a request by S, — Sj.
In order to make things more explicit when describing the crossover operator underlying
a cooperation request let us introduce some definitions. ¢ denotes a permutation of the
elements 1,2,...,n. ndays is the number of days in a regular season. The frame Fg; of
the schedule of a team ¢ in S is a string of length ndays with 0-1 components. Fg;[d] =0
if team ¢ is at home on day d in the schedule S. Fs;[d] = 1 whenever team ¢ is on the
road. By convention, a team is at home between the last game on the road (resp. at
home) and the next game at home (resp. on the road). Also a team is assumed to be at
home before its first game and after its last game of the season. Without going too much
into detail, let us say that the cost of a game ¢ in a schedule is a measure based on the
degree of violation of the relaxed constraints due to game ¢. Finally the word redundant
will be used in the following sense. For a given visitor-home team pair, if the number of
such games scheduled is greater than the number specified by the league, then all of the
games scheduled are called redundant.

Before every cooperation phase, a random permutation o is used to rearrange sched-
ules Sy, S,, ..., S, within the population. Then every schedule S,(;y (i = 1,2,...,n) sends
a cooperation request to So(;modn +1) (SU(Z-) — So(s modn+1)). Roughly speaking this con-
sists of putting together within a single schedule S as many games as possible without
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modifying the frame of schedule S, (; modn +1). A feasible schedule is obtained by sequen-
tially removing the most costly redundant games in S}. In order not to lose the frame
of the best schedule involved in a cooperation request, a request Sy(;) — So(imodn+1) 18
accepted under certain circumstances only. If S, is fitter than S;(modn4+1) and if a
request S,(;modn+1) — Se(i) has not been performed yet in the current cooperation phase
(as a reminder, a schedule may appear more than once in the population) then the reverse
request Sy (i modn+1) — So(i) 15 used instead.

The detailed mechanism underlying a cooperation request S, — S; is presented in
Figure 5. The schedules S} thus created make up the next population of individuals
which will go through the next stage of the ETS algorithm.

Figure 5 - Creation of a schedule S* via a cooperation request S, — .S

Make a copy of Sy and call it S*

- Fs«y = Fg,, for every team t

For every day d and for every game [t;,t5] played on day d in S,, insert
[t1,15] on day d in S* if the corresponding frames are compatible

(i.e if Fs, 4, [d] = Fs+4,[d] and Fs, 4,[d] = Fs«1,[d])

Establish a list £ of all the redundant games in S*

- Sort the list £ by cost in decreasing order

While (£ # () do

- Remove from S* the first game g in £

- Remove game g from £

- If games identical to g (same visitor versus same home team) are no
longer redundant in S* then remove them from £

- Resort the list £ if any remaining costs have changed

6.4 Tabu Search

We present in this section an adaptation of the general TS procedure to the NHL problem.
The neighborhood N(S) of a schedule S consists of all the schedules that can be

obtained from S by moving a single game from one day to another. In order to more
quickly reach good regions of the set of feasible schedules, only games violating at least one
relaxed constraint (except for the distance constraint whose violation is hard to evaluate
for a single game) are moved around during the TS process. These games are called
conflicting games. A maximum number nneigh of pairs (g;, w;) are generated at each step
of the search. g¢; is a conflicting game and w; is a week different from the one in which
game g; is currently scheduled (we do not consider moves within the same week because
the game was probably moved earlier into its current position at which time the best date
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within the week was selected). For every game g;, we look for the best feasible day d; in
week w;. The best of the moves (¢g; — d;) thus created will be retained for building the next
schedule. In order to reduce the time spent for choosing a neighbor, we move directly to
the best neighbor found after having generated at least |nneigh/2] neighbors if it happens
to be better than the current solution S. The number of neighbors to enumerate at each
step should depend on the size of N(S). It was decided to set nneigh = propy - |[N(S)|
where 0 < propy < 1.

