
J Comb Optim
DOI 10.1007/s10878-013-9614-z

Generalized Canadian traveller problems

Chung-Shou Liao · Yamming Huang

© Springer Science+Business Media New York 2013

Abstract This study investigates a generalization of the Canadian Traveller
Problem (CTP), which finds real applications in dynamic navigation systems used to
avoid traffic congestion. Given a road network G = (V, E) in which there is a source
s and a destination t in V , every edge e in E is associated with two possible distances:
original d(e) and jam d+(e). A traveller only finds out which one of the two distances
of an edge upon reaching an end vertex incident to the edge. The objective is to derive
an adaptive strategy for travelling from s to t so that the competitive ratio, which
compares the distance traversed with that of the static s, t-shortest path in hindsight,
is minimized. This problem was initiated by Papadimitriou and Yannakakis. They
proved that it is PSPACE-complete to obtain an algorithm with a bounded competitive
ratio. In this paper, we propose tight lower bounds of the problem when the number of
”traffic jams” is a given constant k; and we introduce a deterministic algorithm with a
min{r, 2k +1}-ratio, which meets the proposed lower bound, where r is the worst-case
performance ratio. We also consider the Recoverable CTP, where each blocked edge
is associated with a recovery time to reopen. Finally, we discuss the uniform jam cost
model, i.e., for every edge e, d+(e) = d(e) + c, for a constant c.
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1 Introduction

Consider a road map G = (V, E) represented by a set V of vertices connected by
edges, where each edge e ∈ E is associated with the time it takes for the traveller
to traverse the edge. From an online perspective, the traveller is aware of the entire
structure of the road network in advance; however, while some edges may be blocked
by accidents during the trip, the problem will only become evident when the traveller
reaches an end vertex incident to the blocked edge. This problem, called the Canadian
Traveller Problem (CTP), and its variants can be considered as a natural assump-
tion of some online routing problems. The CTP was defined by Papadimitriou and
Yannakakis in 1991. Its objective is to design an efficient routing policy from a source
to a destination under this condition of uncertainty. The major difficulty in developing
a good strategy based on partial information is decision making about future block-
ages without any predictable traffic conditions. The CTP is actually a two-player game
between a traveller and a malicious adversary who sets up road blockages in order
to maximize the gap between the performance of the online strategy and that of the
offline optimum (with the blocked edges removed). The criterion for measuring the
quality of an online strategy is usually the competitive ratio of the algorithm Borodin
and El-Yaniv (1998); Sleator and Tarjan (1985). The competitive ratio can be defined
as follows: for any instance, the total cost of the online algorithm is at most its ratio
times that of the optimal offline approach (under complete information). We will pro-
vide the formal definition later in this paper. Papadimitriou and Yannakakis (1991)
showed that it is PSPACE-complete for the CTP to devise a strategy that guarantees a
bounded competitive ratio.

For several years, there has been no significant progress in the development of com-
petitive algorithms for this problem. Bar-Noy and Schieber (1991) explored several
variations of the CTP from the worst-case scenario perspective, where the objective is
to find a static (offline) algorithm that minimizes the maximum travel cost Ben-David
and Borodin (1994). They considered the k-CTP, in which the number of blockages is
bounded from below by a given constant k. Note that for an arbitrary k, the problem of
designing a strategy that guarantees a given travel time remains PSPACE-complete,
as shown in Bar-Noy and Schieber (1991); Papadimitriou and Yannakakis (1991). In
addition, Bar-Noy and Schieber discussed the Recoverable k-CTP, where each blocked
edge is associated with a recovery time, which is not very long to reopen relative to the
traversed time. They also studied the stochastic model, where an independent blockage
probability for each edge is given in advance. This model, which tries to minimize
the expected ratio to the offline optimum, is known to be �P-hard Papadimitriou and
Yannakakis (1991). Subsequently, Karger and Nikolova (2008) investigated the sto-
chastic CTP in special graph classes, and developed exact algorithms by applying
techniques from the theory of Markov Decision Processes.

