University of Lethbridge Department of Mathematics and Computer Science

Computer Science 4625 – Design and Analysis of Advanced Algorithms Course Outline – Spring 2023

LECTURES:	Mo Wed 10:30 am $-$ 11:45 am	ROOM: D632			
INSTRUCTORS:	Robert Benkoczi (office C556) robert.benkoczi@uleth.ca				
TEXTS:	Algorithm Design, by Kleinberg and Tardos, 2006, Ch. 8-10 Parallel Algorithms, by M. Ghaffari, Jan. 2019, https://people.inf .ethz.ch/gmohsen/CHParallel18.pdf. The relevant chapters are available as a coursepack from the bookstore.				
GRADING SCHEME:	Assignments (approx. 5) Programming assignments (approx. 3) Midterm exam Final exam	25% 15% 30% 30%			

GRADE DISTRIBUTION: This information is provided as a guideline only and may be revised in this offering.

A+	95	B+	77	C+	67	D+	55
A	85	В	73	C	63	D	50
A-	80	B-	70	C-	60	F	< 50

SCHEDULE:

(as time permits):

- 1) Time complexity, classes P, NP, and NP-complete problems (Ch 8, Kleinberg and Tardos).
- 2) Space complexity. PSPACE-complete problems (Ch 9, Kleinberg and Tardos).
- 3) Notions of parameterized complexity (Ch 10, Kleinberg and Tardos).
- 4) Parallel models of computation.
- 5) Parallel algorithms for list ranking, sorting, connected components, bipartite matching.
- 6) Massively parallel algorithms for sorting, connected components, maximal matching, and maximal independent set.

COMMENTS:

- Work must be submitted at the scheduled time. In case of emergencies, contact your instructor to enquire about the possibility of obtaining an extension. Missed tests and assignments receive 0 points.
- Requests for remarking tests and assignments are accepted only in writing no later than one week from the date your graded work was returned. On the request: identify the assignment or midterm, briefly explain why you believe the mark is incorrect. You can send your request by e-mail. Note that if your work is remarked, your grade may go up, down, or remain unchanged.
- Copying is strictly prohibited. Plagiarism can lead to severe penalties please consult the student discipline policy at https://www.uleth.ca/policy/resources/student-disciplin e-policy-academic-offenses-undergraduate-students Any code submitted for grading may be checked for plagiarism using MOSS https://theory.stanford.edu/~aiken/moss/.

LINKS

- Moodle: http://moodle.uleth.ca/
- Instructor's page including office hours: http://www.cs.uleth.ca/~benkoczi/