Chapter 1

Solution of a Large-Scale Traveling-Salesman
Problem

George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson

Introduction by Vasek Chvdtal and William Cook
The birth of the cutting-plane method

The RAND Corporation in the early 1950s contained “what may have been the
most remarkable group of mathematicians working on optimization ever assem-
bled” [6]: Arrow, Bellman, Dantzig, Flood, Ford, Fulkerson, Gale, Johnson, Nash,
Orchard-Hays, Robinson, Shapley, Simon, Wagner, and other household names.
Groups like this need their challenges. One of them appears to have been the travel-
ing salesman problem (TSP) and particularly its instance of finding a shortest route
through Washington, DC, and the 48 states [4, 7].

Dantzig’s work on the assignment problem [1] revealed a paradigm for minimiz-
ing a linear function f : R" — R over a finite subset . of R": first describe the
convex hull of . by a system Ax < b of linear constraints and then solve the linear
programming problem

minimize f(x) subject to Ax < b

by the simplex method. Attempts by Heller and by Kuhn to apply this paradigm
to the TSP indicated that sets of linear constraints describing the convex hull of
all tours are far too large to be handled directly. Undeterred, Dantzig, Fulkerson,
and Johnson bashed on. The preliminary version of their paper [2] includes a dis-
cussion of the convex hull of all tours, nowadays called “the TSP polytope”. The
version submitted for publication four months later (and eventually published and
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reproduced here) breaks free of the dogma: without letting the TSP polytope obscure
their exposition, the authors just go ahead and solve the 49-city instance. (Regarding
this change, Fulkerson writes in a September 2, 1954, letter to Operations Research
editor George Shortly “In an effort to keep the version submitted for publication
elementary, we avoid going into these matters in any detail.”)

This case study ushered in the cutting-plane method. To solve a problem

minimize f(x) subject to x € . (1.1)

where f: R" — R is a linear function and . is a finite subset of R”, choose a system
Ax < b of linear inequalities satisfied by all points of . and use the simplex method
to find an optimal solution x* of the linear programming problem

minimize f(x) subject to Ax < b, (1.2)

called the linear programming relaxation of (1.1). If x* belongs to ., then it is an
optimal solution of (1.1); else there are linear inequalities satisfied by all points of
. and violated by x*, called cutting planes. Find one or more such inequalities, add
them to Ax < b, and iterate. (The method actually used by Dantzig, Fulkerson, and
Johnson—described also in [2, 3]—is a slight variation on this theme: rather than
introducing cutting planes only when an optimal solution x* of (1.2) lies outside .%,
they introduce them after each simplex pivot leading to a basic feasible solution x*
of (1.2) that lies outside ..)

The role played by the convex hull of .# in this new paradigm is only implicit:
we have to be able to find a cutting plane whenever one exists, which is the case
if and only if x* lies outside the convex hull of .. In particular, the number of
linear constraints in a description of the convex hull of . is irrelevant here. Another
important difference between the two paradigms is that the cutting-plane method
is an engineering rather than mathematical method: unlike the simplex method, it
carries no guarantee that the sequence of its iterations will terminate. (But then
again, a guarantee of termination after finitely many iterations is a far cry from a
guarantee of termination before the end of our solar system.) Our three authors write
“...what we shall do is outline a way of approaching the problem that sometimes,
at least, enables one to find an optimal path and prove it so.”

Until 1954, no one had an inkling of a way to solve large instances of the TSP.
The lament about the number of tours through 7 cities being too large to allow their
listing one by one marked the vanguard of scientific progress on this front. Then
Dantzig, Fulkerson, and Johnson let the light in and inaugurated a new era. All
successful TSP solvers echo their breakthrough. This was the Big Bang.

This Big Bang reverberates far beyond the narrow confines of the TSP. It provides
a tempting template for coping with any NP-complete problem of minimizing a
linear function over a finite set .. For each problem of this kind, the challenge lies
in finding cutting planes quickly. In the special case of integer linear programming,
where . consists all integer solutions of a prescribed set of linear constraints, this
challenge was met with remarkable elegance (and termination after finitely many
iterations guaranteed) by Gomory in a series of papers beginning with [5].
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Great new ideas may transform the discipline they came from so profoundly that
they become hard to discern against the changed background. When terms such as
“defense mechanism” and “libido” are in the common vocabulary, it is easy to forget
that they came from Sigmund Freud. The cutting-plane method of George Dantzig,
Ray Fulkerson, and Selmer Johnson had the same kind of impact on the discipline
of mathematical programming.
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SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anxp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,;), where d;; represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,®”* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C,, is best, the d;; used representing road distances as

taken from an atlas.

