
2.6 The fast Fourier transform
We have so far seen how divide-and-conquer gives fast algorithms for multiplying integers
and matrices; our next target is polynomials. The product of two degree-d polynomials is a
polynomial of degree 2d, for example:

(1 + 2x+ 3x2) · (2 + x+ 4x2) = 2 + 5x+ 12x2 + 11x3 + 12x4.

More generally, if A(x) = a0 + a1x+ · · · + adx
d and B(x) = b0 + b1x+ · · · + bdx

d, their product
C(x) = A(x) · B(x) = c0 + c1x+ · · ·+ c2dx

2d has coefficients

ck = a0bk + a1bk−1 + · · ·+ akb0 =

k∑

i=0

aibk−i

(for i > d, take ai and bi to be zero). Computing ck from this formula takes O(k) steps, and
finding all 2d + 1 coefficients would therefore seem to require Θ(d2) time. Can we possibly
multiply polynomials faster than this?

The solution we will develop, the fast Fourier transform, has revolutionized—indeed,
defined—the field of signal processing (see the following box). Because of its huge impor-
tance, and its wealth of insights from different fields of study, we will approach it a little
more leisurely than usual. The reader who wants just the core algorithm can skip directly to
Section 2.6.4.
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Why multiply polynomials?
For one thing, it turns out that the fastest algorithms we have for multiplying integers rely
heavily on polynomial multiplication; after all, polynomials and binary integers are quite
similar—just replace the variable x by the base 2, and watch out for carries. But perhaps
more importantly, multiplying polynomials is crucial for signal processing.

A signal is any quantity that is a function of time (as in Figure (a)) or of position. It
might, for instance, capture a human voice by measuring fluctuations in air pressure close
to the speaker’s mouth, or alternatively, the pattern of stars in the night sky, by measuring
brightness as a function of angle.
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In order to extract information from a signal, we need to first digitize it by sampling
(Figure (b))—and, then, to put it through a system that will transform it in some way. The
output is called the response of the system:

signal −→ SYSTEM −→ response

An important class of systems are those that are linear—the response to the sum of two
signals is just the sum of their individual responses—and time invariant—shifting the input
signal by time t produces the same output, also shifted by t. Any system with these prop-
erties is completely characterized by its response to the simplest possible input signal: the
unit impulse δ(t), consisting solely of a “jerk” at t = 0 (Figure (c)). To see this, first consider
the close relative δ(t − i), a shifted impulse in which the jerk occurs at time i. Any signal
a(t) can be expressed as a linear combination of these, letting δ(t − i) pick out its behavior
at time i,

a(t) =

T−1∑

i=0

a(i)δ(t − i)

(if the signal consists of T samples). By linearity, the system response to input a(t) is deter-
mined by the responses to the various δ(t− i). And by time invariance, these are in turn just
shifted copies of the impulse response b(t), the response to δ(t).

In other words, the output of the system at time k is

c(k) =
k∑

i=0

a(i)b(k − i),

exactly the formula for polynomial multiplication!
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2.6.1 An alternative representation of polynomials
To arrive at a fast algorithm for polynomial multiplication we take inspiration from an impor-
tant property of polynomials.

Fact A degree-d polynomial is uniquely characterized by its values at any d + 1 distinct
points.

A familiar instance of this is that “any two points determine a line.” We will later see why
the more general statement is true (page 72), but for the time being it gives us an alternative
representation of polynomials. Fix any distinct points x0, . . . , xd. We can specify a degree-d
polynomial A(x) = a0 + a1x+ · · ·+ adx

d by either one of the following:

1. Its coefficients a0, a1, . . . , ad

2. The values A(x0), A(x1), . . . , A(xd)

Of these two representations, the second is the more attractive for polynomial multiplication.
Since the product C(x) has degree 2d, it is completely determined by its value at any 2d + 1
points. And its value at any given point z is easy enough to figure out, just A(z) times B(z).
Thus polynomial multiplication takes linear time in the value representation.

