Basic Algorithm Analysis

- There are often many ways to solve the same problem.
- We want to choose an efficient algorithm.
- How do we measure efficiency? Time? Space?
- We don't want to redo our analysis every time we reimplement our algorithm, or use a different machine.

Basic Algorithm Analysis

- To analyze the amount of time required, we count the number of operations needed.
- But not all operations require the same amount of time.
- Different compiler/machine may translate the same $\mathrm{C}++$ code to different number/type of instructions.
- Instead, we pick one "representative operation" and count that (e.g. comparisons, variable assignments).
- The idea is that the total amount of time is proportional to the number of representative operations. The constant of proportionality depends on compiler, machine, etc.
- That is, the analysis is dependent only on the algorithm, not on the implementation.

Big-O Notation

- We express the number of operations in "big-O" notation.
- The number of operations depends on the size of input (e.g. number of array elements). Usually denoted n.
- Roughly, "big-O" means "proportional to" for large enough inputs.
- e.g. $O(n)$ means run time is proportional to input size. Doubling the input means roughly doubling the running time.
- e.g. $O\left(n^{2}\right)$ means run time is proportional to the square of input size. Doubling the input means roughly quadrupling the running time.
- We want an algorithm with a small "big-O".
- "Run time" is usually called the (time) complexity.

Worst case vs. Average Case

- Some algorithms behave differently depending on input.
- For example, some sorting algorithms will be very fast if the input is already sorted, but they may be much slower on other cases.
- We can talk about the worst case complexity: how fast will the algorithm run regardless of what input it receives?
- We can also talk about average case complexity: how does it do on average?
- Average case is hard: we need to know what "average" means.
- We will concentrate on worst case complexity.

Searching: Linear Search

```
int find(int A[], int n, int key)
{
    for (int i = 0; i < n; i++)
        if (A[i] == key)
            return i;
    return -1; // not found
}
```

- In the worst case (key is in the last position/not found), we need to do n comparisons.
- The algorithm has $O(n)$ complexity.

Searching: Binary Search

```
int find(int A[], int n, int key)
```

\{
int lo $=0, \mathrm{hi}=\mathrm{n}-1$;
while (lo <= hi) \{
int mid = (lo + hi) / 2;
if (A[mid] == key)
return mid;
else if (key < A[mid])
hi = mid-1;
else
lo = mid+1;
\}
return -1; // not found
\}

Searching: Binary Search

- The array must be sorted.
- The worst case happens if the key is not found.
- Every time the size of the range [lo,hi] is reduced by at least half.
- That means it takes approximate $\log _{2} n$ iterations to reduce [0,n-1] to the empty range.
- Each iteration does a "constant" amount of work, so the algorithm has $O\left(\log _{2} n\right)$ complexity.
- We usually write $O(\log n)$ because logarithms of different bases are related by a constant: $\log _{2} n=\log n / \log 2$

Complexity: Does It Matter?

- For large n, the difference between $O(n)$ and $O\left(\log _{2} n\right)$ is big. The number of iterations:

n	$O(n)$	$O\left(\log _{2} n\right)$
32	32	5
1024	1024	10
1048576	1048576	20

Sorting: Selection Sort

```
for (int i = 0; i < n; i++) {
    int index = find_min(A, i, n);
    swap(A[i], A[index]);
}
```

- Finding the minimum on n elements requires $O(n)$ comparisons.
- With n iterations this becomes $O\left(n^{2}\right)$.
- More precisely, the i-th iteration requires about $n-i$ operations, so the total is:

$$
n+(n-1)+(n-2)+\cdots+2+1=\frac{n(n+1)}{2}=O\left(n^{2}\right)
$$

- $O\left(n^{2}\right)$ is slow. Sorting 10^{6} entries requires roughly 10^{12} operations!

Other "Slow" Sorting Algorithms

- The following common sorting algorithms are also $O\left(n^{2}\right)$:
- Bubble sort
- Insertion sort
- But these algorithms can be $O(n)$ if the array is already sorted.
- Selection sort is always $O\left(n^{2}\right)$ even if the array is already sorted.

Merge Sort

- This is our first fast sorting algorithm.
- The basic idea is this:
- If the array has only one element, it is easy.
- Otherwise, split the array into two halves.
- Recursively sort each half.
- Merge the two sorted lists together.
- The only "real work" is in the merging.

Merge Sort

```
void mergesort(int A[], int start, int end)
{
    if (end - start > 1) {
        int mid = (start+end)/2;
        mergesort(A, start, mid);
        mergesort(A, mid, end);
        merge(A, start, mid, end);
    }
}
```


Merging

Merging is done with a "marching algorithm":

```
    void merge(int A[], int start, int mid, int end)
```

 \{
 int R[SIZE], i1, i2, j;
 i1 = start; i2 = mid; j = 0;
 while (i1 < mid \&\& i2 < end) \{
 if (A[i1] < A[i2]) // A[i1] comes next
 R \([j++]=A[i 1++] ;\)
 else
 \(R[j++]=A[i 2++] ;\)
 \}
 copy (A+i1, A+mid, R+j);
 copy (A+i2, A+end, \(R+j+(m i d-i 1))\);
 copy (R, R+(end-start), A+start);
 \}

Merging

- Notice that each loop iteration copies one element from either half.
- The two copy ()'s merge the leftovers.
- Each element is copied once into R and once back into A.
- So merging has complexity O (end - start).
- Notice that we need an auxillary array.