* HistoricAL Note: The origin of this problem is somewhat obscure.

appears to have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly little in the way of results has appeared in
the mathematical literature.!'® It may be that the minimal-distance tour problem
was stimulated by the so-called Hamiltonian game! which is concerned with finding
the number of different tours possible over a specified network. The latter problem
is cited by some as the origin of group theory and has some connections with the
famous Four-Color Conjecture.® Merrill Flood (Columbia University) should be
credited with stimulating interest in the traveling-salesman problem in many quar-
ters. As early as 1937, he tried to obtain near optimal solutions in reference to
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re-
call that they heard about the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall
the problem). The relations between the traveling-salesman problem and the
transportation problem of linear programming appear to have been first explored by
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and

H. Kuhn.+58
393
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In order to try the method on a large problem, the following set of 49
cities, one in each state and the District of Columbia, was selected :

1. Manchester, N. H. 18. Carson City, Nev. 34. Birmingham, Ala.
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga.

3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla.
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C.

5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C.

6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va.

7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C.
8. C}'ucago, 1. ) 25. Des Moines, Iowa 41. Boston, Mass.

lg‘ ﬁ;ﬁi:ﬁf{swﬁs{nn 26. Kansas City, Mo. 42. Portland, Me.

11: Pierre. . Dj : 27. Topeka, Kans. A. Baltimore, Md.

12, Bisma,rck, N.D. 28. Oklahoma City, Okla. B. Wilmington, Del.
13. Helena, Mont. 29. Dallas, Tex. C. Philadelphia, Penn.
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J.

15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y.
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn.
17. Salt Lake City, Utah  33. New Orleans, La. G. Providence, R. I.

The reason for picking this particular set was that most of the road
distances between them were easy to get from an atlas. The triangular
table of distances between these cities (Table I) is part of the original one
prepared by Bernice Brown of The Rand Corporation. It gives dj,=
Yo (dr,—11)* I J=1,2, - -,42), where dy, is the road distance in miles
between I and J. The d;; have been rounded to the nearest integer.
Certainly such a linear transformation does not alter the ordering of the
tour lengths, although, of course, rounding could cause a tour that was
not optimal in terms of the original mileage to become optimal in terms of
the adjusted units used in this paper.

We will show that the tour (see Fig. 16) through the cities 1,2, - - -, 42
in this order is minimal for this subset of 42 cities. Moreover, since in
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts)
by the shortest road distance one goes through A, B, - - -, G, successively,
it follows that the tour through 49 cities 1, 2, ---, 40, A, B, ---, G, 41,
42 in that order is also optimal.

PRELIMINARY NOTIONS

Whenever the road from I to J (in that order) is traveled, the value
zr;=1 is entered into the I,J element of a matrix; otherwise z;,=0 is
entered. A (directed) tour through n cities can now be thought of as a
permutation matrix of order n which represents an n-cycle (we assume

* This particular transformation was chosen to make the d;; of the original table
less than 256 which would permit compact storage of the distance table in binary
representation; however, no use was made of this.
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n>2 throughout). For example, for n=>5, the first matrix displayed be-
low

01000 01000

, 00010 1 00 00O
lewl=10 0 0 0 1], lzll=(0 0 0 0 1
00100 00100

1 00 0O 00010

is a tour since it represents visiting the cities in the 5-cycle (1 2 4 3 5),
while the other matrix is not a tour since it represents visiting the cities by
means of two sub-cycles (1 2) and (354 ).

It is clear that all representations for directed tours satisfy the relations

’ ’ ’ ’
qu=z 2 =1, =0, 27, 20.
T 7

The matrix may be made into a triangular array by reflecting the numbers
above the diagonal in the diagonal. The sum of corresponding elements is
denoted by z;; =z7,+z;,. Then the matrices above become

1 - 2
lzrll=10 0 s leyll=|0 0 -

o011 - 001 -

1 010 0011

Consequently, the sum along the Kth row plus the sum along the Kth
column must now be 2. This may be written
E Tt Z =2, (K=1,+++,n; z;>0) (1)
J<LI=K I>J=K

This device yields a representation for undirected tours and is the one used
throughout this paper. It will be noted that the second array above does
not represent a tour but nevertheless satisfies the relation (1).

