
Chapter 8

VARIABLE NEIGHBORHOOD SEARCH

Pierre Hansen
GERAD and HEC Montreal, Canada

Nenad Mladenovic
GERAD and Mathematical Institute, SANU, Belgrade, Serbia

8.1 INTRODUCTION
Variable Neighborhood Search (VNS) is a recent metaheuristic, or frame­

work for building heuristics, which exploits systematically the idea of neigh­
borhood change, both in the descent to local minima and in the escape from the
valleys which contain them. In this tutorial we first present the ingredients of
VNS, i.e. Variable Neighborhood Descent (VND) and Reduced VNS (RVNS)
followed by the basic and then the general scheme of VNS itself which contain
both of them. Extensions are presented, in particular Skewed VNS (SVNS)
which enhances exploration of far-away valleys and Variable Neighborhood
Decomposition Search (VNDS), a two-level scheme for solution of large in­
stances of various problems. In each case, we present the scheme, some illus­
trative examples and questions to be addressed in order to obtain an efficient
implementation.

Let us consider a combinatorial or global optimization problem

min/(x) (8.1)

subject to
xeX (8.2)

where f{x) is the objective function to be minimized and X the set oi feasible
solutions. A solution x* e X is optimal if

fix*) < fix), VxeX (8.3)

An exact algorithm for problem (8.1)-(8.2), if one exists, finds an optimal
solution X*, together with the proof of its optimality, or shows that there is no

212 HANSEN AND MLADENOVIC

feasible solution, i.e. X = 0. Moreover, in practice, the time to do so should
be finite (and not too large); if one deals with a continuous function one must
admit a degree of tolerance, i.e. stop when a feasible solution x* has been found
such that

f(x*)<fix)-^s, WxeX (8.4)

or

< 6, Vx e X (8.5)

for some small positive £.
Numerous instances of problems of the form (8.1)-(8.2), arising in Opera­

tional Research and other fields, are too large for an exact solution to be found
in reasonable time. It is well known from complexity theory (Garey and John­
son, 1979; Papadimitriou, 1994) that thousands of problems are NP-hard, that
no algorithm with a number of steps polynomial in the size of the instances is
known and that finding one for any such problem would entail obtaining one
for any and all of them. Moreover, in some cases where a problem admits a
polynomial algorithm, the power of this polynomial may be so large that real­
istic size instances cannot be solved in reasonable time in the worst case, and
sometimes also in the average case or most of the time.

So one is often forced to resort to heuristics, which yield quickly an ap­
proximate solution, or sometimes an optimal solution but without proof of its
optimahty. Some of these heuristics have a worst-case guarantee, i.e. the solu­
tion Xh obtained satisfies

—— < ̂ , Wx e X (8.6)
f(xh)

for some s, which is however rarely small. Moreover, this s is usually much
larger than the error observed in practice and may therefore be a bad guide in
selecting a heuristic. In addition to avoiding excessive computing time, heuris­
tics address another problem: local optima. A local optimum xi of (8.1)-(8.2)
is such that

f(xL)<fix). 'ixeNixL)nX (8.7)

where N(xi) denotes a neighborhood of Xi (ways to define such a neighbor­
hood will be discussed below). If there are many local minima, the range of
values they span may be large. Moreover, the globally optimum value /(;c*)
may differ substantially from the average value of a local minimum, or even
from the best such value among many, obtained by some simple heuristic (a
phenomenon called the Tchebycheff catastrophe: see Baum, 1986). There are,
however, many ways to get out of local optima and, more precisely, the valleys
which contain them (or set of solutions from which the descent method under
consideration leads to them).

VARIABLE NEIGHBORHOOD SEARCH 213

Metaheuristics are general framework to build heuristics for combinatorial
and global optimization problems. For discussion of the best-known of them
the reader is referred to the books of surveys edited by Reeves (1993), Glover
and Kochenberger (2003) as well as to the tutorials of the present volume.
Some of the many successful appHcations of metaheuristics are also mentioned
there.

Variable Neighborhood Search (Mladenovic and Hansen, 1997; Hansen and
Mladenovic, 1999, 2001c, 2003) is a recent metaheuristic which systematically
exploits the idea of neighborhood change, both in descent to local minima and
in escape from the valleys which contain them. It exploits systematically the
following facts.

FACT 1 A local minimum with respect to one neighborhood structure is not
necessarily so for another;

FACT 2 A global minimum is a local minimum with respect to all possible
neighborhood structures.

FACT 3 For many problems local minima with respect to one or several neigh­
borhoods are relatively close to each other

This last observation, which is empirical, implies that a local optimum often
provides some information about the global one. This may for instance be
several variables with the same value in both. However, it is usually not known
which ones are such. An organized study of the neighborhood of this local
optimum is therefore in order, until a better one is found.

Unlike many other metaheuristics, the basic schemes of VNS and its exten­
sions are simple and require few, and sometimes no, parameters. Therefore,
in addition to providing very good solutions, often in simpler ways than other
methods, VNS gives insight into the reasons for such a performance, which in
turn can lead to more efficient and sophisticated implementations.

The tutorial is organized as follows. In the next section, we examine the
preliminary problem of gathering information about the problem under study,
and evaluating it. In Section 8.3 the first ingredient of VNS, Variable Neigh­
borhood Descent (VND), which is mostly or entirely deterministic, is studied.
Section 8.4 is devoted to the second ingredient. Reduced Variable Neighbor­
hood Search (RVNS), which is stochastic. Both ingredients are merged in
the basic and the general VNS schemes, described in Section 8.5. Extensions
are then considered. Skewed Variable Neighborhood Search (SVNS), which
addresses the problem of getting out of very large valleys is discussed in Sec­
tion 8.6. Very large instances of many problems cannot be solved globally in
reasonable time; Variable Neighborhood Decomposition Search (VNDS) stud­
ied in Section 8.7 is a two-level scheme which merges VNS with successive

214 HANSEN AND MLADENOVIC

approximation (including a two-level VNS). Various tools for analyzing in de­
tail the performance of a VNS heuristic, and then streamlining it, are presented
in Section 8.8. They include distance-to-target diagrams and valley profiles.
In each of these sections basic schemes, or tools, are illustrated by examples
from papers by a variety of authors. Questions to be considered in order to get
an efficient implementation of VNS are also systematically fisted. Promising
areas of research are outfined in Section 8.9. Brief conclusions complete the
tutorial in Section 8.10. Finally, sources of further information are fisted.

8.2 PRELIMINARIES: DOCUMENTATION
Once a problem of the form (8.1)-(8.2) has been selected for study and ap­

proximate solution by VNS, a preliminary step is to gather in a thorough way
the papers written about it or closely related problems. This may be a diffi­
cult task as papers are often numerous, dispersed among many journals and
volumes of proceedings and the problem may appear (usually under different
names) in several fields. Tools such as the ISI Web of Knowledge, NEC Re­
search 's Citeseer or even general web browsers such as Google may prove to
be very useful.

There are several reasons for studying the literature on the selected problem:

(i) Evaluating its difficulty. Is it NP-hard? Is it strongly NP-hardl (Does
it hence admit no fully polynomial approximation scheme?) If it is in
P, what is the complexity of the best-known exact algorithm, and is it
sufficiently low for realistic instances to be solvable in reasonable time?

(ii) Evaluating the performance of previous algorithms. Are there some in­
stances of (preferably real-world) data for the problem available (e.g. at
http://www.informs.org/Resources/Resources/Problem_Instances/)? And
what are the largest instances solved exactly?

(iii) Evaluating the performance of previous heuristics. Which metaheuris-
tics have been appfied to this problem? What are the performances of the
resulting heuristics, in terms of size of problems solved, error and com­
puting time (assuming comparison among computing environments, if
needed, can be done in a fairly realistic way)?