In order to prevent cycling, the reverses of the last moves are memorized in the tabu
list 7. If a game g is moved from day d' to day d? at a given step of the algorithm then
the move (g — d') is considered as tabu for the next |T| iterations. To diversify a bit
the exploration in the search space once in a while, the size of the tabu list is randomly
generated between two given bounds t,,;, and ¢4, [2]. The aspiration criterion presented
in section 3 has been slightly modified in this adaptation of TS. Instead of considering
the function f(S) = Y,cq, wi - fi(S) when implementing A(z) we have concentrated on
the first two relaxed constraints and have used the function ¢g(S) = fi(S) + fu(9).
The weights wy, wy and the components f3, f4, f5 have been omitted in the definition of
g to reduce significantly the number of values A(z = ¢(S)) that we have to keep track
of throughout the TS process. Finally it was decided to stop every TS procedure after a
given number niter of iterations independently of the iteration at which the best solution
was found.

A population of individuals is likely to converge prematurely if either niter or n are
small. We say that a population goes through a diversity crisis when it contains more
than |[n/3] copies of a same solution S after a cooperation phase. For half of these
copies, if the fitness of S has not been increased in the next individual optimization
phase after |niter/2| TS iterations then the solution we retain at the end of each of the
searches considered is the best solution (different from S) obtained in the last |niter/2|
TS iterations. Hopefully the diversity incorporated in this way will propagate in the
subsequent generations giving birth to fitter solutions.

6.5 Numerical results for the NHL problem

The experiments presented here have been performed on a Silicon Graphics workstation
(9 Mflops). In order to select appropriate values of the parameters governing the search
various trials have been carried out with the computer code using the data of the 1989-
90 and 1991-92 NHL seasons. Let us call TS, an algorithm composed of n classical
TS procedures running separately (i.e. without any interaction between two processes).
Similarly ETS dealing with a population of size n is denoted ETS,,.

In the definition of the objective function we chose w; = 26, wy = 13, w3 = 1, w, = 10
and ws = 2. These weights give solutions which are comparable to the schedules obtained
manually by the NHL schedulers. Increasing (resp. decreasing) a weight w; would give
more (resp. less) importance to the associated relaxed constraint.

To find appropriate values for the tabu list size | T|, we investigate the behaviour of TS
with |T| ranging from 0 to 300. Figures 6 and 7 show the average results produced after
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niter = 5,000 iterations for propy = 0.05, propy = 0.2 and propy = 0.4. We observe
that the best solutions are obtained when |T'| lies in [10,80]. In a more general way |T|
should be chosen proportionally to the number of possible moves (i.e. ngames - nweeks)
in the search space. Since this number does not change much in the 3 NHL problem
instances considered in this paper it has been decided to generate T between t,,;,, = 10
and t,,,, = 80 once every 50 iterations independently of ngames and nweeks. Whereas
propy = 0.2 and propy = 0.4 yield similar results, we notice that there is a significantly
loss of quality when considering propy = 0.05. Other tests have shown that generating
at most a fifth (i.e. propy = 0.2) of the conflicting games is a good compromise between
elapsed CPU time and average quality of the solutions obtained.

Figure 6 & Figure 7

Let ngen be the number of generations created in ETS,, (each generation goes through a
reproduction phase, a cooperation phase and a TS phase) and nitertot (= ngen X niter)
the total number of TS steps performed by a member of the population. The parameters
ngen and nitot need now to be tuned in such a way that ngen x niter = nitertot. The
larger nitertot is, the higher the quality of the results obtained is likely to be. We have
decided to set nitertot = 20, 000. Experiments with 5 different initial populations of size
8 (5 x ETSg) have been conducted. The results obtained with ngen ranging from 1 to
80 are shown in Table 2. A number of generations smaller than 4 is clearly insufficient.
On the other side, considering a large number of generations does not allow TS to seek
efficiently in a given direction. The best results are obtained with decompositions 8 x 2500,

10 x 2000, 20 x 1000 and 40 x 500. We will use decomposition 20 x 1000 in the remaining
algorithms.