The problem is that we expect the input polynomials, and also their product, to be specified
by coefficients. So we need to first translate from coefficients to values—which is just a matter
of evaluating the polynomial at the chosen points—then multiply in the value representation,
and finally translate back to coefficients, a process called interpolation.

Interpolation

Coefficient representation
a0, a1, . . . , ad

Value representation
A(x0), A(x1), . . . , A(xd)

Evaluation

Figure 2.5 presents the resulting algorithm.

Figure 2.5 Polynomial multiplication
Input: Coefficients of two polynomials, A(x) and B(x), of degree d
Output: Their product C = A ·B

Selection
Pick some points x0, x1, . . . , xn−1, where n ≥ 2d+ 1

Evaluation
Compute A(x0), A(x1), . . . , A(xn−1) and B(x0), B(x1), . . . , B(xn−1)

Multiplication
Compute C(xk) = A(xk)B(xk) for all k = 0, . . . , n− 1

Interpolation
Recover C(x) = c0 + c1x+ · · ·+ c2dx

2d
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The equivalence of the two polynomial representations makes it clear that this high-level
approach is correct, but how efficient is it? Certainly the selection step and the n multiplica-
tions are no trouble at all, just linear time.3 But (leaving aside interpolation, about which we
know even less) how about evaluation? Evaluating a polynomial of degree d ≤ n at a single
point takes O(n) steps (Exercise 2.29), and so the baseline for n points is Θ(n2). We’ll now see
that the fast Fourier transform (FFT) does it in just O(n log n) time, for a particularly clever
choice of x0, . . . , xn−1 in which the computations required by the individual points overlap with
one another and can be shared.

2.6.2 Evaluation by divide-and-conquer
Here’s an idea for how to pick the n points at which to evaluate a polynomial A(x) of degree
≤ n− 1. If we choose them to be positive-negative pairs, that is,

±x0,±x1, . . . ,±xn/2−1,

then the computations required for each A(xi) and A(−xi) overlap a lot, because the even
powers of xi coincide with those of −xi.

To investigate this, we need to split A(x) into its odd and even powers, for instance

3 + 4x+ 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4).

Notice that the terms in parentheses are polynomials in x2. More generally,

A(x) = Ae(x
2) + xAo(x

2),

where Ae(·), with the even-numbered coefficients, and Ao(·), with the odd-numbered coeffi-
cients, are polynomials of degree ≤ n/2 − 1 (assume for convenience that n is even). Given
paired points ±xi, the calculations needed for A(xi) can be recycled toward computing A(−xi):

A(xi) = Ae(x
2
i ) + xiAo(x

2
i )

A(−xi) = Ae(x
2
i )− xiAo(x

2
i ).

In other words, evaluating A(x) at n paired points ±x0, . . . ,±xn/2−1 reduces to evaluating
Ae(x) and Ao(x) (which each have half the degree of A(x)) at just n/2 points, x2

0, . . . , x
2
n/2−1.

Evaluate: A(x)
degree ≤ n − 1

Ae(x) and Ao(x)
degree ≤ n/2 − 1

at:

at: −x0 +x1 −x1 · · ·

· · ·x2
0

−xn/2−1+xn/2−1

x2
1 x2

n/2−1

+x0

Equivalently,
evaluate:

3In a typical setting for polynomial multiplication, the coefficients of the polynomials are real numbers and,
moreover, are small enough that basic arithmetic operations (adding and multiplying) take unit time. We will
assume this to be the case without any great loss of generality; in particular, the time bounds we obtain are easily
adjustable to situations with larger numbers.
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The original problem of size n is in this way recast as two subproblems of size n/2, followed
by some linear-time arithmetic. If we could recurse, we would get a divide-and-conquer pro-
cedure with running time

T (n) = 2T (n/2) +O(n),

which is O(n log n), exactly what we want.

But we have a problem: The plus-minus trick only works at the top level of the recur-
sion. To recurse at the next level, we need the n/2 evaluation points x2

0, x
2
1, . . . , x

2
n/2−1 to be

themselves plus-minus pairs. But how can a square be negative? The task seems impossible!
Unless, of course, we use complex numbers.