Recently, Westphal (2008) proved that there are no deterministic online algorithms
within a (2k + 1)-competitive ratio for the k-CTP. The author designed a simple
reposition algorithm that satisfies the lower bound, and also proposed a lower bound
of k + 1 for the competitive ratio of any randomized online algorithms. Xu et al.
(2009) developed two deterministic adaptive policies: a greedy strategy as well as a
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comparison strategy that incorporates the concept of reposition. The latter strategy
also achieves the tight lower bound.

In this paper, we study a natural generalization of CTP, called the Double- valued
Graph problem, which was initiated by Papadimitriou and Yannakakis (1991). Given
a graph G = (V, E) with a source s and a destination t in V , each edge e in E
is associated with two possible distances: original d(e) and jam d+(e), where d,
d+ : E → R+ and d(e) < d+(e), for each e ∈ E . A traveller only learns about the
distance cost (d(e) or d+(e)) of an edge e on arrival at one of its end vertices. The
goal is to develop an adaptive strategy for traversing the graph from s to t with incom-
plete information about traffic conditions, so that the competitive ratio is minimized.
This problem is also PSPACE-complete, as shown by a reduction from quantified
SAT (QSAT) Papadimitriou and Yannakakis (1991). Here, for a graph G without any
jammed edges, i.e., d+(e) = d(e), for any e ∈ E , the distance of the s, t-shortest
path is denoted by d(s, t). On the other hand, let the s, t-shortest path P consist of
� edges, and consider the distance of the path P in the worst case during the trip,
denoted by d+(s, t, k). More precisely, given a constant bound k of the number of
jammed edges, if � < k, d+(s, t, k) = d(s, t) + ∑

e∈P(d+(e) − d(e)); otherwise,
let E ′ consist of the k jammed edges that have the maximum jam costs in P . Then,
d+(s, t, k) = d(s, t) + ∑

e∈E ′(d+(e) − d(e)).
Our contribution. The main results of this study are detailed below.

1. We provide tight lower bounds for deterministic and randomized algorithms for
Double- valued Graph in terms of k and r = d+(s,t,k)

d(s,t) when the number of
traffic jams is up to a given constant k.

2. We present a deterministic adaptive strategy with a min{r, 2k + 1}-competitive
ratio that meets the proposed lower bound. The algorithm can also be applied
directly to the Recoverable k-CTP that assumes the blocked edges are not found
to be blocked again.

3. Finally, we study the uniform jam cost model of this problem, i.e., for every edge
e, d+(e) = d(e) + c, for a constant c, and derive a tight lower bound with an
additive competitive ratio.

2 Preliminaries

We consider the Double- valued Graph problem with at most k traffic jams. Given
a connected graph G = (V, E) with a source s and a destination t , we denote the
sequence of traffic jams in E learned by an online algorithm A during the trip as
S A

i = (e1, e2, . . . , ei ), where 1 ≤ i ≤ k. Let E A
i = {e1, e2, . . . , ei } ⊆ E , 1 ≤ i ≤ k,

consist of these jammed edges, and let Ek be the set of all jammed edges. In the
following, the superscript A may be omitted without causing confusion. In addition,
let d : E → R+ be the original distance function. The (traffic) jam distance func-
tion is d+ : E → R+; that is, for each edge e = (u, v) ∈ E , d(u, v) < d+(u, v).
Moreover, in the online problem, let dE A

i
(s, t) denote the travel cost from s to t ,

derived by an adaptive algorithm A that learns about traffic jam information Ei dur-
ing the trip; and let dEk (s, t) be the offline optimum from s to t under complete
information Ek . We immediately have the following property Xu et al. (2009), where
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E1 ⊆ E2 ⊆ . . . ⊆ Ek .

d(s, t) ≤ dE1(s, t) ≤ · · · ≤ dEk (s, t). (1)

We refer to Borodin and El-Yaniv (1998); Sleator and Tarjan (1985) and formally
define the competitive ratio as follows: an online algorithm A is cA-competitive for
the Double- valued Graph problem if for any instances,

dE A
i
(s, t) ≤ cA · dEk (s, t) + ε, 1 ≤ i ≤ k,

where cA and ε are constants.
Similar to the proof in Westphal (2008), we propose tight lower bounds for

Double- valued Graphs when we use deterministic and randomized algorithms,
respectively.