(iv) What steps are used in the heuristics already proposed? What are the
corresponding neighborhoods of the current solution? Are codes for
these heuristics available? Are codes for simple descent methods avail­
able?

The role of question (i) is to help to assess the need for a VNS (or other)
heuristic for the problem considered. Questions (ii) and (iii) aim at obtain­
ing a benchmark to evaluate the performance of the VNS heuristic when it is

VARIABLE NEIGHBORHOOD SEARCH 215

Initialization.

Choose / , X, neighborhood structure N{x), initial solution x;

Current step (Repeat).

(1) Findx' = argmin^gyv(^)/(x);

(2) If /(jc') < / (x) set x' -(r- x" and iterate; otherwise, stop.

Figure 8.1. Steepest descent heuristic.

designed and implemented: a good heuristic should obtain optimal solutions
for most and preferably all instances solved by an exact algorithm (which suf­
fers from the additional burden of having to prove optimality). Moreover, the
new heuristic should do as well as previous ones on most or all instances and
substantially better than them on quite a few instances to be viewed as a real
progress (doing slightly better on a few instances is not sufficient).

Question (iv) aims at providing ingredients for the VNS heuristic, notably
in its VND component; it also inquires indirectly about directions not yet ex­
plored. As a by-product, it raises the question of possible re-use of software,
which is reasonable for standard steps: for example, a descent with Newton's
method or a variant thereof.

8.3 VARIABLE NEIGHBORHOOD DESCENT
A steepest descent heuristic (known also as best improvement local search)

consists of choosing an initial solution ;c, finding a direction of steepest de­
scent from X, within a neighborhood N{x), and moving to the minimum of
f{x) within N{x) along that direction; if there is no direction of descent, the
heuristic stops, and otherwise it is iterated. This set of rules is summarized in
Figure 8.1.

Observe that a neighborhood structure N{x) is defined for all .x € X; in
discrete optimization problems it usually consists of all vectors obtained from
X by some simple modification, e.g. complementing one or two components
of a 0-1 vector. Then, at each step, the neighborhood N{x) of x is explored
completely. As this may be time-consuming, an alternative is to use ihQ first
descent heuristic. Vectors x' e N{x) are then enumerated systematically and
a move is made as soon as a descent direction is found. This is summarized in
Figure 8.2.

VND is based on Fact 1 of Section 8.1, i.e. a local optimum for a first type of
move X <- x' (or heuristic, or within the neighborhood Â i (JC)) is not necessary
for another type of move x <r- x (within neighborhood Niix)). It may thus

216 HANSEN AND MLADENOVIC

Initialization,
Choose / , X, neighborhood structure N{x), initial solution x\ Current step (Repeat).
(1) Find first solution x' e N(x);
(2) If f(x^) > fix), find next solution x^^ e N(x); set x^ <- x" and iterate (2); otherwise, set
X <- x̂ and iterate (1);
(3) If all solutions of N{x) have been considered, stop.

Figure 8.2. First descent heuristic.

be advantageous to combine descent heuristics. This leads to the basic VND
scheme presented in Figure 8.3.

Caution should be exercised when applying that scheme. In particular, one
should consider the following questions:

(i) What complexity do the different moves have?

(ii) What is the best order in applying them?

(iii) Are the moves considered sufficient to ensure a thorough exploration of
the region containing xl

(iv) How precise a solution is desired?

Question (i) aims at selecting and ranking moves: if they involve too many
elementary changes (e.g. complementing three components or more of a 0-1
vector), the resulting heuristic may be very slow and often take more time than
an exact algorithm on small- or medium-sized examples.

Question (ii) also bears upon computing times in relation to the quahty of
solutions obtained. A frequent implementation consists of ranking moves by
order of complexity of their application (which is often synonymous with by
size of their neighborhoods \Ni{x)\), and retuming to the first one each time a
direction of descent is found and a step made in that direction. Altematively,
all moves may be applied in sequence as long as descent is made for some
neighborhood in the series.

Question (iii) is a crucial one: for some problems elementary moves are not
sufficient to leave a narrow valley, and heuristics using them only can give very
poor results. This is illustrated in Example 8.2 below.

Finally, the precision desired, as asked for in question (iv), will depend upon
whether VND is used alone or within some larger framework, such as VNS
itself. In the former case, one will strive to obtain the best solution possible
within the allocated computing time; in the latter, one may prefer to get a good
solution fairly quickly by the deterministic VND and to improve it later by
faster stochastic search in VNS.

VARIABLE NEIGHBORHOOD SEARCH 217

Initialization.
Select the set of neighborhood structures N^, fox I = 1 , . . . , ^max. that will be used in the
descent; find an initial solution x (or apply the rules to a given x);
Repeat the following sequence until no improvement is obtained:
(l)Set€ <- 1;
(2) Repeat the following steps until i = ^max"
(a) Exploration of neighborhood.
Find the best neighbor x^ of JC (X^ e Ni(x)y,
(b) Move or not.
If the solution x^ thus obtained is better than JC, set x <- x^ and i ^^ I; otherwise, set € ^^ l + l;

Figure 8.3. Steps of the basic VND.

EXAMPLE 8.1 (SIMPLE PLANT LOCATION) (Forasurvey, see Comuejols
et al, 1990). The simple (or uncapacitated) plant location problem consists of
locating a set of facilities i among a given set lofm potential locations, with
fixed costs f, in order to minimize total costs for satisfying the demand of a
given set of users J with delivery costs Cij, i E I, j e J. It is expressed as
follows:

in zp = Y^ fyi + XIZ] ^'J^'J ^^'^^ mm
i=\ i=\ j = \

S.t.

J]x,, = l, Vje J (8.9)
i=l

yi-Xij > 0 , W G / , V j e / (8.10)

y .e iO, 1}, V / G / (8.11)

Xij > 0 , V/ € /, Vj e J (8.12)

where yt = 1 if a facility is located at i, and 0 otherwise; Xij = 1 if demand
of user j is satisfied from facility i and 0 otherwise. Note that for fixed yi, the
best solution is defined by

(1 if dj = min̂ î ^̂ ::! cij (v îth minimum index i in case of ties)
0 otherwise

Therefore, neighborhoods can be defined on the yi: for example, by Ham-
ming distance (or number of components with complementary values). A first

218 HANSEN AND MLADENOVIC

heuristic, "greedy", proceeds by opening a facility i with minimum total cost

ft-^J2<^tj = mm /<+E' (8.13)

then letting
Crj = min Qy, Vy (8,14)

i\yi=\

computing the gains gi obtained by opening a facility at i

gi = J2max{c,y - Cij.O) - // (8.15)

and iteratively opening the facility for which the gain is larger, as long as it is
positive. Each iteration takes 0(mn) time.

Once the greedy heuristic has been applied, an improved solution may be
obtained by the interchange heuristic which proceeds iteratively to the relo­
cation of one facility at a time in the most profitable way. With an efficient
implementation, the idea of which was suggested by Whitaker (1983) for the
closely related p-median problem, an iteration of interchange can also be made
in 0(mn) time.

Applying in tum Greedy and Interchange is a simple case of VND. Further
moves in which one facility would be closed and two opened, or two closed and
one opened, or two opened and two closed would be too costly if all possible
exchanges are examined.