Table 2 - Number of generations versus number of TS iterations

ngen X niter || 1989-90 | 1991-92
1 x 20000 | 9,003.82 | 9,509.27
x 10000 || 8,911.17 | 9,465.02
x 5000 || 8,779.33 | 9,331.40
x 4000 || 8,784.75 | 9,346.97
x 2500 || 8,746.27 | 9,258.32
10 x 2000 || 8,699.42 | 9,273.80
X
X
X
X

o Ut i N

20 1000 || 8,708.07 | 9,254.57
40 500 || 8,711.72 | 9,313.65
50 400 | 8,832.62 | 9,312.80
80 250 || 8,851.97 | 9,359.27

The last parameter to study is the size n of the population. To that purpose we run
ETS,, 5 times with n varying from 1 to 50. As it can be seen in Table 3, the quality of the
final solutions increases when n goes from 1 to 8. For larger values of n this progression
is less pronounced. We think that the size of the population does not have a significant
influence on the results for values of n larger than 30-40. Because of the high CPU time
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required, no experiment has been carried out with n > 50 (it takes about 10 minutes to
run 20,000 TS iterations on a single individual).

Table 3 - Influence of the size n of the population

n [ 1989-90 | 1991-92
1 |8,923.60 | 9,457.40
2 | 8,799.60 | 9,390.40
3 || 8,771.79 | 9,336.53
5
8

8,728.40 | 9,166.64
8,619.00 | 9,155.10
10 || 8,626.64 | 9,158.40
20 | 8,534.84 | 9,072.70
30 || 8,515.79 | 8,952.81
40 || 8,441.30 | 9,049.11
50 | 8,482.62 | 8,882.83

In order to measure the performance of ETS we compare in Table 2 the results pro-
duced by ETSg and TSg with the data of the 1989-90, 1991-92 and 1993-94 NHL seasons.
For each of these 3 instances, ETSg and TSg are given the same initial population of
schedules. The first three columns of Table 4 report respectively the average fitness, the
fitness of the worst schedule and the fitness of the best schedule in the final population
obtained after ngen = 20 generations (nitertot = 20,000; niter = 1,000). The last five
columns give the values of the different components f; characterizing the fittest schedule
in the population.

Table 4 - NHL results

season ‘ method ‘ fav ‘ frmaz ‘ Srmin ‘ J1 ‘ E ‘ E ‘ Ja ‘ Js ‘
ETS 8,531.00 | 8,556 | 8513 | 0 | 91 | 7,262 | 3 | 19

1989-90 TSs 8,970.25 | 9,059 | 83827 | 0 | 91 | 7,550 | 4 | 27
Official Schedule - - 10,210 | O | 148 | 8,176 | 4 | 35

ETS 9,055.00 | 9,111 | 9,032 | O | 80 | 7,916 | 3 | 23

1991-92 TSs 9,519.63 | 9,704 | 9,437 | 0 | 95 | 8,114 | 4 | 24
Official Schedule - - 10,963 | 0 | 150 | 8,889 | 3 | 47

ETS 12,384.75 | 12,392 | 12,347 | 0 | 105 | 10,896 | 2 | 33

1993-94 TSs 13,028.63 | 13,284 | 12,863 | 0 | 124 | 11,091 | 7 | 45
Official Schedule - - 13,293 | 0 | 111 | 11,718 | 3 | 51

We observe that the principle of inserting cooperation and competition phases during
a TS process increases significantly the performance of the algorithm. The various ex-
periments we have carried out on the NHL problem show us that the final population of
schedules produced by ETSg is on average between 3 and 6 % fitter than the one obtained
by TSs. As expected, ETSg provides a population of schedules more homogeneous than
TSg does. The range of the values f in the final population is equal to 45 (43/79) for ETSg
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and to 421 (232/267) for TSg. The higher variability of the final population achieved by
TSg is due to the fact that there is no exchange of information between the schedules
throughout the algorithm. Thus, the influence of the initial population on the final one
is more important in TSg than in ETSg.

