
Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Approximating Shortest Superstring Problem
Using de Bruijn Graphs

Advanced Algorithms Course Presentation

Farshad Barahimi

Department of Computer Science
University of Lethbridge

November 19, 2013

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Introduction

This presentation is a review of the following paper:

Title: Approximating Shortest Superstring Problem Using
de Bruijn Graphs
Authors: Alexander Golovnev, Alexander S. Kulikov, and
Ivan Mihajlin

This paper presents some results on approximating the
shortest superstring problem.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Problem definition

Definition

common superstring problem (SCS) :
given: n strings s1, . . . , sn
goal: find a shortest string containing each si as a substring.

Definition

r-superstring problem (r-SCS) : SCS problem for the special
case when all input strings have length exactly r.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Complexity

SCS over the binary alphabet and 3-SCS are NP-hard.

2-SCS can be solved in linear time.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Previous results for approximating SCS

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Result presented in this paper

In this paper a r2+r−4
4r−6 -approximation to r-SCS is

presented.

This is better than the best known approximation ratio
(211

23) for r = 3, . . . , 7.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Definitions

Definition

overlap(s, t): the longest suffix of s that is also a prefix of t.

Definition

prefix(s, t): first |s| − |overlap(s, t)| symbols of s.

Definition

suffix(s, t): last |t| − |overlap(s, t)| symbols of t.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Definitions

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Definitions

Definition

prefix(s): string resulting from s by removing the last symbol.

Definition

suffix(s): string resulting from s by removing the first symbol.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Definitions

Definition

let S = {s1, . . . , sn} be a set of strings over an alphabet Σ and
s be a superstring of S. The compression of s (w.r.t. S) is :
|s1|+ |s2|+ · · ·+ |sn| − |s|.

Clearly minimizing the length of a superstring corresponds
to maximizing the compression.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

SCS as a typical permutation problem

If we know the order of the input strings in a shortest
superstring then we can recover this superstring by
overlapping the strings in this given order.

For this reason, it will be convenient for us to identify a
superstring with the order of input strings in it.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Overlap graph

Definition

The overlap graph OG(S) of the set of strings
S = {s1, . . . , sn} is a complete weighted directed graph on a
set of vertices V = {1, . . . , n}. The weight of an edge from i to
j equals |overlap(si , sj)|.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Overlap graph

Definition

asymmetric maximum traveling salesman path problem
(MAX-ATSP) is to find a longest path visiting each vertex of
the graph exactly once (such a path is called Hamiltonian).

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Overlap graph

Solving SCS corresponds to solving the asymmetric
maximum traveling salesman path (MAX-ATSP) problem
in overlap graph OG(S).

The length of any Hamiltonian path in this graph equals
the compression of the corresponding superstring.

The best known approximation ratio for MAX-ATSP is 2
3 .

This immediately gives a 2
3 -approximation for the

compression.

An α-approximation for MAX-ATSP (compression) implies
a 3.5− 1.5α approximation for SCS.

This means a 2.5-approximation for SCS.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

De Bruijn Graphs

Definition

In De Bruijn Graph each input string si ∈ S is represented as
a directed (unweighted) edge from prefix(si) to suffix(si).

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

2-SCS using De Bruijn Graph and eulerian path

2-SCS can be solved using De Bruijn Graph.

An eulerian path spells a shortest superstring.

To make the graph have an eulerian path, for each weakly
connected component we add edges between imbalanced
vertices (i.e., vertices with non-zero difference of in-degree
and out-degree) so that the resulting component contains
an Eulerian path. Finally, we add edges between
components so that the graph contains an Eulerian path.

r-SCS cannot be solved with the same technique because
in case of 2-SCS, strings from different weakly connected
components do not share letters (and hence have empty
overlap) so the components can be traversed in any order.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

2-SCS using De Bruijn Graph and eulerian path

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Algorithm

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Algorithm

Theorem

Algorithm 3.1 finds an α(r)-approximation for r-SCS where

α(r) = r2+r−4
4r−6

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Proof

Let H be a shortest Hamiltonian path in OG(S). Then
clearly
OPT (S) = rn − w(H),
where w(H) is the weight of H.

A 2
3 -approximate maximum traveling salesman path has

weight at least 2w(H)
3 .

Thus, the permutation Π gives a superstring of length at
most rn − 2w(H)

3

The corresponding approximation ratio is:

rn− 2w(H)
3

rn−w(H) . (1)

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Proof

Let u denote the number of edges of weight at most
(r - 2) in H.

Then the number of edges of weight exactly (r - 1) in H is
(n - 1 - u).

Then we have
w(H) ≤ (r − 1)(n − 1− u) + (r − 2)u (a)
w(H) ≤ (r − 1)(n − 1− u) + (r − 1)u − u (b)
w(H) ≤ (r − 1)(n − 1)− u (c)

and hence

u ≤ (r − 1)(n − 1)− w(H). (2)

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Proof

Note that

overlap(s ′i , s
′
j) =

{
1 if overlap(si , sj) = r − 1
0 otherwise.

Since S ′ is a 2-SCS instance, a shortest superstring for S ′

has the maximal possible number of overlaps of size 1.

This number is in turn equal to the maximal possible
number of overlaps of size r-1 for S.

Since the number of overlaps of size r-1 in H is (n-1-u),
the length of a shortest superstring for S ′ is at most
2n − (n − 1− u) = n + u + 1.

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Proof

Hence Π1 gives a superstring of S of length at most
rn − (r − 1)(n − 1− u) (a)

Because of (2), this is at most
rn − (r − 1)(n − 1− (r − 1)(n − 1) + w(H)) (b)
which is less than
(r2 − 2r + 2)n − (r − 1)w(H). (c)

The corresponding approximation ratio is

(r2−2r+2)n−(r−1)w(H)
rn−w(H) (3)

Start

Introduction

Overlap graph

De Bruijn
Graphs

Algorithm

Proof

Proof

From (1) and (3) and a simple observation that

0 ≤ w(H)
n ≤ (r − 1) we conclude that the approximation

ratio of the constructed algorithm is

α(r) = max
0≤x≤r−1

{min{ r−
2x
3

r−x ,
(r2−2r+2)−(r−1)x

r−x }}

The maximum of their minimum is attained at x where
they meet, namely

x = r2−3r+2
r− 5

3

.

Plugging in this x gives

α(r) = r2+r−4
4r−6 .

	Introduction
	Overlap graph
	De Bruijn Graphs
	Algorithm
	Proof