EXAMPLE 8.2 (MINIMUM SUM-OF-SQUARES CLUSTERING) Given N
points ai G R^ the minimum sum-of-squares clustering problem consists of
partitioning them in M classes (or clusters) Cj such as to minimize the sum of
squared distances between the points and the centroids J/ of their clusters:

m

min Y, E ll«^-^'ll' (8-16)

where

^^^^ i:aeeCi

and ||.|| denotes the Euclidean norm.
Traditional heuristics for minimum sum-of-squares clustering are

• H-Means, which proceeds from an initial partition by moving one entity
Xi from its cluster to another one, in a greedy way, until no further move
decreases the objective function value, and

VARIABLE NEIGHBORHOOD SEARCH 219

• K-Means, which proceeds from an initial partition by, altematingly, find­
ing the centroids of its clusters, and reassigning entities to the closest
centroid, until stabiHty is attained.

Computational experiments (Hansen and Mladenovic, 2001b) show that
both H-Means and K-Means may lead to very poor results for instances with
large M and N (the relative error being sometimes greater than 100%). This is
due to bad exploration of X, or in other words, to difficulties in leaving valleys.
A new "jump" move, defined as the displacement of a centroid to a point ai
which does not coincide with a centroid, leads to a new VND heuristic, called
J-Means, which improves very substantially on both H-Means and K-Means.

8.4 REDUCED VARIABLE NEIGHBORHOOD
SEARCH

Assume a local minimum x of f has been reached. One would then hke
to leave its valley, and find another deeper one. In the standard versions of
Variable Neighborhood Search, no previous knowledge of the landscape is as­
sumed, or exploited. (Note that interesting hybrid techniques could be built,
using also values of f{x) at previous iteration points x). Then, the questions
to be asked are

(i) in which direction to go?

(ii) how far?

(iii) how should one modify moves if they are not successful?

Question (i) bears upon the possibility of reaching any feasible point x e X,
or every valley; the simplest answer is to choose a direction at random. For
problems in 0-1 variables this will amount to complementing some variables;
for continuous Euclidean problems, drawing angular coefficients at random
(or, in other words, choosing at random a point on the unit ball around x) takes
all points of X into account.

Question (ii) is crucial. Indeed one wants to exploit to the Hmit Fact 2 (Sec­
tion 8.1): i.e., in many combinatorial and global optimization problems, local
optima tend to be close one to another and situated in one (or sometimes sev­
eral) small parts of X. So once a local optimum has been reached, it contains
implicit information about close better, and perhaps globally optimum, ones.
It is then natural to explore first its vicinity. But, if the valley surrounding the
local optimum x is large, this may not be sufficient, and what to do next is
asked for in question (iii). Again, a natural answer is to go further.

These aims are pursued in the reduced VNS, see Figure 8.4. A set of neigh­
borhoods Ni(x), N2{x),,.., Nic^^^(x) will be considered around the current
point X (which may be or not a local optimum). Usually, these neighborhoods

220 HANSEN AND MLADENOVIC

Initialization.
Select the set of neighborhood structures J\f/^, for k = 1 , . . . , /:max» that will be used in the
search; find an initial solution x\ choose a stopping condition;
Repeat the following sequence until the stopping condition is met:
(1) Set it ^ 1;
(2) Repeat the following steps until k = /:max-
(a) Shaking. Generate a point x^ at random from the kih neighborhood of x (x^ e Af/dx));
(b) Move or not. If this point is better than the incumbent, move there (x <- x^), and continue
the search with A/i (k <- I); otherwise, set /: <- k + I;

Figure 8.4. Steps of the reduced VNS.

will be nested, i.e. each one contains the previous. Then a point is chosen at
random in the first neighborhood. If its value is better than that of the incum­
bent (i.e. fix') < fix)), the search is recentered there ix <- x'). Otherwise,
one proceeds to the next neighborhood. After all neighborhoods have been
considered, one begins again with the first, until a stopping condition is satis­
fied (usually it will be maximum computing time since the last improvement,
or maximum number of iterations).

Due to the nestedness property, the size of successive neighborhoods will be
increasing. Therefore one will explore more thoroughly close neighborhoods
of X than farther ones, but nevertheless search within these when no further
improvements are observed within the first, smaller ones.

EXAMPLE 8.3 (/7-MEDIAN) (For a survey, see Labbe et aL, 1995). This is
a location problem very similar to Simple Plant Location. The differences are
that there are no fixed costs, and that the number of facilities to be opened is
set at a given value p. It is expressed as follows:

m n

mm i" EE^'V^'V (8.18)
i=\ 7 = 1

subject to

E^'7 = 1' Vy (8.19)
/=i

yi-Xij > 0, ViJ (8.20)
m

J^yi = p (8.21)

Xij,yi e {0,1} (8.22)

VARIABLE NEIGHBORHOOD SEARCH 221

Table 8.1. 5934-customer p-median problem.

p

100
200
300
400
500
700
800
900

1000

Average

Obj. value

(best known)

2733 817.25
1809 064.38
1394715.12
1145 669.38
974275.31
752 068.38
676 846.12
613 367.44
558 802.38

FT

6637.48
14966.05
20127.91
23 630.95
29441.97
36159.45
38 887.40
41 607.78
44176.27

28 403.90

CPU times

RVNS

510.20
663.69
541.76
618.62
954.10
768.84
813.38
731.71
742.70

705.00

VNDS

6087.75
14948.37
17477.51
22283.04
10979.77
32249.00
20 371.81
27060.09
26616.96

19 786.00

FI

0.36
0.79
0.65
0.82
0.98
0.64
0.61
0.55
0.73

0.68

% Error

RVNS

0.15
0.36
0.51
0.59
0.51
0.50
0.53
0.53
0.66

0.48

VNDS

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

The Greedy and Interchange heuristics described above for Simple Plant Lo­
cation are easily adapted to the p-median problem and, in fact, the latter was
proposed by Teitz and Bart (1968).

Fast interchange, using Whitaker's (1983) data structure, applies here also
(Hansen and Mladenovic, 1997). Refinements have recently been proposed by
Resende and Wemeck (2003). A comparison between that approach and RVNS
is made in Hansen et al. (2001), and the results are summarized in Table 8.1. It
appears that RVNS gives better results than Fast Interchange in 40 times less
time.

8.5 BASIC AND GENERAL VARIABLE
NEIGHBORHOOD SEARCH

In the previous two sections, we examined how to use variable neighbor­
hoods in descent to a local optimum and in finding promising regions for near-
optimal solutions. Merging the tools for both tasks leads to the General Vari­
able Neighborhood Search scheme. We first discuss how to combine a local
search with systematic changes of neighborhoods around the local optimum
found. We then obtain the Basic VNS scheme presented in Figure 8.5,

According to this basic scheme, a series of neighborhood structures, which
define neighborhoods around any point ;t € X of the solution space, are first
selected. Then the local search is used and leads to a local optimum x. A
point x' is selected at random within the first neighborhood A/i (x) of x and a
descent from x' is done with the local search routine. This leads to a new local
minimum x". At this point, three outcomes are possible: (i) x" = x, i.e. one
is again at the bottom of the same valley; in this case the procedure is iterated

222 HANSEN AND MLADENOVIC

Initialization. Select the set of neighborhood structures A/]t, for /: = 1 , . . . , ^max» that will be
used in the search; find an initial solution x\ choose a stopping condition;
Repeat the following sequence until the stopping condition is met:
{\)Sak <- 1;
(2) Repeat the following steps until k = /:max'
(a) Shaking. Generate a point x^ at random from the kth neighborhood of ^ (x^ e Nk{x))\
(b) Local search. Apply some local search method with x' as initial solution; denote with x"
the so obtained local optimum;
(c) Move or not. If the local optimum x'^ is better than the incumbent x, move there {x <- x^^),
and continue the search with A/i (A: <~ 1); otherwise, set /: <- /: + 1;

Figure 8.5. Steps of the basic VNS.

using the next neighborhood Mk{x), k >2\ (ii) x'' ^ x but f{x'^) > fix), i.e.
another local optimum has been found, which is not better than the previous
best solution (or incumbent); in this case too the procedure is iterated using
the next neighborhood; (iii) x^^ 7̂ x and /(JC^O < / U) - i-^-. another local
optimum, better than the incumbent has been found; in this case the search
is recentered around x^^ and begins again with the first neighborhood. Should
the last neighborhood be reached without a solution better than the incumbent
being found, the search begins again at the first neighborhood J\f\ (x) until a
stopping condition, e.g. a maximum time or maximum number of iterations or
maximum number of iterations since the last improvement, is satisfied.

