
Lethbridge Collegiate

Programming Contest

September 21, 2013

Division II

A: Risk

B: Complex Numbers

C: Penny Saver

D: Channel Surfing

E: Warmer or Colder

This page is intentionally (almost) blank

A: Risk
LCPC 2013: Division II

We were playing Risk the other day, and we were getting confused about the battles.
There are clear-cut rules laid about about who wins, but for some reason, we just could not
figure it out when the attacker uses three dice and the defender uses two dice. To decide a
battle, compare the highest die each of you rolled. If the attacker’s is higher, the defender
loses one army, otherwise, the attacker loses one army. Now compare the two next-highest
dice and repeat the process.

For example:

Attacker’s Dice:

Defender’s Dice:

We compare the highest die from each person: 6 (attacker) and 5 (defender), so the defender
loses one army. Next, we compare the next-highest dice: 3 (attacker) and 4 (defender), so
the attacker loses one army. In total, each player loses one army.

Input

Input will contain multiple test cases. The first line contains T , the number of test cases to
follow. The next 2T lines contains the input. Each test case contains two lines. The first
line contains three integers, the vales of the attacking dice rolled. The second line contains
two integers, the value of the defending dice rolled. Each dice value will be between 1 and
6, inclusive.

Output

For each test case, output two numbers. First, the number of troops that the attacker loses,
then the number of troops that the defender loses.

Sample Input

2

6 3 1

5 4

6 6 4

6 1

1

Sample Output

1 1

1 1

2

B: Complex Numbers

LCPC 2013: DIVISION II

Some of you may know (and some of you may not know), that there is an extension of the

real numbers known as the Complex numbers (denoted C). Every complex number is of the form

a+bi, where a and b are real numbers. The i is a special non-real number.

Just like the numbers that you are used to, you can do any of the normal operations on complex

numbers (addition, subtraction, multiplication, division, etc.). Addition and subtraction are exactly

how you would expect, just add (or subtract) the corresponding components together. But with

multiplication, things are a little different: it is similar to how you would multiply polynomials: by

distributing. Once you’ve distributed, there is a little bit more simplification. That special symbol,

i, has the special property that i2 = −1.

For this problem, you will be asked to either add, subtract or multiply two complex numbers

(division is too hard, so you don’t have to worry about it).

Input

The input will start with a number T , the number of test cases to follow. Each test case will appear

on exactly one line. On each line, there will be 5 items: a b (op) x y. You may assume that a,

b, x and y are integers and that (op) is one of “+”, “-” or “∗” (without the quotes). The first two

integers represent the first complex number (real part first, then the i-component). The last two

integers represent the second complex number (in the same format as the first). You may assume

that all input integers have absolute value less than 10000.

Output

For each test case, output the simplified result of the computation. Output the answer in the same

format as the numbers in the input.

1

Sample Input

3

1 2 + 3 4

1 2 - 3 4

1 2 * 3 4

Sample Output

4 6

-2 -2

-5 10

Explanation of Sample Output

Test Case 1:

(1+2i)+(3+4i)
= (1+3)+(2+4)i
= 4+6i

Test Case 2:

(1+2i)− (3+4i)
= (1−3)+(2−4)i
= −2−2i

Test Case 3:

(1+2i)(3+4i)
= 3+4i+6i+8i2

= 3+4i+6i+8(−1)
= −5+10i

2

C: Penny Saver

LCPC 2013: Division II

Background

Recently, the penny has been taken out of circulation in Canada. This has altered the
way that cash transactions occur. Here is the Government of Canada’s official statement of
rounding:

Under this guideline, cash transactions will be rounded in a fair and transparent
manner, as illustrated below:

• Amounts ending in 1 or 2 cents are rounded down to the nearest 10 cents;
• Amounts ending in 3 or 4 cents are rounded up to the nearest 5 cents;
• Amounts ending in 6 or 7 cents are rounded down to the nearest 5 cents;
• Amounts ending in 8 or 9 cents are rounded up to the nearest 10 cents;
• Amounts ending in 0 or 5 cents remain unchanged.

The calculation of the Goods and Services Tax (GST) on purchases, whether for
cash or non-cash transactions, will continue to be calculated to the nearest penny
and added to the price. It is only the total cash payment for the transaction that
will be rounded.

A GST of 5% of the transaction amount will be added to each bill. Note that when they
say “to the nearest penny”, they mean 0.5 is rounded up (away from zero). For example, A
bill of $1.02 + GST is $1.07 and a bill of $1.30 + GST is $1.37.

Howard is always looking for interesting ways to save a little bit of money1, so he is going
to exploit this system!

For example, say that an item would normally cost $5.26 (including tax), then Howard
can either pay by credit card (paying the full $5.26) or he can pay in cash (paying the
rounded down value of $5.25), saving him $0.01!

Howard is going to the mall with $K in cash and a credit card that has a credit limit of
$L. This means that the (total) amount of money charged to his credit card may not exceed
$L. He will make n transactions.

Problem

He will process the transactions sequentially in an attempt to save money. (I.e., once he has
made the decision on how to pay for a transaction, he will not be able to change it later).
When making a purchase, he will choose the first item in this list that applies:

• If he does not have enough cash to pay for this transaction, then he will use his credit
card.

1Ask him how he saved 3 cents when he ordered from McDonald’s!

1

• If making this purchase would put him above his credit limit, then he will use cash.

• If the bill would be rounded up when using the rules above, then he will use his credit
card.

• Otherwise, he will use cash.

You may assume that it is possible to pay for all transactions using this algorithm with
the given cash and credit limit.