Merge Sort: Complexity

- At the top level, merging takes $O(n)$ operations.
- At the next level, merging takes $O(n / 2)$ operations on each half, but there are two halves. Total: $O(n)$.
- The next level works on quarters: $O(n / 4)$ for merging, but there are 4 quarters. Total: $O(n)$.
- Every level requires $O(n)$ work.
- How many levels are there?
- Each level the size is reduced by half: $O\left(\log _{2} n\right)$ levels
- Total complexity: $O(n \log n)$.

Quicksort

- A very common "fast" sorting algorithm.
- It is commonly considered to be one of the fastest algorithms.
- Same complexity as merge sort on average, but "proportionality constant" is much smaller.
- Requires relatively little extra space.
- Like mergesort, quicksort is recursive.

Quicksort

The idea:

- If there is one element or less, the array is sorted.
- Otherwise, choose a pivot element.
- Partition the array so all elements to the left of the pivot are no bigger than the pivot, and all elements to the right are larger.
- Recurse on the subarrays to the left and right of the pivot.

The only real work is done in the partitioning.

Quicksort

void quicksort (int $A[]$, int start, int end) \{
if (end - start > 1) \{ int pivot = partition(A, start, end); quicksort(A, start, pivot); quicksort(A, pivot+1, end);
\}
\}

Partitioning

- The pivot can be any element in the array. It is easiest to choose the first one (A [start])
- One way: scan from left to right, and maintain two indices: i and j so that
$-\mathrm{A}[$ start+1..i) are $\leq \mathrm{A}$ [start]
$-A[i, j)$ are $>A[s t a r t]$
- Initially, i $=\mathrm{j}=$ start+1.
- We go through $j=$ start+1 to end.
- If $A[j]>A[s t a r t]$, just increment j.
- Otherwise, swap A[j] and A[i] and increment both i and j.
- At the end, swap A[start] and A[i-1].

Partitioning

```
int partition(int A[], int start, int end)
```

\{
int i, j;
i = start+1;
for (j = start+1; $j<e n d ; j++$)
if (A[j] <= A[start])
swap(A[i++], A[j]);
swap(A[start], A[i-1]);
return i-1; // return where the pivot is
\}

Complexity

- The sizes of the two subarrays depend on the choice of pivot.
- If we are lucky, the two subarrays are roughly half the size of the original.
- Since partition takes $O(n)$ operations, quicksort has $O(n \log n)$ complexity (same reasoning as merge sort).
- If we are unlucky, the pivot is the smallest/largest element. Since we reduce the size by 1 , we need $O(n)$ levels and the complexity is $O\left(n^{2}\right)$.
- The worst case of quicksort happens when the array is already sorted (or sorted in reverse)!
- On average, the complexity is $O(n \log n)$.

Another Partitioning Algorithm

We can move from both ends:

```
int partition(int A[], int start, int end)
{
    int pivot = A[start];
    int i = start+1, j = end-1;
    while (i <= j) {
        while (A[i] <= pivot) i++;
        while (pivot < A[j]) j--;
        if (i < j) swap(A[i], A[j]);
    }
    swap(A[start], A[j]);
    return j;
}
```

This is slightly more efficient but more difficult to get correctly (still $O(n)$).

Another Partitioning Algorithm

Did you see the $\operatorname{bug}(\mathrm{s})$?

Optimizations

- Instead of choosing the first element as pivot, we can choose a random element. It is unlikely to be the smallest/largest.
- Another common approach: pick three elements and use the middle one as pivot.
- "Fat pivot": partition array into three subarrays: less than the pivot, equal to the pivot, and greater than the pivot. If there are many equal elements, the left and right subarrays are smaller.
- Recursion has overhead (function calls): it is worthwhile only for large arrays. When the size of subarray is small enough, use a different sorting algorithm (e.g. insertion sort).
- The "cutoff" point to switch between algorithms depends on compiler, machine, etc. It needs to be tuned experimentally.

Generic Sorting

- The STL sorting algorithms are "generic": it works as long as operator< is defined on the elements (or with a supplied comparison function).
- Also, it uses the standard STL iterators to specify the range (random access iterators).
- Our code can be easily adapted for templates:
- Instead of comparing by <=, use OR of < and == (or use less_equal from <functional>).
- Since the start and end iterators are random access, we can use iterator arithmetic to jump to particular elements in the range.