If instead of simple local search, one uses VND and if one improves the
initial solution found by reduced VNS, one obtains the general VNS scheme,
see Figure 8.6.

Several questions about selection of neighborhood structures are in order:

• What properties of the neighborhoods are mandatory for the resulting
scheme to be able to find a globally optimal or near-optimal solution?

• What properties of the neighborhoods will favor finding a near-optimal
solution?

• Should neighborhoods be nested? Otherwise how should they be or­
dered?

• What are desirable properties of the sizes of neighborhoods?

The first two questions bear upon the ability of the VNS heuristic to find the
best valleys, and to do so fairly quickly. To avoid being blocked in a valley,
while there may be deeper ones, the union of the neighborhoods around any
feasible solution x should contain the whole feasible set:

X c Af,(x) UMCx) U . . . UATkix) VxeX

VARIABLE NEIGHBORHOOD SEARCH 223

Initialization, Select the set of neighborhood structures A^, for /: = 1 , . . . , /:max» that will be

used in the shaking phase, and the set of neighborhood structures N^iox t = \,,.,, ^max that

will be used in the local search; find an initial solution jc and improve it by using RVNS; choose

a stopping condition;

Repeat the following sequence until the stopping condition is met:

(l)Set)t ^ 1;

(2) Repeat the following steps until k = /:max.'

(a) Shaking. Generate a point x^ at random from the kih neighborhood J\fjc{x) of x;

(b) Local search by VND,

(hi) Sett ^ 1;

(b2) Repeat the following steps until i = €max;

• Exploration of neighborhood. Find the best neighbor x^^ of x̂ in Ni{x')\

' Move or not. If f(x^^) < f{x') stix' <~ x" and t ^^ \\ otherwise set € ^^ t + \\

(c) Move or not. If this local optimum is better than the incumbent, move there {x ^ x'^), and

continue the search with A/i {k ^^ \)\ otherwise, set ^ ê- /: + 1;

Figure 8.6. Steps of the general VNS.

These sets may cover X without necessarily partitioning it, which is easier to
implement, e.g. when using nested neighborhoods, i.e.

mx) c mx) c ... c A4,,,(x) X c A4„.ax(̂) v^ G X

If these properties do not hold, one might still be able to explore X com-
pletely, by traversing small neighborhoods around points on some trajectory,
but it is no longer guaranteed. To illustrate, as mentioned before, in minimum
sum-of-squares clustering, the neighborhoods defined by moving an entity (or
even a few entities) from one cluster to another one are insufficient to get out
of many local optima. Moving centers of clusters does not pose a similar prob­
lem.

Nested neighborhoods are easily obtained for many combinatorial problems
by defining a first neighborhood A/i (x) by a type of move (e.g. two-opt in the
traveling salesman problem) and then iterating it k times to obtain neighbor­
hoods Mk{x) for ^ = 2 , . . . , m̂ax- They have the property that their sizes are
increasing. Therefore if, as is often the case, one goes many times through the
whole sequence of neighborhoods the first ones will be explored more thor­
oughly than the last ones. This is desirable in view of Fact 3: i.e., that local
optima tend to be close one from another.

Restricting moves to the feasible set X may be too constraining, particularly
if this set is disconnected. Introducing some or all constraints in the objective
function with Lagrangian multipliers, allows moving to infeasible solutions.

224 HANSEN AND MLADENOVIC

A variant of this idea is to penalize infeasibilities, such as pairs of adjacent
vertices to which the same color is assigned in graph coloring: see Zufferey et
al. (2003).

EXAMPLE 8.4 (SCHEDULING WORKOVER RIGS) Many oil wells in on­
shore fields rely on artificial lift methods. Maintenance services such as clean­
ing and others, which are essential to these wells, are performed by workover
rigs. They are slow mobile units and, due to their high operation costs, there
are relatively few workover rigs when compared with the number of wells de­
manding service. The problem of scheduling workover rigs consists in finding
the best schedule Si (i = 1 , . . . , mj of the m workover rigs to attend all wells
demanding maintenance services, so as to minimize the oil production loss
(production before maintenance being reduced).

In Aloise et al. (2003) a basic VNS heuristic is developed for solving the
scheduling of workover rigs problem (WRP). Initial schedule Si (where Si is
an ordered set of wells serviced by workover rig /) is obtained by a greedy
constructive heuristic. For the shaking step k^^^ = 9 neighborhoods are con­
structed:

1 Swap routes (SS): the wells and the associated routes assigned to two
workover rigs are interchanged;

2 Swap wells from the same workover rig (SWSW): the order in which two
wells are serviced by the same rig is swapped;

3 Swap wells from different workover rig (SWDW): two wells assigned to
two different workover rigs are swapped;

4 Add/drop (AD): a well assigned to a workover rig is reassigned to any
position of the schedule of another workover rig;

5 (SWSW)^: apply twice the SWSW move;

6 (SWDW)^: apply twice the SWDW move;

7 (SWDW)^: apply three times the SWDW move;

8 (AD)^: successively apply two (AD) moves;

9 (AD)-̂ : successively apply three (AD) moves.

For local search, the neighborhood consists of all possible exchanges of
pairs of wells, i.e. the union of (SWSW) and (SWDW) from above is used.

A basic VNS is compared with the genetic algorithm, the greedy random­
ized adaptive procedure (GRASP) and with two ant colony methods (AS and
MMAS) on synthetical and real-Hfe problems from Brazilian onshore fields.

VARIABLE NEIGHBORHOOD SEARCH 225

Table 8,2. Average results with eight workover rigs over 20 runs of each synthetic test problem
and three possible scenarios (from Aloise et al., 2003).

Problem GA GRASP AS MMAS

P-111 16791.87 16602.51 15 813.53 15 815.26
P-211 20016.14 19726.06 19 048.13 19 051.61
P-311 20251.93 20094.37 19528.93 19546.10

VNS

15 449.50
18 580.64
19434.97

Initialization. Select the set of neighborhood structures A/^, for ^ = 1,.

used in the search; find an initial solution x and its value f(x); set jcopt
• • > ^max. that will be

^ X, /opt -^ fix):
choose a stopping condition and a parameter value a;

Repeat the following until the stopping condition is met:

(1) Set it <- 1;

(2) Repeat the following steps until k = ^max'

(a) Shaking. Generate a point x^ at random from the kih neighborhood of x;

(b) Local search. Apply some local search method with x^ as initial solution; denote with x^^

the so obtained local optimum;

(c) Improvement or not. If f(x^^) < /opt set /opt <— f(x) and Xopt <- x^^',

(d) Move or not. If fix^^)—ap(x,x^^) < f(x)sQix <-x^^ midk <- 1; otherwise set/: <-k + l.

Figure 8.7. Steps of the skewed VNS.

Some results on synthetic data are given in Table 8.2. On 27 possible scenarios
in generating data sets (denoted by P-111, P-112, P-113, P-121, . . . , P-333),
VNS was better than others in 85% of the cases and MMAS in 15%. On real-
life problems, results were much better than the gains expected. For example,
a daily reduction of 109 m-̂ (equivalent to 685.6 bbl) in the production losses
along 15 days was obtained by VNS compared with Petrobras' previous solu­
tion. That leads to a total savings estimated at US$6600 000 a year.