Input

Input will start with a positive integer T ≤ 100 denoting the number of test cases. Each
test case starts with three integers, 0 ≤ n ≤ 100, 0 ≤ L ≤ 1000 and 0 ≤ K ≤ 1000 – whose
meanings were given above. Each of the next n lines gives the amount before tax of each
transaction. All dollar amounts will be in the form d.cc (i.e., at least one digit before the
decimal and exactly two afterwards).

Output

For each test case, output the case number followed by the total amount of money Howard
spent. Follow the style in the sample output.

Sample Input

2

2 1000 1000

4.25

5.00

2 1 1

0.82

0.83

Sample Output

Case 1: $9.70

Case 2: $1.72

2

D: Channel Surfing
LCPC 2013: Division II

Kayleigh has been getting really mad at Darcy lately. In order to turn on our television,
there is a very simple process of clicking the red “POWER” button (for the cable converter),
then the red “C” button (for the TV), then the blue “B” button (for the surround sound).
Then, to get to the correct channel, you may use the guide by pressing “Menu”, then “Info”
twice (because the “OK” button is broken). Darcy doesn’t understand why it is so hard –
but to appease her, he has bought a remote with only 5 buttons: a red “POWER” and 4
purple buttons (Labelled “A”,“B”,“C” and “D”).

Darcy bought the remote because it was extremely simple to use. He has altered the
programming of the remote so that the POWER button on the remote turns on all of the
required machines. But he isn’t THAT nice! He also programmed the 4 purple buttons to
be similar to the “Channel Up” button – with a twist.

Pressing the “A” button once is equivalent to pressing the “Channel Up” button a times.
That is, the channel number will be increased by a. If, in the process of increasing the
channel, you attempt to go above a maximum channel threshold M , then you will wrap

around to channel 1 and continue increasing (see the examples below for the wrap around

effect). The “B”, “C” and “D” buttons will also have a similar result, but with their own
variables b, c and d. Each of these variables will be no more than 100.

For example, if a = 1, b = 3, c = 4, d = 5 and M = 21, and Kayleigh wants to go from
channel 3 to channel 12, she has a few options: ABD (3 → 4 → 7 → 12) or DC (3 → 8 → 12).
Then, to go back to channel 3, she could press DADA (12 → 17 → 18 → 2 → 3).

Darcy could also be feeling very mean. He could also make it impossible for her to get
from one channel to another. For example, if a = 2, b = 2, c = 2, d = 2 and M = 4, there is
no way to get from channel 1 to channel 2!

So now Kayleigh is upset because she doesn’t know if she can even get to a specific
channel, and even if she can, she thinks that it takes too much time to get to the channel
that she wants to. She needs your help. Can you tell her if she can even get from channel x

to channel y?

Input

Input will contain multiple test cases. Each test case contains 7 integers split onto two lines.
On the first line, there will be three integers, 1 ≤ M ≤ 100, 1 ≤ x, y ≤ M . The second line
will contain 4 positive integers a, b, c and d.

Output

For each test case, output if it is possible to get from channel x to channel y. If it is possible,
output Possible. Otherwise, output Impossible.

1

Sample Input

21 3 12

1 3 4 5

4 1 2

2 2 2 2

Sample Output

Possible

Impossible

2

E: Warmer or Colder
LCPC 2013: Division II

(x0, y0)

Figure 1: The Sample Input

When you were a kid, do you remember play-
ing the Warmer or Colder game? Basically, there
was an object hidden in the room that you were
supposed to find. So you would close your eyes,
and someone would go hide the object. You would
then open your eyes and walk to a different posi-
tion in the room. When you get there, you would
stop and the person who hid the object would say
“Warmer” if you were closer to the object than be-
fore or “Colder” if you aren’t any closer to the ob-
ject than before. You would then make your way to
another point in the room, at which point the per-
son who hid the object would tell you “Warmer”
or “Colder” based on if you were closer than your previous location. This process would
continue until you found the object.

To simplify things, you may think of the room as a two-dimensional plane. You will
always start on the origin, and the object will be hidden at the location (x0, y0). Because I
am such a nice guy, I will tell you the value of y0!

Interactive Input and Output

The input for this problem is different than the normal input for the programming contest.
The first line of input will be two positive integers K ≤ 105 and y0. It it guaranteed that
|x0| ≤ K, |y0| ≤ K.

The input will come from a program that is interacting with yours. You program must
make guesses as to where the object is by outputting 2 integers, x, y. The judging program
will then return one of three verdicts: “Warmer”, “Colder” or “FOUND!” (without quotes).
If you receive one of the first two verdicts, then your program must make another guess.
If the last verdict is output, then you have found the object and must produce no more
output from your program (and your program should exit). Each integer that is guessed
must satisfy |x| ≤ K, |y| ≤ K. Your program may make no more than 1000 guesses.

The image above corresponds to the sample input.

Sample Input/Output

Because this is different than most programming contest questions, the sample input/output
is formatted slightly different. Any line starting with “> ” is assumed to be input for your
program and any line without is output from your program. Note that the “> ” will not
appear in the actual input to your program.

1

> 20 5

3 -3

> Colder

2 4

> Warmer

2 5

> Warmer

7 8

> Colder

0 9

> Warmer

-3 6

> Warmer

-2 5

> FOUND!

Techincal Details

For this problem, please ensure that you flush your output stream after each entry output.
Below are the examples of how to do this for the three supported languages.

C

int main() {

printf("%s\n","Do not forget to flush"); // After every printf,

fflush(stdout); // use fflush(stdout)

}

C++

int main() {

cout << "Do not forget to flush" << endl; // After every cout,

cout << flush; // use flush

}

Java

public class warmcold {

public static void main(String[] args) {

System.out.printf("%s\n","Do not forget to flush"); // After every printf,

System.out.flush(); // use flush()

}

}

2