Fine, but which complex numbers? To figure this out, let us “reverse engineer” the process.
At the very bottom of the recursion, we have a single point. This point might as well be 1, in
which case the level above it must consist of its square roots, ±

√
1 = ±1.

−1 −i

−1

+1

+1

+i+1

...

The next level up then has ±
√

+1 = ±1 as well as the complex numbers ±
√
−1 = ±i, where i

is the imaginary unit. By continuing in this manner, we eventually reach the initial set of n
points. Perhaps you have already guessed what they are: the complex nth roots of unity, that
is, the n complex solutions to the equation zn = 1.

Figure 2.6 is a pictorial review of some basic facts about complex numbers. The third panel
of this figure introduces the nth roots of unity: the complex numbers 1, ω, ω2, . . . , ωn−1, where
ω = e2πi/n. If n is even,

1. The nth roots are plus-minus paired, ωn/2+j = −ωj.

2. Squaring them produces the (n/2)nd roots of unity.

Therefore, if we start with these numbers for some n that is a power of 2, then at successive
levels of recursion we will have the (n/2k)th roots of unity, for k = 0, 1, 2, 3, . . .. All these sets
of numbers are plus-minus paired, and so our divide-and-conquer, as shown in the last panel,
works perfectly. The resulting algorithm is the fast Fourier transform (Figure 2.7).

69



Figure 2.6 The complex roots of unity are ideal for our divide-and-conquer scheme.

θ
Real

Imaginary

a

b

r

The complex plane
z = a+ bi is plotted at position (a, b).

Polar coordinates: rewrite as z = r(cos θ + i sin θ) = reiθ,
denoted (r, θ).
• length r =

√
a2 + b2.

• angle θ ∈ [0, 2π): cos θ = a/r, sin θ = b/r.
• θ can always be reduced modulo 2π.

Examples: Number −1 i 5 + 5i

Polar coords (1, π) (1, π/2) (5
√

2, π/4)

(r1r2, θ1 + θ2)

(r1, θ1)

(r2, θ2)

Multiplying is easy in polar coordinates

Multiply the lengths and add the angles:
(r1, θ1)× (r2, θ2) = (r1r2, θ1 + θ2).

For any z = (r, θ),
• −z = (r, θ + π) since −1 = (1, π).
• If z is on the unit circle (i.e., r = 1), then zn = (1, nθ).

Angle 2π
n

4π
n

2π
n + π

The nth complex roots of unity
Solutions to the equation zn = 1.

By the multiplication rule: solutions are z = (1, θ), for θ a
multiple of 2π/n (shown here for n = 16).

For even n:
• These numbers are plus-minus paired: −(1, θ) = (1, θ+π).
• Their squares are the (n/2)nd roots of unity, shown here
with boxes around them.

Divide-and-conquer step

Evaluate
Ae(x), Ao(x)
at (n/2)nd
roots

Still
paired

Divide and
conquer

Paired

Evaluate A(x)
at nth roots
of unity

(n is a power of 2)
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Figure 2.7 The fast Fourier transform (polynomial formulation)
function FFT(A,ω)
Input: Coefficient representation of a polynomial A(x)

of degree ≤ n− 1, where n is a power of 2
ω, an nth root of unity

Output: Value representation A(ω0), . . . , A(ωn−1)

if ω = 1: return A(1)
express A(x) in the form Ae(x

2) + xAo(x
2)

call FFT(Ae, ω
2) to evaluate Ae at even powers of ω

call FFT(Ao, ω
2) to evaluate Ao at even powers of ω

for j = 0 to n− 1:
compute A(ωj) = Ae(ω

2j) + ωjAo(ω
2j)

return A(ω0), . . . , A(ωn−1)

2.6.3 Interpolation
Let’s take stock of where we are. We first developed a high-level scheme for multiplying
polynomials (Figure 2.5), based on the observation that polynomials can be represented in
two ways, in terms of their coefficients or in terms of their values at a selected set of points.