Lemma 1 For the Double- valued Graph problem, there is no deterministic online
algorithm with a competitive ratio less than min{r, 2k+1} when the number of jammed
edges is up to a given constant k.

Proof Consider the graph in Fig. 1. Each edge is associated with two possible values.
The first indicates the edge’s original distance, and the second represents its jammed
distance. The traveller has two ways to walk from s to t : (1) The traveller traverses a
jammed edge. (2) The traveller is prevented from passing through jammed edges to
reach t ; that is, when the traveller learns about a jammed edge, he/she always selects
another way if there is still a route without jams. Because there are k + 1 different
s, t-paths, the second strategy can work in this example. If the traveller traverses a
jammed edge, then the distance cost is at least 1 + ε+. Otherwise, the traveller must
choose a path without jammed edges to traverse. This policy results in a distance cost
of k · (1 + 1) + 1 + ε in the worst case; that is, the traveller would return to s exactly
k times. Because the distance cost of the optimal path is 1 + ε, the competitive ratio
of an arbitrary deterministic algorithm is not less than min{ 1+ε+

1+ε
, 2k+1+ε

1+ε
}. When ε is

sufficiently small, the ratio is at most min{r, 2k + 1}, where r = d+(s,t,k)
d(s,t) = 1+ε+

1+ε
. ��

Next, given the independent probabilities of traffic congestion on all the edges, we
consider randomized strategies to solve this online problem.

Fig. 1 An example of the lower bounds in the Double- valued Graph problem
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Lemma 2 For the Double- valued Graph problem, there is no randomized online
algorithm with a competitive ratio less than min{r, k +1} when the number of jammed
edges is up to a given constant k.

Proof The example in Fig. 1 also illustrates this lower bound. Similarly, the traveller
has two ways to traverse a path from s to t . If the traveller walks through a jammed edge,
the expected distance cost is 1 + ε+ because each of the k + 1 s, t-paths has the same
setting. Otherwise, the traveller must select another way to avoid jams when he/she
finds a jammed edge (v j , t) at v j . The traveller would go back to s and then randomly
choose (s, vi ), vi ∈ {v1, . . . , vk+1} \ {v j }. Without loss of generality, we assume the
traveller visits the vertices from v1 to vk+1, i.e., S j = ((v1, t), (v2, t), . . . , (v j , t)),
1 ≤ j ≤ k + 1. We denote the probability that the traveller learns about the jammed
edge (v j , t) at v j as p(v j ). It is not hard to determine that p(vi |Si−1) ≥ k−i+1

k−i+2 ,

1 < i ≤ k, where p(v1) ≥ k
k+1 and p(vk+1|Sk) = 0, so the expected distance cost

can be computed as follows:

2 ×
k∑

i=1

(

i∏

j=1

p(v j |S j−1)) + (1 + ε) ≥ 2(
k

k + 1
+ k − 1

k + 1
+ . . . + 1

k + 1
) + (1 + ε)

= k + 1 + ε.

The distance cost of the optimal path is 1 + ε; thus, when ε is sufficiently small,
the competitive ratio is not less than min{ 1+ε+

1+ε
, k+1+ε

1+ε
} = min{r, k + 1}. ��

Note that the example in Fig. 1 also achieves the tightness of the two lower bounds.
Based on the proofs of Lemmas 1 and 2, we introduce two strategies: the greedy
algorithm and the reposition algorithm Westphal (2008); Xu et al. (2009), which will
be used later. We denote them as G A and R A, respectively.

Greedy Algorithm (G A): Starting at a vertexv (including the source s), the traveller
selects the shortest path from v to t by using Dijkstra’s algorithm Dijkstra (1959) in
a greedy manner, based on the current information Ei ; that is, the distance cost of the
path is dEi (v, t). Note that if all the k jammed edges are known at the outset, the cost
of the path derived by G A from the source s is the same as that of the offline optimum,
dEk (s, t).

Reposition Algorithm (R A): The traveller begins at the source s and follows the
s, t-path with the cost d(s, t). When the traveller learns about a jammed edge on the
path to t , he/she returns to s and takes the s, t-path with the cost dEi (s, t) based on
the current information Ei . The traveller repeats this strategy until he/she arrives at t .

