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Abstract. The greedy algorithm is known to have a guaranteed ap-
proximation performance in many variations of the well-known minimum
set cover problem. We analyze the number of elements covered by the
greedy algorithm for the minimum set cover problem, when executed for
k rounds. This analysis quite easily yields in the p-partial cover problem
over a ground set of m elements the harmonic approximation guarantee
H(�pm�) for the number of required covering sets. Thus, we tie together
the coverage analysis of the greedy algorithm for minimum set cover and
its dual problem partial cover.

1 Introduction

Minimum Set Cover is a fundamental combinatorial optimization problem
with many practical applications. It is one of the oldest problems known to be
NP-complete [1,2]. The goal in Minimum Set Cover is to cover all elements
of the ground set by using as few subsets as possible from a given collection.

What also makes this problem very interesting is the fact that it can be
approximated efficiently within guaranteed performance by the straightforward
greedy algorithm [3,4,5]. Greedy approximation of Minimum Set Cover under-
lies approximation algorithms in many application fields; e.g., in machine learn-
ing [6,7], combinatorial pattern matching [8,9], and bioinformatics [10,11,12].
Thus, Minimum Set Cover has received a lot of analytical attention over the
years. The endmost approximation possibilities of the problem and the perfor-
mance of the greedy algorithm are well understood topics today.

Partial Cover [6] is a generalization of Minimum Set Cover in which one
asks how many subsets are required to cover at least a fraction p, 0 < p ≤ 1, of the
elements of the ground set. The greedy algorithm can be used also to approximate
this problem, but it has to be changed in order to cope with Partial Cover.
The required modifications, though, are small.

In this paper we draw a connection that has not been explicit before. We show
that directly by analyzing the element covering performance of the greedy algo-
rithm for Minimum Set Cover during its execution, one can obtain reasonably
tight performance bounds for the p-Partial Cover problem. The bound that
we obtain for a ground set of m elements is the harmonic bound H(�pm�), which
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is the best known performance guarantee for the weighted Partial Cover prob-
lem [13]. A somewhat tighter bound is known to hold for the unweighted version
of the problem [14].

Our analysis asks how large portion of the elements in the ground set can be
covered by using at most k subsets. We analyze the relation between the number
of covered elements when the subsets are selected greedily and that when the
subsets are chosen optimally. We then apply this relationship to the Partial
Cover problem to obtain the harmonic bound.

The remainder of this paper is organized as follows. In Section 2 we briefly
review work on Minimum Set Cover together with its variants and recapitulate
the greedy algorithm for Partial Cover. The element covering analysis for the
greedy algorithm is presented in Section 3 and its application to partial covers is
the topic of Section 4. We consider possibilities to extend this approach further
in Section 5. A brief survey of related work is given in Section 6 before concluding
this paper in Section 7.

2 Minimum Set Cover and the Greedy Algorithm

A collection S = {S1, . . . , Sn } of subsets of some finite set U is a cover of U if⋃n
i=1 Si = U . Moreover, S′ ⊆ S is a subcover of U if S′ itself is a cover of U . In

the classical Minimum Set Cover problem one is given as an instance a finite
set U and a cover S = {S1, . . . , Sn } of U and is requested to find a subcover
S′ ⊆ S of U of minimum cardinality. To put this more exactly, in terms of the
approximation setting Minimum Set Cover problem is as follows:

Instance: A cover S = {S1, . . . , Sn } of U .
Solution: A subcover S′ ⊆ S of U .
Measure: Cardinality of the subcover, |S′|.
In the decision version of this problem one asks whether there exists a subcover
of cardinality at most K. This problem was shown to be NP-complete by Karp
[1] through a polynomial-time reduction from the Vertex Cover problem.
Throughout this paper we denote the cardinality of the ground set U by m.