8.6 SKEWED VARIABLE NEIGHBORHOOD SEARCH
VNS usually gives solutions better, or as good as, multistart, and much bet­

ter ones when there are many local optima. This is due to Fact 3 (of Sec­
tion 8.1): many problems have clustered local optima; often, their objective
function is a globally convex one plus some noise. However, it may happen that
some instances have several separated and possibly far apart valleys contain­
ing near-optimal solutions. If one considers larger and larger neighborhoods,
the information related to the currently best local optimum dissolves and VNS

226 HANSEN AND MLADENOVIC

degenerates into multistart. Moreover, if the current best local optimum is not
in the deepest valley this information is in part irrelevant. It is therefore of in­
terest to modify VNS schemes in order to explore more fully valleys which are
far away from the incumbent solution. This is done by allowing a recentering
of the search when a solution close to the best one known, but not necessarily
as good, is found, provided that it is far from this last solution. The modified
VNS scheme for this variant, called skewed VNS (SVNS) is presented in Fig­
ure 8.7. The relaxed rule for recentering uses an evaluation function Hnear in
the distance from the incumbent: i.e. f(x^^) is replaced by /(x^O — otp(x, x^^)
where p(x, x̂ O is the distance from x to x^^ and a a parameter. A metric for the
distance between solutions is usually easy to find, e.g. the Hamming distance
when solutions are described by Boolean vectors or the Euclidean distance in
the continuous case.

Clearly, more compHcated formulae could be used for recentering; possi­
bly, one might take into account known values at points already visited in the
valley being explored. Questions to be answered when applying SVNS are the
following:

• Does the problem under consideration have a roughly convex objective
function, or are there several far apart deep valleys?

• How should a be chosen?

These questions can be answered, to some extent, by first using a multistart
version of VNS, i.e. starting VNS from various random points and running it
for a short time. Then one can look at the position of the best local optima
found and see if they are clustered or dispersed. Further, one can plot values
in function of distance from the corresponding local optima to the best known
solution and choose (̂ as a fraction of the average slope.

EXAMPLE 8.5 (WEIGHTED MAXIMUM SATISFIABILITY) The satisfiability
problem, in clausal form, consists in determining if a given set of m clauses
(all in disjunctive or all in conjunctive form) built upon n logical variables
has a solution or not. The maximum satisfiability problem consists in finding
a solution satisfying the largest possible number of clauses. In the weighted
maximum satisfiabihty problem (WMAXSAT) positive weights are assigned to
the clauses and a solution maximizing the sum of weights of satisfied clauses
is sought. Results of comparative experiments with VNS and TS heuristics on
instances having 500 variables, 4500 clauses and three variables per clause,
in direct or complemented form, are given in Table 8.3 from Hansen et al.
(2001). It appears that using a restricted neighborhood consisting of a few
directions of steepest descent or mildest ascent in the Shaking step does not
improve results, but using this idea in conjunction with SVNS improves notably
upon results of basic VNS and also upon those of a TS heuristic.

VARIABLE NEIGHBORHOOD SEARCH 221

Table 8.3. Results for GERAD test problems for WMAXSAT (n = 500).

Number of instances where
best solution is found

Average error in 10 trials (%)
Best error in 10 trials (%)
Total number of instances

VNS

6
0.2390
0.0969

25

VNS-low

4
0.2702
0.1077

25

SVNS-low

23
0.0404
0.0001

25

TS

5
0.0630
0.0457

25

8.7 VARIABLE NEIGHBORHOOD DECOMPOSITION
SEARCH

The VNDS method (Hansen et al, 2001) extends the basic VNS into a two-
level VNS scheme based upon decomposition of the problem. Its steps are
presented in Figure 8.8.

Note that the only difference between the basic VNS and VNDS is in Step
2(b): instead of applying some local search method in the whole solution space
S (starting from x' € A4(^)), in VNDS we solve at each iteration a subproblem
in some subspace V^ c A4(^) with x' e Vk. When the local search used in
this step is also VNS, the two-level VNS-scheme arises.

VNDS can be viewed as embedding the classical successive approximation
scheme in the VNS framework.

8.8 ANALYZING PERFORMANCE
When a first VNS heuristic has been obtained and tested, the effort should

not stop there. Indeed, it is often at this point that the most creative part of
the development process takes place. It exploits systematically Fact 2 (of the
Introduction), i.e. that global minima are local minima for all possible neigh­
borhoods simultaneously. The contrapositive is that if a solution ;c € X is a
local minimum (for the current set of neighborhoods) and not a global one there
are one or several neighborhoods (or moves) to be found, which will bring it
to this global optimum.

The study then focuses on instances for which an optimal solution is known
(or, if none or very few are available, on instances with a presumably optimal
solution, i.e. the best one found by several heuristics) and compares it with the
heuristic solution obtained. Visualization is helpful and make take the form
of a distance-to-target diagram (Hansen and Mladenovic, 2003). Then, the
heuristic solutions, the optimal one and their symmetric difference (e.g. for
the traveling salesman problem, TSP for short) are represented onscreen. An
interactive feature allows one to follow how the heuristic works step by step.

228 HANSEN AND MLADENOVIC

Initialization. Select the set of neighborhood structures Afj^, fork = 1 , . . . , /:max. that will be

used in the search; find an initial solution x; choose a stopping condition;

Repeat the following sequence until the stopping condition is met:

(l)Set^ ^ 1;

(2) Repeat the following steps until k = kmsix-

(a) Shaking. Generate a point x^ at random from the kth neighborhood of ;c (x^ e A/i:(x)); in

other words, let j be a set of k solution attributes present in x^ but not inx (y = x^ \ x).

(b) Local search. Find a local optimum in the space of y either by inspection or by some

heuristic; denote the best solution found with y^ and with x^^ the corresponding solution in the

whole space S (x^^ = (JĈ \ >;) U y^,

(c) Move ornot. If the solution thus obtained is better than the incumbent, move there (x <- x'^),

and continue the search withM\ (/ :<-!) ; otherwise, set /: ^^ k + \\

Figure 8.8. Steps of the basic VNDS.

The information thus gathered is much more detailed than what one would
get just from objective values and computer times if, as is often the case, the
heuristic is viewed as a black box. For instance, this clearly shows that two-opt
is not sufficient to get a good solution for the TSP, that moves involving three
or four edges are needed and that those edges leading to an improvement may
be far apart along the tour. For another appHcation of VNS to the TSP see
Burke etal. (1999).

Similarly, for location problems, one can focus on those facilities which are
not at their optimal location and study why, in terms of distributions of nearby
users.

Another point is to study how to get out of a large valley if there exists
another promising one. Valley (or mountain) profiles are then useful (Hansen
et al, 2001). They are obtained by drawing many points x^ at random within
nested neighborhoods Afi(x), Af2(x),... (or, which is equivalent, at increasing
distance of a local minimum x) then performing one VND descent and plotting
probabilities to get back to x, to get to another local minimum x^^ with a value
/(•̂ ^O ^ fM or to get to an improved local minimum x^ with f(x^^) <
fix). Alternatively, one may study the probabilities to go in the direction of
X, i.e. pix, x̂ O S pi^, -̂ 0 or towards another valley i.e. p{x, x̂ O > P(^^ -̂ O-

8.9 PROMISING AREAS OF RESEARCH

Research on VNS and its applications is currently very active. We review
some of the promising areas in this section; these include a few which are
barely explored yet.