For undirected tours, the symbol z;, will be treated identically with
z,1 80 that we may rewrite (1) as

‘]Zl x1,1=2. (x]JZO, I=1,2, s, NS I#J; x”Exn) (2)

The problem is to find the minimum of the linear form

D (x) = Z a1 rsy (3)
I>J
where the z;;=0 or 1 and the z;,=1 form a tour, and where the sum-
mation in (3) extends over all indices (I,J) such that I>J.
To make a linear programming problem out of this (see ref. 2) one
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needs, as we have observed, a way to describe tours by more linear re-
straints than that given by (2). This is extremely difficult to do as illus-
trated by work of I. Heller* and H. Kuhn.® They point out that such
relations always exist. However, there seems to be no simple way to
characterize them and for moderate size n the number of such restraints
appears to be astronomical. In spite of these difficulties, this paper will
describe the techniques we have developed which have been successful in
solving all the problems we have tried by this approach. A surprising
empirical observation is the use of only a trivial number of the many
possible restraints to solve any particular problem. To demonstrate the
procedure, we shall attempt to use direct elementary proofs even though
they were originally motivated in many places by linear programming
procedures.

There are possibly four devices we have used which have greatly re-
duced the effort in obtaining solutions of the problems we have attempted.

First of all, we use undirected tours. This seems to simplify the char-
acterization of the tours when 7 is small and certainly cuts down the
amount of computation, even for large n. Secondly, and this is decisive,
we do not try to characterize the tours by the complete set of linear re-
straints, but rather impose, in addition to (2), just enough linear con-
ditions on the z;, to assure that the minimum of the linear form (3) is
assumed by some tour. For the 49-city problem and also for all the
smaller problems we have considered, such a procedure has been relatively
easy to carry through by hand computation. This may be due in part to
the fact that we use a simple symbolism which permits direct representa-
tion of the algebraic relationships and manipulations on a map of the
cities. This third device speeds up the entire iterative process, makes it
easy to follow, and sometimes suggests new linear restraints that are not
likely to be obtained by less visual methods. Finally, once a tour has been
obtained which is nearly optimal, a combinatorial approach, using the
map and listing possible tours which have not yet been eliminated by the
conditions imposed on the problem, may be advantageous. This list can
be very much shorter than one would expect, due to the complex inter-
locking of the restraints. However, except for short discussion in the
section below, “An Estimation Procedure,” this method will not be de-
scribed in detail although it has worked out well for all examples we have
studied.

An important class of conditions that tours satisfy, which excludes
many non-tour cases satisfying (2), are the ‘loop conditions.” These are
linear inequality restraints that exclude subcycles or loops. Consider a
non-tour solution to (2) which has a subtour of n;<n cities; we note that
the sum of the z;; for those links (7,J) in the subtour is n;. Hence we can
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eliminate this type of solution by imposing the condition that the sum of
z;; over all links (7,J) connecting cities in the subset S of n,; cities be less
than n,, i.e.,

; ry<m—1 (4)

where the summation extends over all (I,J) with I and J in the n, cities S.
From (2) we note that two other conditions, each equivalent to (4), are

Z Xy Sn—n;—— ].), (5)
3 .
where S means the summation extends over all (I,J) such that neither I
nor J is in S, and

> w>2, (6)
S8

where SS means that the summation extends over all (I,J) such that I
isin S and J not in S.

There are, however, other more complicated types of restraints which
sometimes must be added to (2) in addition to an assortment of loop con-
ditions in order to exclude solutions involving fractional weights x;,.
In the 49-city case we needed two such conditions. However, later when
we tried the combinatorial approach, after imposing a few of the loop
conditions, we found we could handle the 49-city problem without the use
of the special restraints and this would have led to a shorter proof of
optimality. In fact, we have yet to find an example which could not be
handled by using only loop conditions and combinatorial arguments.

THE METHOD

The technique will be illustrated by a series of simple examples.