The greedy algorithm for the set cover problem is one of the best-known
polynomial-time approximation algorithms. It chooses at each step the unused
set which covers the largest number of remaining elements. This algorithm was
shown by Johnson [3] and Lovász [4] to have approximation ratio no worse
than H(m), where H(m) = 1 + 1/2 + · · · + 1/m is the mth harmonic number.
Recall that ln m < H(m) ≤ ln m + 1. Chvátal [5] extended the harmonic perfor-
mance ratio also to the weighted version of Minimum Set Cover. This time the
greedy selection picks at each step the covering set with the minimum cost per
remaining element.

Feige [15] proved— using interactive proof techniques— that no polynomial
time algorithm can approximate Minimum Set Cover within (1 − ε) ln m for
any ε > 0, unless NP ⊆ DTIME(nlog log n). Hence, under this plausible structural
complexity assumption, the performance ratio of any polynomial time algorithm
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can improve on the harmonic bound of the greedy algorithm by at most o(ln m).
The analysis of the greedy algorithm for Minimum Set Cover was essentially
completed by Slav́ık [14,16] who proved a performance ratio of exactly lnm −
ln lnm + Θ(1) for the algorithm. More precisely

ln m− ln lnm− 0.31 < |G|/|0| < ln m− ln lnm + 0.78,

where G is the cover selected by the greedy algorithm and O is the optimal cover.
The proof technique of Slav́ık was to recursively define the “greedy numbers”

N(k, l), which correspond to the size of the smallest ground set U for which it
is possible to have a cover of U with the optimal cardinality l and greedy cover
of size k. The same technique can be adapted to also apply for fractional [4,17]
and partial covers [6].

Two natural variations of Minimum Set Cover are its weighted version and
d-Set Cover, where all members of the cover S have cardinality of at most d. In
the weighted Minimum Set Cover all elements of S have a positive cost asso-
ciated with them and the goal is to find a subcover of minimum total cost. Both
variations, naturally, are NP-complete, since they contain the original problem
as a special case. The greedy algorithm also approximates these problems within
the harmonic bound in polynomial time [3,4,5].

A somewhat more general NP-hard set covering problem is Partial Cover
[6]. We say that S′ ⊆ S is a p-partial cover of U if∣∣∣∣∣∣

⋃
Sj∈S′

Sj

∣∣∣∣∣∣ ≥ pm.

An instance of the Partial Cover problem consists of a finite set U , a finite
cover S = {S1, . . . , Sn } of U , and a real p, 0 < p ≤ 1. The goal is to find a
p-partial cover S′ ⊆ S of U of minimum cardinality:

Instance: A cover S = {S1, . . . , Sn } of U and a number p, 0 < p ≤ 1.
Solution: A p-partial cover S′ ⊆ S of U .
Measure: Cardinality of the p-partial cover, |S′|.

Table 1 shows the greedy algorithm for the weighted Partial Cover prob-
lem. In it one searches at each step for the unused subset that covers as many
elements as possible— though, not excessive elements— with as low average
cost per element as possible. When the required fraction of elements covered has
been reached, the algorithm halts. Observe that in Step 5 of the algorithm the
elements of the newly chosen covering subset are removed from the remaining
subsets. Here it has to be done to keep the average cost per element of remain-
ing subsets an informative measure. However, the same cleaning of remaining
subsets can be carried out in the unweighted case as well without any harm.
In the following we assume that such a cleaning operation is part of the greedy
algorithm. The algorithm of Table 1 is very similar to the greedy algorithm for
the weighted Minimum Set Cover problem [5,6].
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Table 1. The greedy algorithm for the weighted Partial Cover

Input: A cover S = {S1, . . . , Sn } of a finite set U , positive costs c = { c1, . . . , cn } of
the covering sets, and a number p.

Output: A p-partial cover S′ ⊂ S of U .

1. S′ ← ∅.
2. Find out the number r of elements of U that still need to be covered in order to

obtain a p-partial cover:

r ← �pm� −
∣∣∣∣∣∣

⋃
Sj∈S′

Sj

∣∣∣∣∣∣ .

3. If r ≤ 0, then return S′.
4. Find Si ∈ S \ S′, Si 	= ∅, that minimizes the quotient

ci

min(r, |Si|) .