3 Double-valued graph

In this section, we present a deterministic algorithm called G R, which combines G A
with R A to solve the Double- valued Graph problem. Its ratio meets the proposed
lower bound. For convenience, let ei = (vi , vi ′), 1 ≤ i ≤ k be a jammed edge learned
of by the traveller; and let vi be the first end vertex of the jammed edge ei that the
traveller visits during the trip.
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Algorithm 1: Greedy & Reposition Algorithm (G R)
Input : G = (V, E), d : E → R+, d+ : E → R+ and a constant k;
Output : A route from s to t ;
1: Initialize i = 0 and let v0 = s and E0 = ∅;
2: while the traveller does not arrive at t do
3: Let r = d+(vi ,t,k−i)

dEi
(s,t) ;

4: if r ≤ 2(k − i) + 1 then
5: the traveller follows a path from vi to t derived by G A;

� the first strategy
6: else
7: if dEG R

i−1
(s, t) + dEi (vi , t) ≤ (i + 1) · dEi (s, t) then

8: the traveller moves from vi to t via G A until he/she finds a jammed edge;
� the second strategy

9: else
10: the traveller moves from vi to t via R A until he/she finds a jammed edge;

� the third strategy
11: end if
12: end if
13: Let i = i + 1 and let the new jammed edge be ei = (vi , vi ′ ) during the trip;
14: end while

This algorithm mainly consists of three routing policies when the traveller arrives
at vi . The first strategy is to follow a path from vi to t derived by G A, irrespective of
whether the traveller finds a new jammed edge. The second strategy for the traveller
is to move from vi to t via G A until he/she finds a jammed edge; and the last strategy
is to move from vi to t via R A until the traveller finds a jammed edge. Note that the
ratio r has to be updated while the traveller is learning about a new jammed edge. In
addition, because 2(k − i)+1 decreases during the trip, r ≤ d+(s,t,k)

d(s,t) once the traveller
selects the first strategy, i.e., following a path derived by G A.

Lemma 3 considers the competitive ratio of the G R algorithm under the condition
r > 2(k − i) + 1, in which the traveller selects the last two routing policies. Next, we
combine the scenario with the first strategy, and Theorem 1 follows.

Lemma 3 If the ratio r = d+(vi ,t,k−i)
dEi (s,t)

> 2(k −i)+1, for each i during the whole trip,

then the total distance cost of G R satisfies the following property, where 1 ≤ i ≤ k,
provided there is a set of jammed edges Ei .

dEG R
i

(s, t) ≤
{

(i + 1) · dEi (s, t), if the traveller uses G A at vi ;

(2i + 1) · dEi (s, t), if the traveller uses R A at vi .

Proof By induction on the number of jammed edges learned by the traveller, the proof
is trivial for the case i = 0. Consider i = 1. The traveller walks from v1 to t using G A
when d(s, t) + dE1(v1, t) ≤ (1 + 1) · dE1(s, t). Thus, the travel cost is dEG R

1
(s, t) ≤

d(s, t) + dE1(v1, t) ≤ 2dE1(s, t) for the case i = 1. Otherwise, the traveller uses R A
at v1; that is, the traveller returns to s, and takes the path with the cost dE1(s, t). Thus,
by Eq. (1), the total cost is at most 2d(s, t) + dE1(s, t) ≤ (2 + 1) · dE1(s, t).

Assume the statement holds for i ≤ �. We divide the case i = � + 1 into two parts:
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Case 1: The traveller chooses G A at v�+1; that is, dEG R
�

(s, t) + dE�+1(v�+1, t)

≤ ((� + 1) + 1) · dE�+1(s, t). Hence, the statement follows, because

dEG R
�+1

(s, t) ≤ dEG R
�

(s, t) + dE�+1(v�+1, t) ≤ (� + 2) · dE�+1(s, t).

