
CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Dynamic Data Structures

• We have seen that the STL containers vector, deque, list, set and

map can grow and shrink dynamically.

• We now examine how some of these containers can be implemented in

C++.

• To simplify the syntax, we assume that the data type to be stored in the

containers are int. But this can be generalized using templates.

Linked Lists 1 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Linked Lists

• In a linked list, each element has two components:

– the data

– a pointer to the next element

• If the pointer to the next element is null, then there is no next element

(i.e. the end of the list).

• To access the entire list, we need a pointer to the first element (the head

of the list).

• An element is also often called a node.

Linked Lists 2 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

The List Element

class Element {

public:

int data; // the data to store

Element *next; // pointer to next element

Element(Element *n, int d) : next{n}, data{d} { }

};

Element *first; // first element in the list

Linked Lists 3 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Operations on Linked Lists

• To initialize an empty list, simply set first = nullptr.

• To add an element to the beginning of the list:

first = new Element(first, data);

• To traverse a list from beginning to end:

for (Element *p = first; p != nullptr; p = p->next)

cout << p->data << ’ ’;

cout << endl;

• Be sure not to dereference a null pointer:

for (Element *p = first; p && p->data != 10; p = p->next)

;

// p points to the first occurrence of 10 in the list.

// What happens if we do not check if p is not null?

Linked Lists 4 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Inserting Elements into Linked Lists

• We have seen how to insert elements to the beginning of the list.

• To insert at the end, we have to find the last element in the list (if there

is one), and insert a new element:

Element *p;

for (p = first; p->next; p = p->next)

;

p->next = new Element(nullptr, data);

• What happens if the list is empty?

• To insert a new element after the element pointed to by p:

p->next = new Element(p->next, data);

• How do you insert an element before p?

Linked Lists 5 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Removing Elements from Linked Lists

• To remove the first element (assume list is nonempty):

Element *temp = first; // need to save it first

first = first->next;

delete temp;

• To remove the element after the one pointed to by p (if it exists):

Element *temp = p->next;

p->next = p->next->next;

delete temp;

• How do remove a specific element or the last element?

Linked Lists 6 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Doubly Linked Lists

• Each element contains pointers to the next element and also to the

previous element (nullptr for first element in the list).

• To avoid handling empty lists as a special case, it is common to insert a

dummy node:

// data is not used

first = new Element(nullptr, nullptr, data);

first->next = first->prev = first;

• To see if the list is empty, check that first->next == first.

• The list is circular.

Linked Lists 7 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Inserting Elements

• To insert an element before the one pointed to by p (assume

p != first):

Element *e = new Element(p, p->prev, data);

p->prev->next = e;

p->prev = e;

• To insert an element after the one pointed to by p:

Element *e = new Element(p->next, p, data);

p->next->prev = e;

p->next = e;

Linked Lists 8 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Removing Elements

• To remove the element pointed to by p (assume p != first):

p->prev->next = p->next;

p->next->prev = p->prev;

delete p;

Linked Lists 9 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Linked Lists as Objects

• Private member: first to point to dummy node.

• Constructor allocates dummy node.

• Destructor removes every node.

• Copy constructor and assignment operator needs deep copying.

Linked Lists 10 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Linked List: Efficiency

• Each of the following operations are “fast”: insert, remove, move one

element forward/backward.

• Here, “fast” means that regardless of how many elements there are in

the list, each operation takes about the same amount of time.

• For containers such as vectors, inserting an element in the middle may

require all elements to be moved: it gets slower as the number of

elements increases.

Linked Lists 11 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Stacks and Queues

• Stacks and queues can be implemented using singly linked lists.

• Stacks:

Push: add element to the beginning of list

Pop: remove first element of the list

Top of stack = beginning of list.

• Queues (store pointers to head and tail of list):

Initialization: head = tail = nullptr;

Push: add element to end of list (after tail if not nullptr)

Pop: remove first element

head/tail needs to be adjusted after each operation.

Linked Lists 12 – 13 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Iterators for Doubly Linked Lists

• An iterator class can be declared within a list class (nested class).

• Only private member is a pointer to the element.

• ++ and --: overloaded to move to next/previous element. Note that

there are both pre-increment and post-increment.

• *: overloaded to return a reference to the data.

• begin(), end(): first->next and first.

• You can declare reverse iterators too.

Linked Lists 13 – 13 Howard Cheng


