Approximating Shortest Superstring Problem
Using de Bruijn Graphs

Advanced Algorithms Course Presentation

Farshad Barahimi

Department of Computer Science
University of Lethbridge

November 19, 2013

Introduction

Introduction

m This presentation is a review of the following paper:

Title: Approximating Shortest Superstring Problem Using
de Bruijn Graphs

Authors: Alexander Golovnev, Alexander S. Kulikov, and
Ivan Mihajlin

m This paper presents some results on approximating the
shortest superstring problem.

Problem definition

Introduction

Definition

common superstring problem (SCS) :
given: n strings si, ..., Sy
goal: find a shortest string containing each s; as a substring.

Definition

r-superstring problem (r-SCS) : SCS problem for the special
case when all input strings have length exactly r.

Complexity

Introduction

m SCS over the binary alphabet and 3-SCS are NP-hard.

m 2-SCS can be solved in linear time.

Introduction

Previous results for approximating SCS

nojot

NN NN NN NN NN NN NN W

[IS O IS | [S TR [mlm N c:lm oot ©lw
) [N =) =) o 1)

Blum, Jiang, Li, Tromp and Yannakakis 1991

Teng, Yao [23] 1993
Czumaj, Gasieniec, Piotrow, Rytter [8] 1994
Kosaraju, Park, Stein [15] 1994
Armen, Stein [1] 1994
Armen, Stein 1995
Armen, Stein [3] 1996
Breslauer, Jiang, Jiang 5] 1997
Sweedyk [21] 1999
Kaplan, Lewenstein, Shafrir, Sviridenko [12| 2005
Paluch, Elbassioni, van Zuylen 2012
Mucha [16] 2013

Result presented in this paper

Introduction

r’+r—4
4r—6

-approximation to r-SCS is

m In this paper a
presented.

m This is better than the best known approximation ratio
(23%) forr=3,....7.

Definitions

Introduction

overlap(s, t): the longest suffix of s that is also a prefix of t.

prefix(s, t): first |s| — |overlap(s, t)| symbols of s.

suffix(s, t): last |t| — |overlap(s, t)| symbols of t.

Definitions

Introduction

t

——prefix(s, t)—, :

suffix(s, t) ——

:K—overlap(s., t) —x: i
| | |

Definitions

Introduction

prefix(s): string resulting from s by removing the last symbol.

suffix(s): string resulting from s by removing the first symbol.

Definitions

Introduction

let S = {s1,...,5} be a set of strings over an alphabet ¥ and

s be a superstring of S. The compression of s (w.r.t. S) is :
|st] +[s2] + -+ [sn| — Is].

m Clearly minimizing the length of a superstring corresponds
to maximizing the compression.

SCS as a typical permutation problem

Introduction

m If we know the order of the input strings in a shortest
superstring then we can recover this superstring by
overlapping the strings in this given order.

m For this reason, it will be convenient for us to identify a
superstring with the order of input strings in it.

Overlap graph

Overlap graph

Definition

The overlap graph OG(S) of the set of strings
S ={s1,...,5n} is a complete weighted directed graph on a
set of vertices V = {1,...,n}. The weight of an edge from i to
j equals |overlap(si, sj)|.

Overlap graph

Overlap graph

Overlap graph

Definition

asymmetric maximum traveling salesman path problem
(MAX-ATSP) is to find a longest path visiting each vertex of
the graph exactly once (such a path is called Hamiltonian).

Overlap graph

Solving SCS corresponds to solving the asymmetric
maximum traveling salesman path (MAX-ATSP) problem
Overlap graph .
in overlap graph OG(S).

m The length of any Hamiltonian path in this graph equals
the compression of the corresponding superstring.

m The best known approximation ratio for MAX-ATSP is %

m This immediately gives a %—approximation for the
compression.

m An a-approximation for MAX-ATSP (compression) implies
a 3.5 — 1.5« approximation for SCS.

m This means a 2.5-approximation for SCS.

De Bruijn Graphs

De Bruijn

Graphs 0 ono
Definition

In De Bruijn Graph each input string s; € S is represented as
a directed (unweighted) edge from prefix(s;) to suffix(s;).