Ezample 1

First consider a five-city map {orming a regular pentagon of unit length
per side and with length 14 (A/5+1)=1.7 on a diagonal (Fig. 1). Sup-

Figure 1
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pose that the problem is to minimize (3) subject only to (2). Start
with a tour which is conjectured to be optimal, obviously (1234 5).
In this case the values of x;;, denoted by Z,,, are Tro=Tn=Tu==Ts==Tn=1
and all other &;;=0. The variables x;, corresponding to links on the tour
are called ‘basic variables.’” The length of the tour given by the linear
form (3) for =% is D(Z)=5. There are five equations in (2). Mul-
tiply each by a parameter ; to be determined, and then subtract the
sum from (3). Thus, we are led to

D(.’L‘)=E duxu— Zﬂ'( <E x”—2> (qu:cn; I?fJ)
I>7 I=1 J=1

= E (7rl+7|'J"'dIJ)xu+2 Z Tr.

I>J 1

Denote the coefficients of x;; by &;; so that
D(-’E) = ‘_‘Z 0rs%1y +2; . (611 =7r1+7f"/ _dIJ) (7)
I>J

Now determine the five =, values so that é;, corresponding to basic vari-
ables vanish: .

o1 =O, (fOI' Ty = 1) (8)
i.e., if the link (/,/) is on the tour in question. Note that to solve for the

7 we have five linear equations in five unknowns.
If now we set v,y =&, in (7), then &,6,, =0 for all (I,J) and

D(z)=2 Zl: m=5. (9)

Subtracting (9) from (7) we have finally
D(x)—D(z) = “E 0rs%ry. (10)
I>J

For the regular pentagon m =14 for I=1, 2, 3, 4, 5 solves (8), and so
oy =1%(1—+/5)<0 on a diagonal, i.e., 6,<0 for every (I,J). Thus,
the right side of (10) is always nonnegative or D(z)>D(Z) for all z satis-
fying (2), and in particular all other tours are longer than the tour repre-
sented by Z.

Example 2

Next, take another five-city problem whose map is not a regular
pentagon (Fig.2). We start with the tour (1234 5) of length D(z) =32
where the basic variables take on the values T1=Fn==u==Ts==T=1 and
all other #,,=0. Repeat the steps in the previous problem leading to (10)
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o
"

o PN -
(S

8 [1z]10]e [\

12 3 45

Ficure 2
where, as before, calculate the =, by setting é6;, =0 for §,; corresponding
to basic variables z;,. The five equations that the m; must satisfy are
m+me =35, metmy=3, m+ms=8, ms+ 75 =0, m+m=8
By alternately subtracting and adding these equations one obtains.
2m=di2—du+du—dis+ds =5—54+8—6+8=10,
or m =29, me=0, m3=H, m=3, m=3.

The factors 7, which multiply equations (2) to form (10) are called
‘potentials.”* There is one such potential associated with each city I,
and these are readily computed by working directly on the map of the
cities (see Fig. 3).

1+6
Figure 3 FiGURE 4

To form other 6,,, add the m; and 7, of city I and city J and subtract
off the distance d;; between them. In this case we note that except for
031 =5+5—6=+4, all the other §,; are <O0.

We see from (10) that if x; were to take on a positive value, x3; =89,
the other nonbasic variables remaining at zero, this may lead to a better
solution. We let 8 be the largest value consistent with (2). Thus, the
weights x;, must add up to 2 on links from each city and no weight is
negative. However, in setting x; =6 we adjust only the basic set of
variables, leaving all other nonbasic variables at zero value. This is

* The term potential is used by T. C. Koopmans in an analogous connection for
the transportation problem.®
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worked out on the map shown in Fig. 4. Here the maximum value of 6 is
1, and this leads to a 3-cycle (1 2 3) and a 2-cycle (4 5) (Fig. 5).