VARIABLE NEIGHBORHOOD SEARCH 229

A first set of areas concerns enhancements of the VNS basic scheme and
ways to make various steps more efficient.

(a) Initialization. Both VND and VNS, as many other heuristics, require an
initial solution. Two questions then arise: How best to choose it? and
Does it matter? For instance, many initialization rules have been pro­
posed for the /:-Means heuristic for minimum sum-of-squares clustering,
described above; 25 such rules are compared in Hansen et al. (2003c).
It appears that while sensitivity of /:-Means to the initial solution is con­
siderable (best results being obtained with Ward's hierarchical clustering
method), VNS results depend very little on the chosen rule. The simplest
one is thus best. It would be interesting to extend and generalize this re­
sult by conducting similar experiments for other problems.

(b) Inventory of neighborhoods. As mentioned above, a VNS study begins
by gathering material on neighborhoods used in previous heuristics for
the problem under study. A systematic study of moves (or neighbor­
hoods) used for heuristics for whole classes of problems (e.g. location,
network design, routing, . . .) together with the data-structures most ad­
equate for their implementation should be of basic interest for VNS as
well as for other metaheuristics. Several researchers, e.g. Ahuja et al.
(2000), are working in that direction.

(c) Distribution of neighborhoods. When applying a general VNS scheme,
neighborhoods can be used in the local search phase, in the shaking
phase or in both. A systematic study of their best distribution between
phases could enhance performance and provide further insight in the so­
lution process. In particular, the trade-off between increased work in the
descent, which provides better local optima, and in shaking which leads
to better valleys should be focussed upon.

(d) Ancillary tests. VNS schemes use randomization in their attempts to
find better solutions. This also avoids possible cycling. However, many
moves may not lead to any improvement. This suggests the addition
of an ancillary test (Hansen, 1974, 1975) the role of which is to decide
if a move should be used or not, in its general or in a restricted form.
Considering again minimum sum-of-squares clustering, one could try
to select better the centroid to be removed from the current solution (a
possible criterion being that its cluster contains a few entities only or is
close to another centroid) as well as the position where it will be assigned
(e.g., the location of an entity far from any other centroid and in a fairly
dense region).

A second set of areas concems changes to the basic scheme of VNS.

230 HANSEN AND MLADENOVIC

(e) Use of memory, VNS in its present form relies only on the best solu­
tions currently known to center the search. Knowledge of previous good
solutions is forgotten, but might be useful to indicate promising regions
not much explored yet. Also, characteristics common to many or most
good solutions, such as variables taking the same value in all or most
such solutions, could be used to better focus the shaking phase. Use of
memory has been much studied in tabu search and other metaheuristics.
The challenge for VNS would be to introduce memory while keeping
simphcity.

An interesting way to use memory to enhance performance is reactive
VNS, explored by Braysy (2001) for the vehicle routing problem with
time windows. If some constraints are hard to satisfy their violation may
be penalized more frequently than for others in the solution process.

(f) Parallel VNS. Clearly, there are many natural ways to parallelize VNS
schemes. A first one, within VND, is to perform local search in parallel.
A second one, within VNS, is to assign the exploration of each neigh­
borhood of the incumbent to a different processor. A third one, within
VNDS, is to assign a different subproblem to each processor. Lopez et
al. (2002) explore several options in designing a parallel VNS.

(g) Hybrids. Several researchers, e.g. Rodriguez et al. (1999), Festa et al.
(2001), Ribeiro et al. (2001) and Drezner (2003a, 2003b), have com­
bined VNS with other metaheuristics for various problems. Again, this
is not always easy to do without losing VNS's simphcity but may lead to
excellent results, particulary if the other metaheuristics are very different
from VNS.

At a more general, level one might wish to explore combinations of VNS
with constraint programming, instead of its development within mathe­
matical programming as in the applications described above. This could
be done in two directions: on the one hand, techniques from constraint
programming could be applied to enhance VND; on the other hand, VNS
could be applied to constraint programming by minimizing a sum of ar­
tificial variables measuring infeasibility and possibly weighted by some
estimate of the difficulty of satisfying the corresponding constraints.

A third set of areas concerns new aims for VNS, i.e. non-standard uses.

(h) Solutions with bounds on the error VNS, as other metaheuristics, most
often provides near-optimal solutions to combinatorial problems, with­
out bounds on their error. So while such solutions may be optimal or
very close to optimality, this fact cannot be recognized. One approach
to obtain such bounds is to find with VNS a heuristic solution of the

VARIABLE NEIGHBORHOOD SEARCH 231

primal problem, deduce from it a solution to the dual (or its continuous
relaxation) and then improve this dual solution by another application
of VNS. Moreover, complementary slackness conditions can be used to
simplify the dual. For problems with a small duality gap this may lead to
near-optimal solution guaranteed to be very close to optimahty. To illus­
trate, recent work of Hansen et al. (2003a) on the simple plant location
problem gave solutions to instances with up to 15 000 users and 15 000
possible facilities with an error bounded by 0.05%.

(i) Using exact algorithms for mixed-integer programming. Sophisticated
algorithms for mixed-integer programming often contain various phases
where heuristics are applied. This is illustrated by Desaulniers et al.
(2001) for the airhne crew scheduHng problem.

Extending the results described in the previous section in the branch-
and-bound framework led to the solution of exactly SPLP instances with
up to 7000 users (Hansen et al., 2003a).

A different approach, called local branching, has been recently proposed
by Fischetti and Lodi (2003) and Fischetti et al. (2003), both for exact
and approximate resolution of large mixed-integer programs. At various
branches in the branch-and-bound tree, cuts (which are not valid in gen­
eral) are added; they express that among a given set of 0-1 variables, al­
ready at an integer value, only a few may change their value. They thus
correspond to neighborhoods defined by the Hamming distance. Then
CPLEX is used to find the optimal solution within the neighborhood and
in this way feasible solutions are more easily obtained. Improved so­
lutions were obtained for a series of large mixed-integer programming
instances from various sources.

(j) Artificial intelligence: enhancing graph theory with VNS. VNS, as other
metaheuristics, has been extensively used to solve a variety of optimiza­
tion problems in graph theory. However, it may also be used to enhance
graph theory per se, following an Artificial Intelligence approach. This
is done by the AutoGraphiX (AGX) system developed by Caporossi and
Hansen (2000, 2003). This system considers a graph invariant (i.e. a
quantity defined for all graphs of the class under study and independent
of vertex and edge labeling) or a formula involving several invariants
(which is itself a graph invariant). Then AGX finds extremal or near-
extremal graphs for that invariant parametrizing on a few variables, often
the order n (or number of vertices) and the size m (of number of edges)
of the graph. Analyzing automatically or interactively these graphs and
the corresponding curves of invariant values leads to finding new con­
jectures, refuting, corroborating or strengthening existing ones, and ob­
taining hints about possible proof from the minimal fist of moves needed

232 HANSEN AND MLADENOVIC

to find the extremal graphs. To illustrate, the energy £ of a graph is the
sum of absolute values of the eigenvalues of its adjacency matrix. The
following relations were obtained by Caporossi et al. (1999) with AGX:
E > 2-y/m and E > —, and were easily proved. Over 70 new relations
have now been obtained, in mathematics and in chemistry. Three ways
to attain full automation based on the mathematics of principal compo­
nent analysis, linear programming and recognition of extremal graphs
together with formula manipulations are currently being studied.

8.10 TRICKS OF THE TRADE
8.10.1 Getting Started

The purpose of this section is to help students and newcomers in making a
first very simple version of VNS, not necessarily competitive with later more
sophisticated versions. Most of the steps are common for implementation of
other metaheuristics.