5. S′ ← S′ ∪ Si.
For each Sj ∈ S \ S′: Sj ← Sj \ Si.
Go to step 2.

The straightforward analysis of the greedy method for Partial Cover be-
comes quite complicated because the optimal solution may cover a different set
of elements than those chosen by the greedy algorithm. Thus, the methods used
by Johnson [3], Lovász [4], and Chvátal [5] to establish the harmonic bound in
case of complete covers do not generalize directly to this problem.

Nevertheless, Kearns [6] managed to prove the weak harmonic performance
guarantee of 2H(m) + 3 for the greedy algorithm by bounding separately the
weights of those elements that are covered by the greedy algorithm but do not
belong to the optimal cover, and those that are members of both solutions. Using
a completely different approach Slav́ık [13] proved that for the weighted p-partial
cover problem a bound similar to the classical one holds: The performance ratio
of the greedy algorithm for this problem is no worse than H(�pm�). One can con-
struct an example to show that this bound is also tight [13]. The bound contains,
as special cases, the classical harmonic bounds for Minimum Set Cover.

This time the proof technique of Slav́ık was to contrast directly the weights
of the optimal and greedy cover from iteration to iteration in the execution of
the greedy algorithm. Slav́ık’s [14] exact analysis of the Minimum Set Cover
problem also holds for Partial Cover when the subsets are unweighted. Thus,
unweighted Partial Cover can be approximated using the greedy algorithm
with ratio ln�pm� − ln ln�pm�+ Θ(1).

Subsequent Minimum Set Cover approximation approaches— aiming to
improve additive constants, which is the most one can hope for after Feige’s
[15] proof— include Srinivasan’s [17] application of the randomized rounding
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technique [18] to obtain improved performance ratio in special cases. Another line
of research has been the work of Halldórsson [19,20] who applied a local improve-
ments modification to the greedy algorithm to obtain an improved upper bound
of H(m)−0.43. In this approach one applies optimization techniques to the sub-
sets that are small enough. This approach was taken further by Duh and Fürer
[21] in their semi-local optimization approach. This leads to the polynomial-
time approximation algorithm with the best worst-case performance guarantee
of H(m)− 1/2.

Slav́ık’s [13] proof of the harmonic bound is based on an analysis of the cost
per remaining relevant element of a subset chosen to the greedy partial cover.
Unfortunately, this does not lead to an intuitive proof. In the following we show
that the harmonic performance guarantee can be obtained directly through an
analysis of the greedy algorithm for Minimum Set Cover.

The greedy algorithm works in rounds choosing the subsets to the evolving
cover one by one. Hence, it is natural to consider how many elements are covered
by the greedy algorithm after r rounds and compare it to the optimal covering in
k rounds. Viewing the greedy algorithm as gradually covering more and more el-
ements gives a concrete connection between its performance in the two problems.
The analysis easily yields the harmonic bound for Partial Cover. This sim-
plified proof is of interest because of the importance and wide use of Minimum
Set Cover and its generalization.

3 Covering Analysis of the Greedy Algorithm

Let us analyze the greedy set covering algorithm from the point of view of
its covering performance. We show that the number of elements covered by r
greedily chosen subsets is not much less than the total number of elements in
k, k ≤ r, optimally chosen sets of S. Here the r greedily or k optimally chosen
subsets do not have to constitute a cover for the whole of U . However, setting r
and k large enough, will eventually yield a full cover of U .

Let gi denote the size of the subset chosen by the greedy algorithm on the ith
round and let Gr =

∑r
i=1 gi. The maximum number of elements covered by k

optimally chosen subsets is denoted by Ok.

Lemma 1. For r ≥ k ≥ 1 the following holds

Gr ≥
(

1−
(

1− 1
k

)r)
Ok.