Interpolation

Coefficient representation
a0, a1, . . . , an−1

Value representation
A(x0), A(x1), . . . , A(xn−1)

Evaluation

The value representation makes it trivial to multiply polynomials, but we cannot ignore the
coefficient representation since it is the form in which the input and output of our overall
algorithm are specified.

So we designed the FFT, a way to move from coefficients to values in time just O(n log n),
when the points {xi} are complex nth roots of unity (1, ω, ω2, . . . , ωn−1).

〈values〉 = FFT(〈coefficients〉, ω).

The last remaining piece of the puzzle is the inverse operation, interpolation. It will turn out,
amazingly, that

〈coefficients〉 =
1

n
FFT(〈values〉, ω−1).

Interpolation is thus solved in the most simple and elegant way we could possibly have hoped
for—using the same FFT algorithm, but called with ω−1 in place of ω! This might seem like a
miraculous coincidence, but it will make a lot more sense when we recast our polynomial oper-
ations in the language of linear algebra. Meanwhile, our O(n log n) polynomial multiplication
algorithm (Figure 2.5) is now fully specified.
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A matrix reformulation
To get a clearer view of interpolation, let’s explicitly set down the relationship between our two
representations for a polynomial A(x) of degree ≤ n− 1. They are both vectors of n numbers,
and one is a linear transformation of the other:




A(x0)
A(x1)

...
A(xn−1)


 =




1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1
...

1 xn−1 x2
n−1 · · · xn−1

n−1







a0

a1
...

an−1


 .

Call the matrix in the middle M . Its specialized format—a Vandermonde matrix—gives it
many remarkable properties, of which the following is particularly relevant to us.

If x0, . . . , xn−1 are distinct numbers, then M is invertible.

The existence of M−1 allows us to invert the preceding matrix equation so as to express coef-
ficients in terms of values. In brief,

Evaluation is multiplication by M , while interpolation is multiplication by M−1.

This reformulation of our polynomial operations reveals their essential nature more clearly.
Among other things, it finally justifies an assumption we have been making throughout, that
A(x) is uniquely characterized by its values at any n points—in fact, we now have an explicit
formula that will give us the coefficients of A(x) in this situation. Vandermonde matrices also
have the distinction of being quicker to invert than more general matrices, in O(n2) time in-
stead of O(n3). However, using this for interpolation would still not be fast enough for us, so
once again we turn to our special choice of points—the complex roots of unity.

Interpolation resolved
In linear algebra terms, the FFT multiplies an arbitrary n-dimensional vector—which we
have been calling the coefficient representation—by the n× n matrix

Mn(ω) =




1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
1 ωj ω2j · · · ω(n−1)j

...
1 ω(n−1) ω2(n−1) · · · ω(n−1)(n−1)




←− row for ω0 = 1
←− ω
←− ω2

...
←− ωj

...
←− ωn−1

where ω is a complex nth root of unity, and n is a power of 2. Notice how simple this matrix is
to describe: its (j, k)th entry (starting row- and column-count at zero) is ω jk.

Multiplication byM = Mn(ω) maps the kth coordinate axis (the vector with all zeros except
for a 1 at position k) onto the kth column of M . Now here’s the crucial observation, which we’ll
prove shortly: the columns of M are orthogonal (at right angles) to each other. Therefore
they can be thought of as the axes of an alternative coordinate system, which is often called
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Figure 2.8 The FFT takes points in the standard coordinate system, whose axes are shown
here as x1, x2, x3, and rotates them into the Fourier basis, whose axes are the columns of
Mn(ω), shown here as f1, f2, f3. For instance, points in direction x1 get mapped into direction
f1.

FFT

x1

x3

x2

f3

f1

f2

the Fourier basis. The effect of multiplying a vector by M is to rotate it from the standard
basis, with the usual set of axes, into the Fourier basis, which is defined by the columns of
M (Figure 2.8). The FFT is thus a change of basis, a rigid rotation. The inverse of M is the
opposite rotation, from the Fourier basis back into the standard basis. When we write out the
orthogonality condition precisely, we will be able to read off this inverse transformation with
ease:

Inversion formula Mn(ω)−1 = 1
nMn(ω−1).