A Step-by-Step Procedure

1 Familiarization. Think about the problem at hand; in order to under­
stand it better, make a simple numerical example and spend some time
in trying to solve it by hand in your own way. Try to understand why the
problem is hard and why a heuristic is needed.

2 Read. Read about the problem and solution methods in the literature.

3 Test instances. Use your numerical example as a first instance for testing
your future code, but if it is not large enough, take some data from the
web, or make a routine for generating random instances. In the second
case, read how to generate events using uniformly distributed numbers
from (0,1) interval (each programming language has a statement for
generating such random numbers).

4 Data structure. Think about how the solution of the problem will be rep­
resented in the memory. Consider two or more presentations of the same
solution if they can reduce the complexity of some routines, i.e. analyze
advantages and disadvantages of each possible presentation.

5 Initial solution. Having a routine for reading or generating the input
data of the problem, the next step is to obtain an initial solution. For a
simple version, any random feasible solution may be used, but the usual
approach is to develop some greedy constructive heuristic, which is not
hard to do.

VARIABLE NEIGHBORHOOD SEARCH 233

6 Objective value. Devise a procedure that calculates objective function
values for a given solution. Notice that at this stage, we already have all
ingredients for the Monte Carlo method: generation of random solution
and calculation of objective function value. Obtain the solution of your
problem by the Monte Carlo heuristic (i.e. repeat steps 5 and 6 many
times and keep the best one).

7 Shaking, Create a procedure for shaking. This is a key step of VNS.
However, it is easy to implement and usually involves only a few lines of
code. For example, in solving the multi-source Weber problem (see Ex­
ample 2), the easiest perturbation of the current solution is to re-allocate
randomly chosen entity I from the cluster it belongs to another one, also
chosen at random. In fact, in this case, the shaking step (or jump in the
kih neighborhood) needs only three lines of code:

For / = 1 to A:
a{\ + n ' Rndl) = 1 -f- m • Rndl

EndFor

The solution is saved in array a{i) e { 1 , . . . , m} which denotes mem­
bership or allocation of entity € (€ = 1 , . . . , n); Rndl and Rndl denote
random numbers uniformly distributed from the (0,1) interval. Compare
the results of the obtained reduced VNS (take k^^y^ = 2) with the Monte
Carlo method.

8 Local search. Choose an off-the-shelf local search heuristic (or develop
a new one). In building a new local search, consider several usual moves
that define the neighborhood of the solution drop, add, swap, inter­
change, etc. Also, for the efficiency (speed) of the method, it is im­
portant to pay special attention to updating of the incumbent solution.
In other words, usually it is not necessary to use a procedure for calcu­
lating objective function values for each point in the neighborhood, i.e. it
is possible to get those values by very simple calculation.

9 Comparison. Include a local search routine into RVNS to get the basic
VNS, and compare it with other methods from the literature.

8.10.2 More Tips

Sometimes basic VNS does not provide very good results.

1 First vs. best improvement. Compare experimentally first and best im­
provement strategies within local search. Previous experience suggest
the following: if your initial solution is chosen at random, use first im­
provement, but if some constructive heuristic is used, use best improve­
ment rule.

234 HANSEN AND MLADENOVIC

2 Reduce the neighborhood. The cause of bad behavior of any local search
may be unnecessary visiting to all solutions in the neighborhood. Try to
identify a ''promising" subset of the neighborhood and visit only them;
ideally, find a rule that automatically selects solutions from the neigh­
borhood whose objective values are not better than the current one.

3 Intensified shaking. In developing more effective VNS, one must spend
some time in checking how sensitive is the objective function on small
change (shake) of the solution. The trade-off between intensification
and diversification of the search in VNS is balanced in the shaking pro­
cedure. For some problem instances completely random jump in the A:th
neighborhood is too diversified. In such cases, an intensify shaking pro­
cedure can be used to increase intensification of the search. For example,
a ^-interchange neighborhood may be reduced by repeating k times ran­
dom add followed by best drop moves. (A special case of intensified
shaking is the large neighborhood search, where k randomly chosen at­
tributes of the solutions are destroyed (dropped), and then the solution is
re-built in the best way—by some constructive heuristic.)

4 VND. Analyze several possible neighborhood structures, estimate their
size, make order of them, i.e. develop VND and replace the local search
routine with VND to get general VNS.

5 Experiment with parameter settings. The single parameter of VNS is
m̂ax5 which should be estimated experimentally. However, usually the

procedure is not very sensitive on ̂ ^ax and, in order to create a parameter-
free VNS, one can fix its value at the value of some input parameter,
e.g., for the /7-median (Example 3), ^^ax = p; for the minimum sum-of-
square clustering (Example 2) ^^ax = w. etc.

8.11 CONCLUSIONS
The general schemes of VNS have been presented, discussed and illustrated

by examples. References to many further successful applications are given
below. In order to evaluate the VNS research program, one needs a list of
desirable properties of metaheuristics. The following eight are presented in
Hansen and Mladenovic (2003):

(i) Simplicity. The metaheuristic should be based on a simple and clear
principle, which should be largely applicable.

(ii) Precision. Steps of the metaheuristic should be formulated in precise
mathematical terms, independent from the possible physical or biologi­
cal analogy which was an initial source of inspiration.

VARIABLE NEIGHBORHOOD SEARCH 235

(iii) Coherence. All steps of heuristics for particular problems should follow
naturally from the metaheuristic's principle.

(iv) Efficiency. Heuristics for particular problems should provide optimal or
near-optimal solutions for all or at least most realistic instances. Prefer­
ably, they should find optimal solutions for most problems of bench­
marks for which such solutions are known, when available.

(v) Effectiveness. Heuristics for particular problems should take moderate
computing time to provide optimal or near-optimal solutions.

(vi) Robustness. Performance of heuristics should be consistent over a va­
riety of instances, i.e. not just fine-tuned to some training set and less
good elsewhere.

(vii) User-friendliness. Heuristics should be clearly expressed, easy to under­
stand and, most important, easy to use. This implies they should have as
few parameters as possible and ideally none.

(viii) Innovation. Preferably, the metaheuristic's principle and/or the effi­
ciency and effectiveness of the heuristics derived from it should lead
to new types of applications.

As argued there, as well as in the more recent surveys listed below, VNS
possesses, to a large extent, all of those properties. This has led to heuristics
among the very best ones for several problems, but more importantly to insight
into the solution process and some innovative applications.

SOURCES OF ADDITIONAL INFORMATION
Some web addresses with sources of information about VNS include

• http://www.mi.sanu.ac.yuA^NSA^NS.HTM (a working web presentation
of VNS, developed by Tatjana Davidovic, Ph.D. student at University of
Belgrade).

• VNSHeuristic.ull.es (another web page for the VNS designed by Profes­
sor's Moreno research group from University of La Laguna).

• http://www.gerad.ca/en/pubhcations/cahiers.php (choose "search for pa­
pers" and in the 'Abstract" box type "Variable Neighborhood Search":
23 papers for downloading are returned).

• http://smg.ulb.ac.be (there are several papers on VNS in
"Preprints" by Hansen, Labbe, Melot, Mladenovic, etc).

Survey papers. Hansen and Mladenovic (1999, 2001a, 2001c, 2002a, 2002b,
2003), Hansen et al. (2003c), and Kochetov et al. (2003).

236 HANSEN AND MLADENOVIC

References
Ahuja, R. K., Orlin, J. B. and Sharma, D., 2000, Very large-scale neighborhood

search, Int. Trans. Oper. Res. 7:301-317.
Aloise, D. J., Aloise, D., Rocha, C. T. M., Ribeiro Filho, J. C , Moura, L.