Case 2: The traveller chooses R A at v�+1. Consider two scenarios when the traveller
was at v�. If the traveller used G A at v�, then dEG R

�
(s, t) ≤ (� + 1) · dE�

(s, t) by the
induction hypothesis. Similarly, the traveller would go back to s from v�+1 and take
the path with the cost dE�+1(s, t). Therefore, we have

dEG R
�+1

(s, t) ≤ 2 · dEG R
�

(s, t) + dE�+1(s, t) ≤ 2(� + 1) · dE�
(s, t) + dE�+1(s, t)

≤ (2(� + 1) + 1) · dE�+1(s, t)

by Eq. (1). On the other hand, if the traveller used R A at v�, then by the induction
hypothesis, dEG R

�
(s, t) ≤ (2� + 1) · dE�

(s, t). Because the traveller started again from
s and took the path with the cost dE�

(s, t) after learning about the jammed edge at v�,
the distance cost of the path that the traveller used to return to s from v�+1 will not be
larger than dE�

(s, t). Thus, we have

dEG R
�+1

(s, t) ≤ dEG R
�

(s, t) + dE�
(s, t) + dE�+1(s, t)

≤ (2� + 1) · dE�
(s, t) + dE�

(s, t) + dE�+1(s, t)

≤ (2(� + 1) + 1) · dE�+1(s, t).

The proof is complete. ��
The above lemma shows the competitive ratio without using the first strategy, i.e.,

following a path derived by G A, irrespective of whether the traveller finds a jammed
edge. We remark that if the traveller does not know the bound k of the number of
jammed edges, that is, r cannot be derived initially, then the last two routing policies
of the G R algorithm can obtain a (2k + 1)-competitive ratio by Lemma 3.

We prove that the G R algorithm is min{r, 2k + 1}-competitive if the number of
jammed edges is bounded from below by a given constant k.

Theorem 1 For the Double- valued Graph problem, the competitive ratio of G R
is at most min{r, 2k + 1} when the number of jammed edges is up to a given constant

k, where r = d+(s,t,k)
d(s,t) initially, and r might decrease during the trip.

Proof First, if the ratio r = d+(s,t,k)
d(s,t) ≤ 2k + 1 initially, the traveller follows a path

from s to t derived by G A. The competitive ratio is d+(s,t,k)
dEk (s,t) ≤ d+(s,t,k)

d(s,t) = r ≤ 2k +1.

Otherwise, the traveller follows G A or R A until he/she discovers a jammed edge.
Assume that r = d+(vi ,t,k−i)

dEi (s,t)
> 2(k − i) + 1 when the traveller learns about each

jammed edge ei = (vi , vi ′) during the trip 1 ≤ i ≤ k. That is, the traveller will never
use the first strategy. Therefore, the competitive ratio is within 2k + 1 by Lemma 3.
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On the other hand, if r ≤ 2(k − j) + 1 while learning about a jammed edge
e j = (v j , v j ′), for some j , the traveller will follow a path from v j to t derived by G A.
The travel cost is at most dEG R

j−1
(s, t) before the traveller arrives at v j . Then the total

distance cost can be formulated as follows:

dEG R
j

(s, t) ≤ dEG R
j−1

(s, t) + d+(v j , t, k − j)

≤ (2( j − 1) + 1) · dE j−1(s, t) + (2(k − j) + 1) · dE j (s, t)

≤ 2k · dEk (s, t).

The second inequality holds by Lemma 3. ��
Regarding the time complexity analysis, the number of iterations in the while loop,

i.e., the number of updates for the ratio r , is at most k. Each of the three routing
strategies can apply Dijkstra’s algorithm Dijkstra (1959) to devise a path from s or vi

to t , for some i . In addition, R A just takes the original s, vi -path when the traveller
needs to return to s from vi . Thus, for a given constant k, the running time is a constant
factor times D(n), where n is the order of a graph G, and D(n) is the running time of
Dijkstra’s algorithm.

The G R algorithm can also be extended to the Multiple- valued Graph problem
in which each edge is associated with more than two possible distances. We regard the
largest distance of each edge e as d+(e), and then r = d+(s,t,k)

d(s,t) is defined similarly.
G R performs in a similar way to travel from s to t . Therefore, the competitive ratio
remains the same.

Corollary 1 For the Multiple- valued Graph problem, there is a min{r, 2k + 1}-
competitive algorithm when the number of traffic jams is up to a given constant k.