This is not a tour, so we add a loop condition which excludes this
solution but which is satisfied by all tours. In this case x45<1 or

Ty t+ys—1=0, (¥s>0) (11)

is such a condition. Accordingly, we start over again using the five
equations (2) and the sixth equation (11). This time we will need six
basic variables and it will be convenient to have z;; (the one we set equal to
6 previously) included with those associated with the tour. Thus, the

FIGURE 5 FIGURE 6

starting solution is as follows: The basic variables have values Z..=
Tn=ITu==Ii==In=1, £13=0. All other Z;,,=0. This solution is shown in
Fig. 6. The presence of an upper bound on s or relation (11) is depicted
in Fig. 6 by a blocl; symbol on (4, 5). Now we multiply equation

5

(11) by ms, add it to Z 1r, <Z x”—2>, subtract the sum from Z diy T1s
I=1 J=1
and collect terms in x;; as before. The result is
5
Zdu XTpy= — Z 0rs xu-i-ZZ e (1—?/6) (12)
1>J I>J I=1

where §;; =m,+r,—d;; except 65 =ms+ 15— (dss— ).
Now determine the six values of 7; by setting §,; =0 corresponding to
basic variables x;,:

512=523=534=545=551=513=0, (13)
from which it follows that
D(x)_D(i)= —E 01y Trg—me Ys. (14)

To evaluate w; we note that there are six equations in six unknowns.
These are shown on the map below (Fig. 7). The three conditions about
the triangular loop (1, 2, 3) permit us to solve for m, m, m;. Branching
out from the triangle we get next m; and w5 and finally m. Thus, we
determine first that 2m =dis—dy+du=5—5-+6so that =3, m=2, m3=3.
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Working down, my=5, m=5. Thus, m+ms=—m+6, so ms= —4. These
values are shown adjacent to each city in Fig. 7.

With these values of x; all remaining &8, = (m;+m;—d;;) <0; hence,
with m<0 we have the right side of (14) always positive, so the tour
(12345) is minimal. This illustrates the use of the simplest of the loop
conditions, namely, an upper bound on the variable zs.

Ficure 7

Ezxample 3

Here we consider a six-city case (Fig. 8) where the optimal tour is not
our initial choice. Let the starting tour be (123 4 5 6) of length D(z) =
23. If we proceed as before, relation (8) implies that the =, satisfy the
relations shown in Fig. 8. In this case (and this is generally true for

1r|+1r2=4
(|)—————7:)
2=T,+ T,y
© 1N
AN
214
>332
D= =
©4|7(5]|5
5{7|7|6]|3
sle|7]e]s][3]\
1 2 3 4 5 6
City
FI1GURE 8

loops with an even number of links) the sum of equations on links (1, 2),
(3, 4), (5, 6) is identical with the sum for (2, 3), (4,5), (6, 1) except for
different constant terms, so that the system of equations in = is incon-
sistent.

This difficulty can be avoided if the following general rule is followed:
The set of basic variables must be so selected that when the remaining
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xr; are fixed, the values of the basic variables are uniquely determined.
This means the matrix of coefficients of the basic variables is nonsingular
(i.e., their determinant is nonvanishing). Since the =, satisfy a system of
equations whose coefficient matrix is the transpose of this matrix, the =,
will be uniquely determined also. In the six-city case, one may augment
system (2) with the additional upper-bound condition

T tyr=1 (y:20) (15)

and select x;3 as a basic variable in addition to the basic variables z;; cor-
responding to (I, J) on the tour. Then, letting = be the weight associ-
ated with restriction (15), the-m; satisfy relations in Fig. 9.

% LR AT 3/

72 (5 % (D v' O,
Mo+ =3 3-Mp=Mg+ T, ) !
(mp=-1) o
-2
Fi1Gure 9 Ficure 10 Ficure 11

The value of m =34 can be determined from the odd loop (12 3)
by alternately adding and subtracting the equations around the loop.
The others can then be evaluated immediately. In this case, we have,
analogous to (14),

D(x) —D(:i) = —Z 81y Try— 17 Y1, (16)

where 6;;=0 if x;, is a basic variable and &,=m+m,—d;; otherwise.
Since 84 =3, increasing the value of x4 to 6 (while all other nonbasic
variables remain zero), with corresponding adjustments in the basic
variables, will yield D(z)—D(%)=—30<0. In Fig. 10 it is seen that
the largest value of =1 and the resulting solution is Fig. 11, which is
not a new tour, but two loops. However, we can exclude this solution by
imposing the additional restriction satisfied by all tour solutions

TotZos+23<2, or Tpt+rutratys=2, (ys=0) (17)

since in Fig. 11 the inadmissible solution has zi+zu+rn=3. We
now start all over again augmenting relations (2) by (15) and (17). Let
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the basic variables be the same as before but include x4 (i.e., the one we set
equal to 6 in Fig. 10). Let =, for 1, 2, ---, 8 be the weights assigned
to these relations respectively in forming D(z) —D(Z); then the ; satisfy
the relations shown in Fig. 12, where the loop condition (17) is symbolized
by the dotted loop in the figure.