Data Structure: Heaps

- A heap is a binary tree with the following properties:
- each element in the heap is \geq its two children (if they exist);
- the tree is completely filled on all levels except possibly the lowest, which is filled from the left.
- Because of this property, we can represent a heap of n elements in an array of size n, such that:
- The two children of node i is in positions $2 i+1$ and $2 i+2$.
- The parent of node i is in position $\lfloor(i-1) / 2\rfloor$.
- Note: the word "heap" is also used to describe dynamically allocated memory. This is a completely different use of this word.

Heaps: Sifting Up

Suppose we have a heap A of size $n-1$ and we want to add an extra element to A[n-1]. We can fix up the heap by "sifting up":

```
void sift_up(int A[], int n)
{
    int i;
    for (i = n-1; i > 0 && A[i] > A[(i-1)/2]; i = (i-1)/2)
        swap(A[i], A[(i-1)/2]);
}
```

In other words, if A [i] is larger than its parent, we swap A [i] with its parent and repeat.

Heaps: Sifting Up

The sifting up procedure is correct, because:

- We assume that the array has the heap property except possibly with $\mathrm{A}[\mathrm{i}]$ and its parent (true at the beginning).
- At each iteration, if the heap property is violated, we swap A[i] with its parent. Otherwise, we are done.
- If $A[i]>A[(i-1) / 2]$, then after swapping $A[(i-1) / 2]$ is still \geq its children.
- We can also show that after swapping A[i] is still \geq its children (we won't prove this formally).

Heaps: Sifting Up

- The complexity is the height of the tree, which is $O(\log n)$.
- To build a heap, we start from a heap of size 1 and repeatedly sift up additional elements:

$$
\begin{aligned}
& \text { for }(i=2 ; i<=n ; i++) \\
& \quad \text { sift_up }(A, i) ;
\end{aligned}
$$

- This has complexity $O(n \log n)$.
- More precisely, it is $O(\log 2+\log 3+\cdots+\log n)$, which simplifies to $O(n \log n)$, but some math is needed to understand this...

Heaps: Sifting Down

- Suppose that we change the first element A [0] in a heap.
- Then the heap property is preserved except perhaps between A [0] and its children (i.e. A [0] is too small).
- We can fix it by "sifting down": swap it with the larger of the two children.
- Because we choose the larger child, the heap property is restored except for the heap rooted at the swapped child.
- Move down and repeat.
- Again, the complexity of each sifting down operation is $O(\log n)$.

Heaps: Sifting Down

```
void sift_down(int A[], int n)
{
    int i = 0;
    while (2*i+1 < n) { // there is a child
        int child = 2*i+1; // left child
        if (child+1 < n && A[child] < A[child+1])
        child++; // check right child, if it exists
        if (A[i] >= A[child])
            break; // heap property is good
            swap(A[i], A[child]);
            i = child;
    }
}
```


Heaps: Extracting the Maximum

- The maximum is at the root of the heap.
- To remove the maximum, just put $\mathrm{A}[\mathrm{n}-1]$ into the root and sift down (after decrecmenting n).
- Complexity is $O(\log n)$.

Priority Queues

- Heaps can be used to implement priority queues.
- Insertion has $O(\log n)$ complexity.
- Deleting the maximum has $O(\log n)$ complexity.
- Finding the maximum element (without deleting it) has $O(1)$ complexity (i.e. constant time).

Heap Sort

A heap can be used to sort an array of n elements as follows.

- Build a heap with the n elements: $O(n \log n)$.
- Repeatedly extract the maximum of the heap and put the maximum at the correct spot. Decrease the size of the heap by 1. $O(\log n)$ each iterations gives $O(n \log n)$.
- At any time, the first portion of the array is a heap, the second portion is the sorted list.
- Complexity is $O(n \log n)$.

Heap Sort

void heapsort(int A[], int n)
\{
// build the heap
for (int i $=2$; i <= n; i++)
sift_up(A, i);
for (int $i=n-1$; $i \quad>=1$; i--) $\{$ swap(A[0], A[i]);
sift_down(A, i);
\}
\}

Sorting: Can we do better?

- The fastest sorting algorithm we have seen has $O(n \log n)$ complexity.
- If the data to be sorted is "special", we can do better.
- e.g. if we are sorting 0 and 1's, we can just count the number of 0 's and number of 1's. This has $O(n)$ complexity.
- "Sorting by counting" is fast as long as the number of different values is "small".
- We cannot do better than $O(n)$ because we have to look at every array element.

Sorting: Can we do better?

- It can be proved that if you sort by comparing elements, it is impossible to have an algorithm that has a better worst case complexity than $O(n \log n)$ (take CS 3620 if you want a precise statement).
- It does not matter how smart you are. "Impossible" means impossible.
- It means that if you have any sorting "algorithm" which does better than $O(n \log n)$ in the worst case, either:
- the complexity analysis is wrong, or
- there is at least one input array on which your "algorithm" gives the wrong answer.