In addition, we consider the Recoverable k-CTP in which each blocked edge e is
associated with a recovery time r(e) to reopen. In this online problem, it is assumed
that the blocked edges will not be blocked again. An instance I of the Recoverable
k-CTP can be transformed into an instance I ′ of the Double- valued Graph problem
by letting r(e) be represented in terms of the distance, and letting d+(e) = d(e)+r(e)
for every edge e ∈ E in I ′.

The G R algorithm can then be modified as follows. When learning about a jammed
edge ei , the traveller decides if he/she will traverse the edge ei via G R. If the traveller
traverses the jammed edge ei , then Ei = Ei−1 ∪ {ei }, and after passing through the
edge ei , ei will be reset to its original distance d(ei ). All the other operations are
performed as described earlier, and the next corollary follows immediately.

Corollary 2 For the Recoverable k-CTP, there is a min{r, 2k + 1}-competitive algo-
rithm when the number of blockages is bounded from below by a given constant k.

Su and Xu (2004) considered the Recoverable k-CTP and proposed two policies:
a greedy strategy and a waiting strategy. They also investigated the problem and its
variants in special road networks Su et al. (2008). When the number of blocked edges
is up to a given constant k, Table 1 compares the competitive ratios of the previous
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Table 1 Comparison of the G R results and the results reported in Su and Xu (2004), where α > 0

Recovery time Greedy strategy
Su and Xu (2004)

Waiting strategy
Su and Xu (2004)

G R

r(e) ≤ d(e) 2k 2 r ≤ 2

r(e) ≤ α · d(e) (1 + α)k 1 + α min{1 + α, 2k + 1}
r(e) ≤ d(s, t) 2k k + 1 r ≤ k + 1

r(e) ≤ α · d(s, t) (1 + α)k αk + 1 min{αk+1, 2k + 1}

strategies with the ratio of G R under different scenarios. For example, if r(e) ≤ α·d(e),
α > 0, i.e., d+(e) ≤ (1 + α)d(e) in the Double- valued Graph problem, then
r = d+(s,t,k)

d(s,t) ≤ 1 + α. If α ≤ 2k, G R will initially follow the path derived by G A.
Thus, we have the competitive ratio r ≤ 1 + α. Otherwise, if α > 2k, the competitive
ratio of G R is at most 2k + 1 by Lemma 3. Besides, if r(e) ≤ α · d(s, t), it implies
that r = d+(s,t,k)

d(s,t) ≤ αk + 1. Therefore, if α ≤ 2, G R will follow a path derived by
G A, and we have the competitive ratio r ≤ αk + 1. Otherwise, if r(e) > 2d(s, t),
then r > 2k + 1, and the competitive ratio of G R is at most 2k + 1 by Lemma 3. Note
that the results show that the G R approach is at least as good as the previous results
in Su and Xu (2004) when the number of blockages is bounded from below by a given
constant k.

4 The uniform jam cost model

In this section, we study the uniform jam cost model. Suppose the jam cost of each
edge e is a constant c, i.e., d+(e) = d(e) + c. An online algorithm A is said to be a
cA-additive competitive algorithm for the Double- valued Graph problem if for
any instances,

dE A
i
(s, t) ≤ dEk (s, t) + cA, 1 ≤ i ≤ k,

where cA is a constant. We propose a tight lower bound below.

Lemma 4 For the uniform jam cost model of the Double- valued Graph problem
with at most k traffic jams, there is no deterministic online algorithm within a kc-
additive competitive ratio; that is, given a uniform jam cost c, the derived solution
cannot be better than dEk (s, t) + kc.

Proof Consider the example in Fig. 2. In this graph, each edge e is associated with two
possible distances: d(e) and d(e)+c. There are k+1 different s, t-paths of length k+1,
denoted by P1, . . . , Pk+1. For every edge (s, vi,1), 1 ≤ i ≤ k +1, d(s, vi,1) = 1

2 c, and
its jammed distance is 3

2 c. For each e of the other edges, d(e) = ε and d+(e) = ε + c.
For any deterministic algorithms, the traveller has three ways to walk from s to t .