The characteristics of the official NHL schedules are also reported on Table 5. It is
important to point out that 4 out of the 5 essential constraints are not satisfied thoroughly
in these schedules. According to the data we obtained, 1 (6/6) game(s) is (are) scheduled
on a day when the home team arena is supposed to be busy, 0 (0/2) team(s) has (have)
to play while it is (they are) supposedly unavailable, minimum spacing between identical
games is violated 25 (44/33) times and 12 (6/3) teams are involved in two consecutive
games requiring a long journey (> 900 miles). As mentioned earlier, a NHL schedule is
obtained after lengthy discussions involving the central scheduler and the team managers.
Various concessions are made by both sides in this negotiation phase. This explains
partially why the original arena availability constraint and most of the essential constraints
are not well respected in the official schedule. From a fitness function point of view the
schedules produced by ETSg are much better than the official ones. It turns out that we
managed to reduce by 82,200 (91,400/97,300) miles the total distance travelled during a
regular season. Because of the contradictory objectives expressed by the arena availability
constraint and the distance constraint, the total distance travelled by the teams in the
League can be reduced even more by decreasing w, and increasing ws somewhat. This
depends on which constraint has higher priority.

Unfortunately, it is impossible to evaluate precisely the gap existing between the ob-
jective expressed by f and the real goals of the team managers. The central scheduler
could use the calendar produced by ETS as a first draft before beginning the unavoidable
interaction phase with the team managers. Despite this, the ETS schedules are quite
reasonable in our opinion.

The running time of an ETS algorithm is negligible in comparison with the amount
of time spent by the central scheduler in developing a schedule. Twenty generations of 8
schedules have been achieved in approximately 80 minutes of CPU time on a sequential
computer. Due to its asynchronicity and intrinsic parallel nature, ETS is well suited
for parallel computation. The use of a parallel MIMD machine would have significantly
reduced the execution time of the algorithm. Investigations to evaluate the speed-up of
the algorithm have not been carried out in this study.

6.6 A variant of the NHL problem

The NHL problem can be seen as a generalization of two problems commonly related in
the technical literature: the multi-person traveling salesman problem (m-TSP) [15] and
the open shop scheduling problem (OSSP) [13]. In order to demonstrate the effectiveness
of ETS method in a more general way we generate here a variant of the NHL problem
that can be seen as a multiple-constraint preemptive OSSP. Let us split the teams in the
league into two sets M = (M, M, -+, M,) and J = (Jy, Jo, -+, Js). Teams in M play
only on the road whereas teams in J stay always at home. In the open shop context,
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machines and jobs identify with teams in M and J respectively. Each job J; consists
of tasks T4, 15, -+, T,; which have to be processed on M;, My, -+, M, respectively. The
order of the processing is not fixed. The processing time p;; (given in periods) of each
task T;; is an integer randomly generated between 1 and 10. Preemptions are allowed, i.e.
a task T;; in process on M; can be interrupted and continued later. All tasks have to be
processed within nperiods = 2 - max(max;jeam (Y je 7 Pij), maXje s (Xiea Pij)- The distance
dg; (in hundred of miles) between team k and team [ (k,l € J) refers now to the set up
cost for a machine M; to process Ty after Ty, (cf [24] for an application of such a model).
Every machine needs a maintenance service once in a while. The cost of a service on M;
is equal to dy; + d;; where Tj is the last task processed on M; before the service and Tj
the task processed just after the service. Among the constraints mentioned in section 5.1
only the four sketched below are taken into account here :

1) No two tasks of the same job can be processed simultaneously and each machine
works on at most one task at a time.

2) Because of external availability and/or delivery constraints (e.g. release dates, and
due dates) the tasks of every job should be processed on some specified periods. A
set of mj = |2 (3 pij)| randomly generated periods is provided for each job J;.

3) The sum of set up costs and service costs over all machines should be minimized.

9) A machine cannot process tasks for more than 7 periods without any maintenance
service. It follows that the number of tasks processed between two services is

bounded by 7.