But ω−1 is also an nth root of unity, and so interpolation—or equivalently, multiplication by
Mn(ω)−1—is itself just an FFT operation, but with ω replaced by ω−1.

Now let’s get into the details. Take ω to be e2πi/n for convenience, and think of the columns
of M as vectors in C

n. Recall that the angle between two vectors u = (u0, . . . , un−1) and
v = (v0, . . . , vn−1) in C

n is just a scaling factor times their inner product

u · v∗ = u0v
∗
0 + u1v

∗
1 + · · ·+ un−1v

∗
n−1,

where z∗ denotes the complex conjugate4 of z. This quantity is maximized when the vectors
lie in the same direction and is zero when the vectors are orthogonal to each other.

The fundamental observation we need is the following.

Lemma The columns of matrix M are orthogonal to each other.

Proof. Take the inner product of any columns j and k of matrix M ,

1 + ωj−k + ω2(j−k) + · · ·+ ω(n−1)(j−k).

This is a geometric series with first term 1, last term ω(n−1)(j−k), and ratio ω(j−k). Therefore it
evaluates to (1− ωn(j−k))/(1 − ω(j−k)), which is 0—except when j = k, in which case all terms
are 1 and the sum is n.

4The complex conjugate of a complex number z = reiθ is z∗ = re−iθ. The complex conjugate of a vector (or
matrix) is obtained by taking the complex conjugates of all its entries.
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The orthogonality property can be summarized in the single equation

MM∗ = nI,

since (MM ∗)ij is the inner product of the ith and jth columns of M (do you see why?). This
immediately implies M−1 = (1/n)M ∗: we have an inversion formula! But is it the same for-
mula we earlier claimed? Let’s see—the (j, k)th entry of M ∗ is the complex conjugate of the
corresponding entry of M , in other words ω−jk. Whereupon M ∗ = Mn(ω−1), and we’re done.

And now we can finally step back and view the whole affair geometrically. The task we
need to perform, polynomial multiplication, is a lot easier in the Fourier basis than in the
standard basis. Therefore, we first rotate vectors into the Fourier basis (evaluation), then
perform the task (multiplication), and finally rotate back (interpolation). The initial vectors
are coefficient representations, while their rotated counterparts are value representations. To
efficiently switch between these, back and forth, is the province of the FFT.

2.6.4 A closer look at the fast Fourier transform
Now that our efficient scheme for polynomial multiplication is fully realized, let’s hone in
more closely on the core subroutine that makes it all possible, the fast Fourier transform.

The definitive FFT algorithm

The FFT takes as input a vector a = (a0, . . . , an−1) and a complex number ω whose powers
1, ω, ω2, . . . , ωn−1 are the complex nth roots of unity. It multiplies vector a by the n× n matrix
Mn(ω), which has (j, k)th entry (starting row- and column-count at zero) ωjk. The potential
for using divide-and-conquer in this matrix-vector multiplication becomes apparent when M ’s
columns are segregated into evens and odds:

=

aMn(ω)

an−1

a0

a1

a2

a3

a4

...

ωjk

k

j =

a2

a1

a3

an−1

...

a0

...
an−2

2k + 1
Column

2k

Even

ω2jk ωj · ω2jk

columns
Odd

columns

j

Row j
a2

a1

a3

an−1

...

a0

...
an−2

ω2jk

ω2jk

ωj · ω2jk

2k + 1
Column

j + n/2

2k

−ωj · ω2jk

In the second step, we have simplified entries in the bottom half of the matrix using ωn/2 = −1
and ωn = 1. Notice that the top left n/2 × n/2 submatrix is Mn/2(ω

2), as is the one on the
bottom left. And the top and bottom right submatrices are almost the same as Mn/2(ω

2),
but with their jth rows multiplied through by ωj and −ωj, respectively. Therefore the final
product is the vector

74