Proof. By the pigeonhole principle the largest subset g1, which is chosen by the
greedy algorithm on the first round, must contain at least as many elements as
there on average are in the k maximally-covering sets, for any k; i.e., g1 ≥ Ok/k.
The pigeonhole principle applies also on the second and subsequent rounds.
However, g2 can only be guaranteed to have size (Ok−g1)/k. In general, on round
n + 1, n ≥ 1, one must reduce the number of elements in the subsets already
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chosen by the greedy algorithm on previous rounds, Gn, from the maximum
number of elements covered by k subsets and we have

gn+1 ≥ Ok −Gn

k
. (1)

Let us, thus, consider the sequence{
x1 = Ok/k;
xn+1 = xn − (xn/k) = (1− 1/k)xn,

for which it holds

xn =
(

1− 1
k

)n−1
Ok

k
. (2)

By induction we can show that Gn ≥
∑n

i=1 xi. The base case was already stated
above. Let us, then, assume that the claim holds for values less than n. Now, by
inequality (1), the inductive hypothesis, and the definition of the sequence, we get

Gn+1 = Gn + gn+1

≥ Gn +
Ok −Gn

k

=
Ok

k
+

(
1− 1

k

)
Gn

≥ Ok

k
+

(
1− 1

k

) n∑
i=1

xi

=
Ok

k
+

n∑
i=1

(
1− 1

k

)
xi

=
Ok

k
+

n∑
i=1

xi+1

= x1 +
n+1∑
i=2

xi

=
n+1∑
i=1

xi.

Combining this with equality (2) gives the lower bound for Gr:

Gr ≥
r∑

i=1

xi

=
r∑

i=1

(
1− 1

k

)i−1
Ok

k

=
(

1−
(

1− 1
k

)r)
Ok,

where the last equality is by the value of a geometric series.
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Particularly interesting special case is r = k, which corresponds to asking what
is the performance guarantee of the greedy algorithm with respect to the number
of covered elements. This question has independently been studied by Hochbaum
and Pahtria [22,23], who also obtained the following results.

By the above result, for example, two greedily chosen subsets are guaranteed
to cover at least 3/4 of the largest number of elements that can, on the whole,
be covered by two subsets. Asymptotically the lower bound behaves as follows
when r = k. One can simplify the above result by recalling that for all x

lim
n→∞

(
1 +

x

n

)n

= ex

and observing that (1−(1−1/k)k) is decreasing, which gives the greedy algorithm
the following approximation guarantee in the number of elements covered:

Gk ≥
(

1− 1
e

)
Ok.

4 Application of the Analysis to Partial Cover

Let app now denote the number of subsets chosen by the greedy algorithm
in order to cover at least a fraction p of the m elements in the ground set.
Respectively, opt is the minimum number of subsets required to cover at least
proportion �pm� of the elements.

Theorem 1. app/opt ≤ H(�pm�).
Proof. Without loss of generality, we can assume that Oopt = �pm�. This can be
accomplished by removing some of the elements from the sets belonging to the
optimal solution. The remaining elements still constitute a p-partial cover of U
and, therefore, the value of the optimal solution does not change. On the other
hand, this modification cannot improve the solution of the greedy algorithm.

Observe that the case opt = 1 is not interesting, because the greedy algorithm
will also output the one subset that covers a fraction p of U . Hence, in this case
app = opt. In the following we consider only partial covers for which opt ≥ 2.

Let us consider the least r such that Gr ≥ Oopt−c for some constant c. Thus,
by Lemma 1, we want to solve(

1−
(

1− 1
opt

)r)
Oopt = Oopt − c ⇔

−
(

1− 1
opt

)r

= − c

Oopt
.

Taking natural logarithms of both sides gives

−r ln
(

1− 1
opt

)
= ln Oopt − ln c. (3)
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Recalling that for x > −1 : ln(1 + x) ≤ x, where equality holds only for x = 0,
leads to

r

opt
< ln Oopt − ln c. (4)

The r greedily selected subsets now cover Oopt − c elements. Thus, at most
c further subsets are needed to cover in total at least Oopt elements. Hence,
app ≤ �r�+ c ≤ r + 1 + c, and by inequality (4) we have

app

opt
≤ r + c + 1

opt

< ln Oopt − ln c +
c + 1
opt

.

The right-hand side obtains its minimum value when c = opt, which further
yields

app

opt
≤ ln Oopt − lnopt + 1 +

1
opt

.