2-SCS using De Bruijn Graph and eulerian path

2-SCS can be solved using De Bruijn Graph.
m An eulerian path spells a shortest superstring.

m To make the graph have an eulerian path, for each weakly
connected component we add edges between imbalanced
vertices (i.e., vertices with non-zero difference of in-degree
and out-degree) so that the resulting component contains
an Eulerian path. Finally, we add edges between
components so that the graph contains an Eulerian path.

De Bruijn
Graphs

m r-SCS cannot be solved with the same technique because
in case of 2-SCS, strings from different weakly connected
components do not share letters (and hence have empty
overlap) so the components can be traversed in any order.

2-SCS using De Bruijn Graph and eulerian path

De Bruijn
Graphs

Fig. 2. 2-SCS can be solved in polynomial time. @[de Bruijn graph of a set of strings
{KL, DB, DE, CK, BD, DA}. After adding an edge ED each weakly connected com-
ponent contains an Eulerian path. The string DBDEDACKL spelled by a path going
through all the edges is a shortest superstring.

Algorithm

Algorithm 3.1. (r? +r —4)/(4r — 6)-approximation algorithm r-SCS

Input: S = {s1,...,: sn} C X",
Output: A superstring of S that is at most (2 + 7 — 4)/(4r — 6) times longer than a
shortest superstring.

Algorithm
// first, find a long traveling salesman path in the overlap graph
1: let m be a 2/3-approximate maximum traveling salesman path in OG(S)

// then, find a short rural postman path in the de Bruijn graph
2: let 8" = {s},...,s,} C T? be a set of 2-strings over the alphabet ¥; = X", & is
the 2-string consisting of prefix of s; of length » — 1 and suffix of s; of length r» — 1
3: let 7 be a shortest superstring for the set of 2-strings S’
4: return the better one among 7 and 7

Algorithm

Algorithm 3.1 finds an a(r)-approximation for r-SCS where

_ r’tr—4
ofr) = 55"

Algorithm

Let H be a shortest Hamiltonian path in OG(S). Then
clearly

OPT(S) = rm — w(H),

where w(H) is the weight of H.

A %—approximate maximum traveling salesman path has
weight at least 2WT(H)

Thus, the permutation I1 gives a superstring of length at
most rn — 2WT(H)
The corresponding approximation ratio is:

2w(H)

rn:w(3H)) (1)

m Let u denote the number of edges of weight at most
(r-2)inH.

m Then the number of edges of weight exactly (r - 1) in H is

(n-1-u).

m Then we have
w(H) < (r—1)(n—1—u)+(r—2)u (a)
wH) <(r—1)(n—1—-u)+(r—1u—u (b)
w(H)<(r—1)(n—1)—u (c)
and hence

u<(r—=1)(n-1)—w(H). (2)

m Note that

1 if overlap(s;,sj) =r—1
overlap(s;, sj) = { 0 otherwise.()

m Since S’ is a 2-SCS instance, a shortest superstring for S’
has the maximal possible number of overlaps of size 1.

m This number is in turn equal to the maximal possible
number of overlaps of size r-1 for S.

m Since the number of overlaps of size r-1 in H is (n-1-u),
the length of a shortest superstring for S’ is at most
2n—(n—1—u)=n+u+1.

m Hence IN; gives a superstring of S of length at most
m—(r—1)(n—1-u) (a)

m Because of (2), this is at most
m—(r—1)(n—1—(r—1)(n—1)+ w(H))
which is less than
(r> =2r+2)n— (r — L)w(H). (c)

m The corresponding approximation ratio is

r2—=2r4+2)n—(r—1)w(H
Conmtn

(b)

m From (1) and (3) and a simple observation that
0< @ < (r — 1) we conclude that the approximation
ratio of the constructed algorithm is

a(r) — O<T<ai(1{m|n{ —3 (r 72!‘4’2 (I’ 1)X}}

m The maximum of their minimum is attained at x where
they meet, namely

3r+2
r—5

3
m Plugging in this x gives

24r—4
a(r) = r4Jrri6 :

X =

	Introduction
	Overlap graph
	De Bruijn Graphs
	Algorithm
	Proof