Except for the generation of an initial solution where ficticious unavailable periods for
the machines are considered, the method presented in the previous sections can be used
for the above OSSP without modification. As mentioned earlier the size of the tabu list
should be tuned according to the number of possible moves in the search space. Based on
the results presented in Figures 6 & 7 and on the average ratios t,,;,/ngames x nweeks
and t,,q../ngames * nweeks obtained when dealing with the 1989-90 and 1991-92 NHL
problems we set t,,;, = [0.0005 % ntasks x nper;| and t,,,, = |0.0036 * ntasks x npery |
where ntasks = ;0 X je7 pij is the total number of tasks and nper; = [nperiods/7]
the number of 7 period intervals. The 22 teams in the NHL during the 1991-92 season and
the matrix of distances associated are taken into account in this application (M| + |7 |
= 22). The parameter nitertot is reduced from 20,000 to 5,000 and the decomposition
(ngen x niter) is chosen proportionally to the one retained for the NHL problem, i.e.
ngen = 10 and niter = 500. The weights w;, wy, w3 are kept unchanged (w, = w; = 0).
Table 5 shows the average results produced by ETSg and TSg when considering a set
of 4, 8 and 12 machines. For a given number of machines, ETSg and TSg are run 10
times, each time with a new set of machines M; and different processing times p;;. All the
schedules we obtain are overlap free (i.e. fi = 0). fmin (1€SP. fmasz) reports the average
fitness of the best (resp. worst) solution in each of the 10 final populations achieved. f is
the average value of f over all the solutions obtained. The ranges of f, f, and f3; are also
indicated in Table 5.
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We notice once again that ETSg performs significantly better than TSg. The conclu-
sions achieved in the previous subsection are the same here, i.e. ETSg gives birth to a
final population of schedules which is fitter and more homogeneous than TSg.

Table 5 - Results obtained by ETSg and TSg on the OSSP

r | obj. function ETSg TSg
Frmin 3,181.10 3,443.60
Srmaz 3,226.10 3,731.60
f 3,204.55 3,589.90
4 f 2,620 — 3,604 | 3,159 — 4,002
fo 4 — 34 8 — 31
fs 2,438 — 3,279 | 2,951 — 3,781
Fmin 3,338.30 3,446.00
Jmax 3,382.40 3,679.40
f 3,359.59 3,562.36
8 f 2,826 — 3,670 | 2,920 — 3,939
fo 0—7 0—7
fs 2,757 — 3,639 | 2,881 — 3,913
Fonin 3,125.40 3,268.20
fmaz 3,167.60 3,481.20
f 3,151.75 3,364.01
12 f 2,794 — 3,654 | 2,859 — 3,971
fo 0—2 0— 2
fs 2,794 — 3,654 | 2,859 — 3,971

7 Conclusion

The main purpose of this paper was to introduce an evolutionary approach capable of
tackling a wide variety of problems. We asked ourselves whether the T'S method might be
improved by modelling some aspects of biological optimization strategies. After having
sketched the basic mechanisms underlying GAs and TS, we have shown that the prin-
ciple of mixing these two fundamentally different search procedures leads to interesting
optimization properties. The blend of the advantages of GAs and TS yields a new evo-
lutionary procedure which is expected to enhance the performance of both algorithms
running separately. The originality of an ETS algorithm lies in the succession of inter-
action phases (competition + cooperation) and individual search phases throughout the
process.

We have seen that ETS performs significantly better than TS when dealing with
two highly constrained scheduling problems. The results we have obtained for the NHL
problem would appear to be quite promising. All the constraints we have taken into
account happen to be satisfied in the ETS calendars better than in the official ones
established manually by the NHL. Even though it is hard to evaluate the real objectives
of the various people involved in the process of establishing the schedule we expect the

20



calendar produced by an ETS algorithm to be quite usable. Some manual adjustments
may be necessary but this is a small task in comparison with the total amount of time
currently spent by the League in establishing a schedule every year.

As mentioned earlier, the ETS method presented in this paper is well suited for other
combinatorial optimization problems. ETS-type algorithms form an emerging framework
in computer programming that could challenge in the near future very sophisticated algo-
rithms. New adaptations and refinements of the original idea are currently under study.
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