
CPSC 2620: C++ Classes

Contact:
Robert Benkoczi

C556, benkoczi@cs.uleth.ca



Outline

Goals:

I understand the concept of ADT.

Objectives:

I students will correctly write C++ classes implementing ADT.

Resources:

I Chapter 7, Skansholm’s text.

I Examples from c9.io/roben777



Type in C++

Definition

What does the type tell us about the variables?

int i; float f; string s;



Type in C++

Definition

What does the type tell us about the variables?

int i; float f; string s;



Exercise
Using CPSC 1620 knowledge, define a new type called rational that supports the
following code:
int main() {

rational val = // initialize to 1/3

// print val to cout

return 0;

}



The type “rational”

I Values: {d
n : d , n 2 Z}.

I Operations: insert into output stream (print), extract from input stream (read),
add, multiply, etc.

Add the operations to the struct! (see project “rational2”)

Points to remember

I (Abstract) Data Type = data structure + operations.

I Add function prototypes of the operations (the methods) to the C++ struct.

I The methods can access the struct data fields implicitly.

I Constructor methods initialize variables of the type.











The type “rational”

I Values: {d
n : d , n 2 Z}.

I Operations: insert into output stream (print), extract from input stream (read),
add, multiply, etc.

Add the operations to the struct! (see project “rational2”)

Points to remember

I (Abstract) Data Type = data structure + operations.

I Add function prototypes of the operations (the methods) to the C++ struct.

I The methods can access the struct data fields implicitly.

I Constructor methods initialize variables of the type.



Homework

The homework is defined in https://ide.c9.io/roben777/cpsc2620 in the
homework folder.

I Project “complex1”: define a data type for complex numbers in set C (see the
description given in the source file).

I Project “set1”: define a data type for a set of integers (description in the source
file).



Object Oriented Programming
The struct + operations defining a type T = class.
A variable of the type T = object.

Object Oriented Programming: attempts to increase productivity...



Example

Use project “rational3” to split the code in separate .cc and .h files.



Example (c’ed)

...Then add access control keywords to hide data members and expose only the
operations of the type.



Points to remember
I Write the type (ADT/class) definitions in separate files: declarations (prototypes)

in .h files; implementation (code) in .cc files.

I Use class insead of struct.

I Use access control keywords (private, public) to hide data member definitions (use
private) and publish the type operations (use public). This is called “data
encapsulation”.



Homework

Revisit homework complex1 and set1 and introduce classes in separate files and access
control keywords with the data members and methods of your classes.



Conclusion

You should be able now to correctly write simple C++ classes and reuse them in
di↵erent projects.



Part II: more about methods
Make a copy of project rational3 into rational4. Add a plus method that adds two
rationals and returns a third one equal to the sum of the two. The two rational
arguments should not be modified.



OOP for productivity: reduce programming errors
Question: how can we guarantee that plus does not modify its argments?

Point to remember
Be conservative: declare const all arguments that your method should not modify.



OOP for productivity: reduce programming errors
Question: how can we guarantee that plus does not modify its argments?

Point to remember
Be conservative: declare const all arguments that your method should not modify.



Homework

Add plus and times methods to the complex class from project complex1, similar to
the plus from class rational.
Add union and intersect methods to the set class from project set1.
Introduce keyword const in projects complex1 and set1 everywhere it is appropriate.



Conclusion

I OOP: classes implement ADT.

I Class definitions and declarations in separate source files to facilitate code reuse.

I Hide data/implementation details; export methods. Use access control keywords
public and private.

I Be conservative: use const keyword wherever appropriate.

I Practice and have fun.