S. S. and Ribeiro, C. C , 2003, Scheduling workover rigs for onshore oil
production, Research Report, Department of Computer Science, Cathohc
University of Rio de Janeiro, submitted.

Baum, E. B., 1986, Toward practical "neural" computation for combinatorial
optimization problems, in: Neural Networks for Computing, J. Denker, ed.,
American Institute of Physics, New York.

Braysy, O., 2001, Local search and variable neighborhood search algorithms
for vehicle routing with time windows. Acta Wasaensia, Vol. 87.

Burke, E. K., Cowling, R and Keuthen, R., 1999, Effective local and guided
variable neighborhood search methods for the asymmetric traveling sales­
man problem, in: Proc. of the Evo Workshops, Lecture Notes in Computer
Science, Vol. 2037, Springer, Berlin, pp. 203-212.

Caporossi, G., Cvetkovic, D., Gutman, L and Hansen, R, 1999, Variable neigh­
borhood search for extremal graphs: 2. Finding graphs with extremal energy,
J. Chem. Inf Comput. Set 39:984-996.

Caporossi, G. and Hansen, P., 2000, Variable neighborhood search for extremal
graphs: 1. The AutoGraphiX system, Discr Math., 212:29-44.

Caporossi, G. and Hansen, P., 2004, Variable neighborhood search for extremal
graphs: 5. Three ways to automate conjecture finding, Discr. Math. 276:81-
94.

Comuejols, G., Fisher, M. and Nemhauser, G., 1990, The uncapacitated facil­
ity location problem, in: Discrete Location Theory, P. Mirchandani and R.
Francis, eds, Wiley, New York.

Desaulniers, G., Desrosiers, J. and Solomon, M. M., 2001, Accelerating strate­
gies in column generation methods for vehicle routing and crew schedul­
ing problems, Essays and Surveys in Metaheuristics, Kluwer, Dordrecht,
pp. 309-324.

Drezner, Z., 2003a, Heuristic algorithms for the solution of the quadratic as­
signment problem, J. Appl. Math. Decision Sci., to appear.

Drezner, Z., 2003b, A new genetic algorithm for the quadratic assignment
problem, INFORMS J. Comput. 15, to appear.

Festa, R, Pardalos, P, Resende, M. and Ribeiro, C , 2001, GRASP and VNS
for Max-cut, Proc. MIC'2001, pp. 371-376.

Fischetti, M. and Lodi, A., 2003, Local branching. Math. Program. B, pub­
lished onhne, 28 March.

VARIABLE NEIGHBORHOOD SEARCH 237

Fischetti, M., Polo, C. and Scantamburlo, M., 2003, A local branching heuristic
for mixed-integer programs with 2-level variables, Research Report, Univer­
sity of Padova.

Garey, M. R. and Johnson, D. S., 1979, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, New York.

Glover, F. and Kochenberger, G., eds, 2003, Handbook of Metaheuristics,
Kluwer, Dordrecht.

Hansen, P., 1974, Programmes mathematiques en variables 0-1, These
d'Agregation de VEnseignment Superieur, Universite Libre de Bruxelles.

Hansen, P., 1975, Les procedures d'optimization et d'exploration par
separation et evaluation, in: Combinatorial Programming, B. Roy, ed., Rei-
del, Dordrecht, pp. 19-65.

Hansen, P., Brimberg, J., Urosevic, D., and Mladenovic, N., 2003a, Primal-
dual variable neighborhood search for exact solution of the simple plant
location problem (in preparation).

Hansen, P., and Mladenovic, N., 1997, Variable neighborhood search for the
/?-median. Location Sci. 5: 207-226.

Hansen, P., and Mladenovic, N., 1999, An introduction to variable neigh­
borhood search, in: Metaheuristics, Advances and Trends in Local Search
Paradigms for Optimization, S. Voss et al., eds, Kluwer, Dordrecht, pp. 433-
458.

Hansen, P., and Mladenovic, N., 2001a, Variable neighborhood search: Princi­
ples and applications, Eur. J. Open Res. 130:449-467.

Hansen, P., and Mladenovic, N., 2001b, J-Means: A new local search heuristic
for minimum sum-of-squares clustering. Pattern Recognition 34:405-413.

Hansen, P. and Mladenovic, N., 2001c, Developments of variable neighbor­
hood search, in: Essays and Surveys in Metaheuristics, C. Ribeiro and P.
Hansen, eds, Kluwer, Dordrecht, pp. 415^40.

Hansen, P. and Mladenovic, N., 2002a, Variable neighborhood search, in:
Handbook of Applied Optimization, P. Pardalos and M. Resende, Oxford
University Press, New York, pp. 221-234.

Hansen, P. and Mladenovic, N., 2002b, Recherche a voisinage variable in: Op­
timisation Approche en Recherche Operationnelle, J. Teghem and M. Pirlot,
eds, Lavoisier/Hermes, Paris, pp. 81-100.

Hansen, P. and Mladenovic, N., 2003, Variable neighborhood search, in: Hand­
book of Metaheuristics, F. Glover and G. Kochenberger, eds, Kluwer, Dor­
drecht, pp. 145-184.

Hansen, P., Mladenovic, N. and Moreno Perez, J. A., 2003b, Busqueda de en-
tomo variable (in Spanish), Intell. Artif, to appear.

Hansen, P., Mladenovic, N. and Perez-Brito, D., 2001, Variable neighborhood
decomposition search, J. Heuristics 7:335-350.

238 HANSEN AND MLADENOVIC

Hansen, P., Ngai, E., Cheung, B. and Mladenovic, N., 2003c, Survey and com­
parison of initialization methods for ^-means clustering (in preparation).

Kochetov, Y, Mladenovic, N. and Hansen, P., 2003, Lokalnii poisk s chere-
duyshimisy okrestnostyami (in Russian), Diskretnoi analiza, to appear.

Labbe, M., Peeters, D. and Thisse, J. R, 1995, Location on networks, in: Net­
work Routing, M. Ball et al., eds, North-Holland, Amsterdam, pp. 551-624.

Lopez, F. G., Batista, B. M., Moreno Perez, J. A. and Moreno Vega J. M.,
2002, The parallel variable neighborhood search for the p-median problem,
J. Heuristics 8:375-388.

Mladenovic, N. and Hansen, P., 1997, Variable neighborhood search, Comput.
Oper. Res. 24:1097-1100.

Papadimitriou, C , 1994, Computational Complexity, Addison-Wesley, Read­
ing, MA.

Reeves, C.R., ed., 1993, Modem Heuristic Techniques for Combinatorial
Problems, Blackwell, Oxford.

Resende, M. G. C., and Wemeck, R., 2003, On the implementation of a swap-
based local search procedure for the p-median problem, Proc. 5th Workshop
on Algorithm Engineering and Experiments (ALENEX'03), R. E. Ladner,
ed., SIAM, Philadelphia, PA, pp. 119-127.

Ribeiro, C , Uchoa, E. and Wemeck, R., 2001, A hybrid GRASP with per­
turbations for the Steiner problem in graphs. Technical Report, Computer
Science Department, Catholic University of Rio de Janeiro.

Rodriguez, L, Moreno-Vega, M, and Moreno-Perez, J., 1999, Heuristics for
routing-median problems, SMG Report, Universite Libre de Bruxelles, Bel­
gium.

Teitz, M. B. and Bart, P., 1968, Heuristic methods for estimating the general­
ized vertex median of a weighted graph, Oper. Res. 16:955-961.

Whitaker, R., 1983, A fast algorithm for the greedy interchange for large-scale
clustering and median location problems, INFOR 21:95-108.

Zufferey, N., Hertz A. and Avanthay, C , 2003, Variable neighborhood search
for graph colouring, Eur J. Oper Res., to appear.