Ficure 12 Figure 13

The value of ms=2 may be evaluated from the odd loop (6 4 3 2 1)
by alternately adding and subtracting the equations in 7, shown on this
loop. The other m; can then be immediately determined. This time

D(x)—D(z)= —Z Ory%ry — wiY7 — T8Ys (18)

where 6;;,=0 for a;, a basic variable and 6, =m+m,—d;; otherwise.
Sinice 8x=1 while all other 8,, <0, we set x,=0; then the adjustments
in the values of the basic variables necessary to satisfy (2), (15), (17) are

(Tg=-2)

Ficure 14 Ficure 15
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shown in Fig. 13 and the new solution for =1 is a new tour Z with length
D(Z)=D(z)—1=22, Fig. 14. We may now drop z3=0 from the
basic set of variables (or alternatively z.) and replace it by z, as a new
basic variable. This yields the relations for =; of Fig. 15. The expression
for D(x)—D(Z) is similar to (18). It can now be tested that all ;<0
corresponding to non-basic 2, and the coefficients of y; and ys are <0,
m3<0, so that the new tour is established as optimal.

AN ESTIMATION PROCEDURE

In any linear programming problem with bounded variables, an es-
timate is available of how much a basic solution differs from an optimal
solution. Let D(z) represent a linear form to be minimized and D(Z) be
the value for some basic solution & where variables (xi, 2, < -, Zn'),
represented by the symbol z, satisfy a system of equations as well as
bounds 0<z;<r;,. If the equations are multiplied by weights =; and
substracted from D(z), then (as we have noted earlier)

D@ -D@) = 3= bz, (>0 (19)

where m; are chosen such that 6,=0 if the corresponding z, is a basic
variable. We may now split the right side of (19) into positive and
negative parts and obtain a lower bound for the difference by dropping the
positive part, i.e.,

D(»’U) - D(f) = “'8205#5! -620 8s%s, (xl 2 0) (20)
D(z)—D(z) > —;Oa,x,z —E, (E>0) (21)

where —E is some estimate for the negative part. By setting z,=ry,
we obtain in particular
D(x)—D(z)>—2_ 8,r,.
@) =D@)= - b o)
For the traveling-salesman problem the variables x;; must be either
0 or 1 if x represents a tour. From (20), no link (7, J) can occur in an
optimal tour if

Sy < —E, (23)

hence all corresponding variables z;, can be dropped from further con-
sideration.

During the early stages of the computation, E may be quite large and
very few links can be dropped by this rule; however, in the latter stages
often so many links are eliminated that one can list all possible tours that
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use the remaining admissible links. By extending this type of combin-
atorial argument to the range of values of the ‘slack’ variables yg, it is
often possible at an earlier stage of the iterative algorithm to rule out so
many of the tours that direct examination of the remaining tours for
minimum length is a feasible approach.

THE 49-CITY PROBLEM*

The optimal tour £ is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(z) is a minimum for £. We distinguish the following subsets of the
42 cities:

Si={1, 2, 41, 42} Ss=1{13, 14, - --, 23}
S:=1{3,4, ---,9} Se={13, 14, 15, 16, 17}
S;={1,2,---,9,29,30, ---, 42}  S;={24, 25, 26, 27}.
Si={11,12, ---, 2

Except for two inequalities which we will discuss in a moment, the pro-
gramming problem may now be written as the following 65 relations:f

? zry=2 (I=1, ---,42), r40<1, 24351, 17,6<1,

29551, 1<l <1, 215,141, 220,951,

93,221, 25,21, . 7,261, T29.8<1, 31,3051,

733,251, Tss.u<1, 7,361, 2 z1s2>2, 2 z15>2,
81,8, 82,82

Z z12>2, 2 z>2, Z 122, 2 21,4, 2 z1,<3.
83,83 84,84 85,85 Sg 87

The remaining two relations (66 and 67) are perhaps most easily described
verbally. .

66: 21415 minus the sum of all other z;, on links out of 15, 16, 19, except for zs.15,
Z18.16, Z17.16, L1918, ANd Tz0,19, 18 DOt positive.