Finally, because ln n > 1 + 1/n for all integers n ≥ 4, we only need to check
separately the cases opt = 3 and opt = 2 by substituting them and c = 1 to
equation (3), to obtain the desired result

app

opt
≤ ln Oopt < H(Oopt) = H(�pm�).

The above derived harmonic bound H(�pm�) is the tight bound for weighted
Partial Cover [13], but Slav́ık’s [14] greedy numbers technique yields the
tight bound ln m − ln lnm + Θ(1) for the unweighted problem. He obtains the
tighter bound through a detailed analysis of the involved functions.

5 Further Application of the Analysis

Above we were eager to approximate the additive terms away in order to reach
the harmonic bound for Partial Cover. Let us briefly consider what happens
if they are not abstracted away.

Let

d = ln
(

1− 1
opt

)−opt

and substitute it to equation (3) to obtain

rd

opt
= ln Oopt − ln c.

Recalling that app ≤ r + c + 1 yields

app

opt
≤ r + c + 1

opt

=
ln Oopt − ln c

d
+

c + 1
opt

.
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The right-hand side of this inequality will obtain its minimum value when c =
opt/d. Thus,

app

opt
≤ ln Oopt

d
+

1 + ln d− lnopt

d
. (5)

This bound has the unfortunate property of not being independent of the value
of opt. Let us, thus, denote by dopt the value of d depending on the value of
opt. For instance, d2 = ln 4 ≈ 1.386 and asymptotically d∞ = 1.

How does the bound (5) behave in comparison to the harmonic one derived
above? Assuming that ln Oopt is large, for small values of opt bound (5) will
be tighter than the harmonic one. However, dopt approaches one as the value
of opt increases and, thus, this bound eventually loses its advantage over the
harmonic bound. Moreover, as the value of opt is unknown, this performance
guarantee is not a very practical one.

6 Related Work

The covering analysis of the greedy set covering algorithm (Lemma 1) has been
settled in case r = k by Hochbaum [22,23,24]. The result is relatively well known
as Max Cover. The derivation of this result does not differ significantly from
that given in this paper.

Slav́ık was not the first author to show the tight harmonic approximation
bound for partial cover. This result is already contained in the more general
result of Wolsey from 1982 [25], although it is not a widespread fact.

The direct link between the covering analysis of the greedy set covering algo-
rithm and its performance for partial cover (Theorem 1) is, to the best of our
knowledge, an original contribution.

The cover of Minimum Set Cover S = {S1, . . . , Sn } can be seen as a
hypergraph over the vertices from the ground set U . Its dual problem is Minimum
Vertex Cover (VC) over the dual of this hypergraph, which inverts the roles of
hyperedges and vertices. The greedy approach and other algorithms for different
variations of the partial VC problem have been studied extensively in recent
years [26,27,28,29].

Several new variants of the Minimum Set Cover problem have been pro-
posed and analyzed lately. Let us just mention a few of them. In the red-blue
set cover [30] the ground set U contains red and blue elements and the aim is
to cover all of the blue elements and as few as possible of the red elements.
This is a strongly inapproximable problem [31]. A generalization of the red-blue
set cover, positive-negative partial set cover was introduced by Miettinen [32].
In multicover problems the requirement is to cover each element a prescribed
number of times. Also in this extension of Minimum Set Cover the greedy
algorithm and its variants yield good approximation results [33,34,35].

7 Conclusion

We have shown that covering analysis of the greedy algorithm for the Minimum
Set Cover problem quite easily yields the harmonic bound H(�pm�) for the
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p-Partial Cover. This makes the connection between the classical problem and
its generalization explicit. The obtained bound is not the tightest one known to
hold for the unweighted problem. Nevertheless, it is clearly better than the one
that comes out of the analysis that bounds the sizes of the resulting sets.

As future work we leave studying whether the tighter performance guarantee
for the unweighted Partial Cover could be reached by means of covering
analysis. Also, the potential of this line of analysis for the weighted Partial
Cover was not explored in this work.
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