(1) The traveller simply heads for t directly, irrespective of whether he/she discovers a
jammed edge; in this case, the travel cost is exactly 1

2 c + k(ε + c). (2) The traveller is
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Fig. 2 An example of the lower bound in the uniform jam cost model

prevented from passing through jammed edges to reach t ; that is, the traveller always
goes back to s to avoid jams while learning about a jammed edge. Thus, the distance
cost is at least 2( 1

2 c)k + 1
2 c + kε. (3) In the last case, the traveller might walk through

several, but not all, jammed edges instead. From the malicious adversary point of view,
it would be better not to assign jams to (s, vi,1), for any i . When the traveller takes a
path Pj , the malicious adversary will assign jams to (v j,1, v j,2), (v j,2, v j,3), . . ., and
so on, until the traveller returns to s. Thus, if the traveller traverses i paths, and returns
to s in each iteration, the current cost is at least 2( 1

2 c)i + 2(ε + c)� while passing
through � jammed edges. There are still k − (i +�) unknown jammed edges. Next, the
traveller is prevented from passing through jammed edges to reach t . The total travel
cost is:

(ci + 2ε� + 2c�) + 2(
1

2
c)(k − (i + �)) + (

1

2
c + kε)

=(
1

2
c + kε) + kc + (2ε + c)� ≥ (

1

2
c + kε) + kc.

Thus, compared with the offline optimum 1
2 c + kε, the additive competitive ratio

is at least kc. ��

By Lemma 4, no deterministic algorithm can derive a better additive competitive
ratio than kc. Actually, the traveller can use a very straightforward algorithm to achieve
the lower bound: following the s, t-path with the cost d(s, t), irrespective of whether
the traveller finds jammed edges. However, it is possible to slightly improve the ratio
under some conditions.

For instance, if c ≥ 2δ · d(s, t) for some δ > 1, we let a threshold be c
2ε

, for a
constant 1 < ε < δ. Assume there is a nonempty subset of jammed edges Ei , such
that dEi (s, t) ≤ c

2ε
for some i ≤ k, when the traveller learns about jammed edges.

Based on this assumption, when dE j (s, t) ≤ c
2ε

, the traveller will use R A; however,
when dE j (s, t) > c

2ε
, the traveller will use G A until he/she arrives at t . Thus, we let

e� be the first jammed edge, such that dE�
(s, t) > c

2ε
, if any. That is,

{
dE j (s, t) ≤ c

2ε
, if 1 ≤ j < �; � the traveller uses R A

dE j (s, t) > c
2ε

, if � ≤ j ≤ k. � the traveller uses G A
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Then, the total travel cost can be formulated as follows:

2 · d(s, t) + . . . + 2 · dE�−2(s, t) + dE�−1(s, t) + (k − � + 1)c

≤ 2(� − 1) · c

2ε
+ dE�−1(s, t) + (k − � + 1)c

≤ dEk (s, t) + kc − (� − 1)(1 − 1

ε
)c.

If there is no such �, the traveller uses R A until he/she arrives at t . The above equation
implies that the total travel cost is at most 2k( c

2ε
) + dEk (s, t) = kc

ε
+ dEk (s, t).

5 Concluding remarks

In this paper, we have studied the Double- valued Graph problem, which is a
generalization of k-CTP, when the number of traffic jams is up to a given constant k.
We have presented tight lower bounds and an adaptive algorithm that can satisfy the
lower bound. In addition, we have extended the algorithm to the Recoverable k-CTP.
We have also derived a lower bound with an additive competitive ratio for the uniform
jam cost model.

It would be worthwhile investigating these online route planning problems because
they find real applications in dynamic navigation systems designed to avoid traffic
congestion. We conclude the study with two observations: First, compared with the
larger lower bound of deterministic algorithms, it would be very interesting to develop
a randomized online algorithm that can yield a better competitive ratio. On the other
hand, a traveller could learn of a blockage or traffic congestion in advance from
road sensor networks; for example, a GPS navigation system could indicate traffic
conditions as the traveller approaches within a distance � of an end vertex of a blocked
edge (or a jammed edge) for a given constant �. The question is how much the earlier
information could improve online route planning. We will consider these issues in our
future research.
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