67: Zarrrs<42, where am»=2, a.5=0, all other a;;=1 except a;y=0 if
zrs is a non-basic variable and either (a) I is in S;, J not in S;, or (b) I or
J is 10, 21, 25, 26, 27, or 28.

These two inequalities are satisfied by all tours. For example, if a
tour were to violate the first one, it must have successively ;5u4=1,

* As indicated earlier, it was possible to treat this as a 42-city problem.

t Zs.5 217 means the sum of all variables where only one of the subscripts I or J is
in 8. Zg ;s means the sum of all variables such that I and J are in S—see relations
4), (5), (6).

t We are indebted to I. Glicksberg of Rand for pointing out relations of this
kind to us.
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Tiss=1, Tis1,=1, but also x3=1, a contradiction. The argument
that each tour satisfies the second inequality is similar. If a tour x exists
with 2 a;,2,,>42, then clearly xy22=1, and also 19,0 == =1, since by
(a) these are the only links connecting S; and S; having non-zero a;;.  (See
Fig. 17 to distinguish between basic and non-basic variables.) More-
over, since ag 25=0, it follows from (b) that s 10==25 24 =Ty =22 =1.
Again, (b) and the fact that @y =0 imply 2o s0=a2a=1. Now look at
city 27. There are three possibilities: 2y =1, yr22=1, or Ts,7=1. But
each of these contradicts the assumption that « is a tour.

These relations were imposed to cut out fractional solutions which
satisfy all the conditions (2) and (4). A picture of such a fractional
solution, which gives a smaller value for the minimizing form than does
any tour, is shown in Fig. 18. Notice that it does not satisfy relation 67.

Fic. 18. A fractional solution z satisfying all loop conditions with
E dIJ I”=698.

We assert that if the weights x; are assigned to these restraints in the
order presented above, then the values as given in Fig. 17 satisfy 6,,=0
for all variables x;; in the basis. With these values of ; in the expression
for D(z)—D(z), all §,,<0 corresponding to variables x;; and g, T,

-+, e corresponding to variables yy, - - -, ye; are appropriately positive
or negative (positive if its y occurs with a minus sign in the relation, nega-
tive otherwise) with the exception of ws=14 where s u+tys=1.
This proves, since £ =14 and all the d;, are integers, that & is minimal.
The length D(z) is 699 units, or 12,345 miles except for rounding errors.
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It can be shown by introducing all links for which &§;;> —14 that &
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as z.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

REFERENCES

1. W. W. R. BaLL, Mathematical Recreations and Essays, as rev. by H. S. M.
Coxeter, 11th ed., Macmillan, New York, 1939.

2. G. B. Dantzig, A. OrDEN, AND P. WoLrE, The Generalized Simplex Method
for Minimizing a Linear Form under Linear Inequality Restraints, Rand
Research Memorandum RM-1264 (April 5, 1954).

3. G. B. Danrzig, “Application of the Simplex Method to a Transportation
Problem,” Actiity Analysts of Production and Allocation, T. C. Koopmans,
Ed., Wiley, New York, 1951.

4. I. HELLER, “On the Problem of Shortest Path Between Points,” I and II
(abstract), Bull. Am. Math. Soc. 69, 6 (November, 1953).

. T. C. Koopmans, “A Model of Transportation,” Activity Analysts of Produc-

tton and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951.

. H. W. Kunn, “The Traveling-Salesman Problem,” to appear in the Proc.
Sizth Symposium in Applied Mathematics of the American Mathematical
Society, McGraw-Hill, New York.

7. D. F. Voraw anp A. OrDEN, ‘‘Personnel Assignment Problem,” Symposium
on Linear Inequalities and Programming, Comptroller, Headquarters U. S.
Air Force (June 14-16, 1951).

. J. voN NEUMANN, “A Certain Zero-sum Two-person Game Equivalent to the
Optimal Assignment Problem,” Contributions to the Theory of Games 11,
Princeton University Press, 1953.

9. W.T. Turrg, “On Hamiltonian Circuits,” London Mathematical Society Journal
- XXI, Part 2, No. 82, 98-101 (April, 1946).

10. S. VERBLUNsSKY, “On the Shortest Path Through a Number of Points,” Proc.

Am. Math. Soc. 11, 6 (December, 1951).

S O

[e2]






