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Introduction

This presentation is a review of the following paper:

Title: Approximating Shortest Superstring Problem Using
de Bruijn Graphs
Authors: Alexander Golovnev, Alexander S. Kulikov, and
Ivan Mihajlin

This paper presents some results on approximating the
shortest superstring problem.
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Problem definition

Definition

common superstring problem (SCS) :
given: n strings s1, . . . , sn
goal: find a shortest string containing each si as a substring.

Definition

r-superstring problem (r-SCS) : SCS problem for the special
case when all input strings have length exactly r.
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Complexity

SCS over the binary alphabet and 3-SCS are NP-hard.

2-SCS can be solved in linear time.
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Previous results for approximating SCS
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Result presented in this paper

In this paper a r2+r−4
4r−6 -approximation to r-SCS is

presented.

This is better than the best known approximation ratio
(211

23) for r = 3, . . . , 7.
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Definitions

Definition

overlap(s, t): the longest suffix of s that is also a prefix of t.

Definition

prefix(s, t): first |s| − |overlap(s, t)| symbols of s.

Definition

suffix(s, t): last |t| − |overlap(s, t)| symbols of t.
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Definitions

Definition

prefix(s): string resulting from s by removing the last symbol.

Definition

suffix(s): string resulting from s by removing the first symbol.
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Definitions

Definition

let S = {s1, . . . , sn} be a set of strings over an alphabet Σ and
s be a superstring of S. The compression of s (w.r.t. S) is :
|s1|+ |s2|+ · · ·+ |sn| − |s|.

Clearly minimizing the length of a superstring corresponds
to maximizing the compression.
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SCS as a typical permutation problem

If we know the order of the input strings in a shortest
superstring then we can recover this superstring by
overlapping the strings in this given order.

For this reason, it will be convenient for us to identify a
superstring with the order of input strings in it.
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Overlap graph

Definition

The overlap graph OG(S) of the set of strings
S = {s1, . . . , sn} is a complete weighted directed graph on a
set of vertices V = {1, . . . , n}. The weight of an edge from i to
j equals |overlap(si , sj)|.
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Overlap graph

Definition

asymmetric maximum traveling salesman path problem
(MAX-ATSP) is to find a longest path visiting each vertex of
the graph exactly once (such a path is called Hamiltonian).
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Overlap graph

Solving SCS corresponds to solving the asymmetric
maximum traveling salesman path (MAX-ATSP) problem
in overlap graph OG(S).

The length of any Hamiltonian path in this graph equals
the compression of the corresponding superstring.

The best known approximation ratio for MAX-ATSP is 2
3 .

This immediately gives a 2
3 -approximation for the

compression.

An α-approximation for MAX-ATSP (compression) implies
a 3.5− 1.5α approximation for SCS.

This means a 2.5-approximation for SCS.
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De Bruijn Graphs

Definition

In De Bruijn Graph each input string si ∈ S is represented as
a directed (unweighted) edge from prefix(si ) to suffix(si ).
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2-SCS using De Bruijn Graph and eulerian path

2-SCS can be solved using De Bruijn Graph.

An eulerian path spells a shortest superstring.

To make the graph have an eulerian path, for each weakly
connected component we add edges between imbalanced
vertices (i.e., vertices with non-zero difference of in-degree
and out-degree) so that the resulting component contains
an Eulerian path. Finally, we add edges between
components so that the graph contains an Eulerian path.

r-SCS cannot be solved with the same technique because
in case of 2-SCS, strings from different weakly connected
components do not share letters (and hence have empty
overlap) so the components can be traversed in any order.
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2-SCS using De Bruijn Graph and eulerian path
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Algorithm

Theorem

Algorithm 3.1 finds an α(r)-approximation for r-SCS where

α(r) = r2+r−4
4r−6
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Proof

Let H be a shortest Hamiltonian path in OG(S). Then
clearly
OPT (S) = rn − w(H),
where w(H) is the weight of H.

A 2
3 -approximate maximum traveling salesman path has

weight at least 2w(H)
3 .

Thus, the permutation Π gives a superstring of length at
most rn − 2w(H)

3

The corresponding approximation ratio is:

rn− 2w(H)
3

rn−w(H) . (1)
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Proof

Let u denote the number of edges of weight at most
(r - 2) in H.

Then the number of edges of weight exactly (r - 1) in H is
(n - 1 - u).

Then we have
w(H) ≤ (r − 1)(n − 1− u) + (r − 2)u (a)
w(H) ≤ (r − 1)(n − 1− u) + (r − 1)u − u (b)
w(H) ≤ (r − 1)(n − 1)− u (c)

and hence

u ≤ (r − 1)(n − 1)− w(H). (2)
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Proof

Note that

overlap(s ′i , s
′
j ) =

{
1 if overlap(si , sj) = r − 1
0 otherwise.

Since S ′ is a 2-SCS instance, a shortest superstring for S ′

has the maximal possible number of overlaps of size 1.

This number is in turn equal to the maximal possible
number of overlaps of size r-1 for S.

Since the number of overlaps of size r-1 in H is (n-1-u),
the length of a shortest superstring for S ′ is at most
2n − (n − 1− u) = n + u + 1.
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Proof

Hence Π1 gives a superstring of S of length at most
rn − (r − 1)(n − 1− u) (a)

Because of (2), this is at most
rn − (r − 1)(n − 1− (r − 1)(n − 1) + w(H)) (b)
which is less than
(r2 − 2r + 2)n − (r − 1)w(H). (c)

The corresponding approximation ratio is

(r2−2r+2)n−(r−1)w(H)
rn−w(H) (3)
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Proof

From (1) and (3) and a simple observation that

0 ≤ w(H)
n ≤ (r − 1) we conclude that the approximation

ratio of the constructed algorithm is

α(r) = max
0≤x≤r−1

{min{ r−
2x
3

r−x ,
(r2−2r+2)−(r−1)x

r−x }}

The maximum of their minimum is attained at x where
they meet, namely

x = r2−3r+2
r− 5

3

.

Plugging in this x gives

α(r) = r2+r−4
4r−6 .
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