CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Review of Data Types'

Integer types: int, long long, char, bool, enum:

e unsigned: stored as binary

e signed: two’s complement

Floating-point types: float, double
e sign bit, exponent, mantissa
e double has more bits in mantissa (higher precision)

e round-off errors: don’t use == or !=
Arrays: collection of objects of the same type

Classes/structs: collection of objects of possibly different types

_ _/

Pointers 1-23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

_

~

Memory Addresses I

Each variable is stored in memory

The memory consists of a number of cells, each with a unique number
called the address

The number of bytes used depends on the type of variable (e.g. char = 1
byte, int = 4 bytes on our machines)

To find out how many bytes used by a variable, used the sizeof

operator:
e.g. sizeof (int), sizeof (double)
Since there may be multiple programs running at the same time, the

exact memory address of a variable may be different each time a

program is run. We cannot use absolute addresses inside our programs.

_/

Pointers 2 - 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Types of Main Memory'

Stack: e grows and shrinks at the “top”

e local variables are “pushed” onto the stack when the function starts

(allocation)

e local variables are “popped” off the stack when the function exits
(deallocation)

e handled automatically by compiler

e number of local variables is fixed at compile time

Heap: e memory allocated and deallocated dynamically
e programmer specifies when (and how much) to allocate and deallocate
e memory allocated until explicitly deallocated

e allows size to be determined at run time

_ _/

Pointers 3—23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

The & Operator'

e Take the address of a variable:
int 1i;
cout << &i << endl; // prints the address of i

e What if we want to store the address in a variable?

e We need pointers

_ _/

Pointers 4 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Pointers . \

e A pointer is a variable that stores the address of a variable.

e To declare a pointer, we also need to specify which data type it points to

(so it knows the size):

int *iPtr; // pointer to an integer
char *cl, *c2; // pointers to characters
1Ptr = &i;

cl = &c;

c2 = cl;

e Special address nullptr (old C++: 0 or NULL): means pointer to nothing

e Note: pointers (like other variables) are uninitialized when declared and

_ _/

Pointers 5—23 Howard Cheng

can point to anywhere

CS 2620 Fundamentals of Programming II University of Lethbridge

Dereferencing Pointers I

e We can refer to the variable pointed to by a pointer using the

dereferencing operator *:

int a = 10;
int *pl, *p2;

pl = p2 = &a;

xpl = 15; // lvalue: can be assigned to
cout << *p2 << endl; // aliasing: changing *pl changes
// *p2 too!

e To dereference a pointer to a class and refer to its members, use
(xp) .£(O) or p—>f() as a shorthand.

_ _/

Pointers 6 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Constant Pointers, Pointers to Constants'

const int a = 100, b = 200; // constants

int ¢ = 300;

const int *pa = &a; // pointer to constant
int *const pc = &c; // constant pointer
xpa = 10; // Error

pc = &b; // Error

pa = &b; // Okay

*pc = 10; // Okay

_ _/

Pointers 7 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

%

Arrays and Pointers' \

Arrays are treated the same way as constant pointers—name of array
points to the first element

If we have int A[10]; Then:
*A 1S the same as A[O]

* (A+1) is the same as A[i] (* has higher precedence than +)

A is the same as &A[O]

A+i is the same as &A[i]

When passing arrays as parameters, int A[] is the same as

int *const A

Can also do p++, p——, p—q. Be careful with the last one!

Pointer arithmetic can be “dangerous” /

Pointers 8 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Allocating Memory Dynamically' \

e The new operator is used to allocate memory from the heap.

e Must specify type and number (for arrays) of objects.
e A pointer to the memory allocated is returned (if successful)

e If unsuccessful (e.g. out of memory), an exception is generated

(“crashes”, for now)

e Syntax:
<type> *p;
p = new <type>; // allocate object, default constructor

p = new <type>(10); // call constructor to initialized
p = new <type>[n]; // allocate array of size n
// default constructor called

Ko Allocated memory is uninitialized for basic types /

Pointers 9 - 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

_

~

Deallocating Memory I

Unlike local variables, memory allocated dynamically is used until

explicitly deallocated.

Should deallocate as soon as the memory is no longer needed—other

parts of the program (or other programs) can re-use it

Syntax:
delete p; // deallocate single object
deletel] p; // deallocate array

Deleting a null pointer does nothing.

Each delete must have a matching new. Deleting a pointer twice is an

_/

error.

Pointers 10 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Common Errors . \

Dereferencing uninitialized or null pointer: an uninitialized pointer

can point anywhere!

Dangling pointer: two pointers to the same location, which has been
returned to the heap by deleting one of the pointers. The other pointer
is no longer valid.

int *pl = new int;

int *p2 = pil,;

delete pl;

xp2 = 10; // error

Memory leak: not returning memory, or losing reference to it.

int *pl = new int;
pl = new int; // the address to old

\\\\ // location is gone! 4///

Pointers 11 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Common Errors .

e Errors with pointers are hard to debug.

e A stray pointer may point to another variable—it gets overwritten

instead of a run-time error.

e A stray pointer may also point to important “system information”.

Overwriting this can result in unpredictable behaviour.

e Memory leak will not result in a run-time error unless you run out of

memory.

e Programs with errors may work on some machines but not others.

_ _/

Pointers 12 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Example: Dynamic Array'

int n;
cin >> n;

int *A = new int[n]; // allocate n elements

// change size to 2n

int *temp = A; // don’t lose the old one!

A = new int[2*n];

for (int i = 0; i < n; i++) { // copy old elements
A[i] = templ[i];

+
delete[] temp; // delete the old array
temp = nullptr; // ensure no dangling pointer

_ _/

Pointers 13 — 23 Howard Cheng

CS

2620 Fundamentals of Programming II University of Lethbridge

-~

_

Example: 2-dimensional Dynamic Array'

int **A;
A = new int *[m]; // first dimension
for (int i = 0; 1 < m; i++) {

A[i] = new int[n];

for (int 1 = 0; i < m; i++) {
delete[] A[i]; // delete the inner dimensions first

}
delete[] A;

~

_/

Pointers 14 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
References '

e A reference is just an alias to the same variable. It must be initialized

when declared.

int a = 10;
int &b = a;
b = 20; // changes a too

e There is no need to dereference a reference.

e It cannot be changed once assigned. i.e. It can be treated as a constant

pointer.

e Mostly used for parameter passing.

_ _/

Pointers 15 - 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Pointers to Functions'

e Pointer to a function: points to the address where the code for the

function is stored.
e A function name is the starting address of its code.

e Definition:

returnType (*ptrName) (<parameterTypes>);

e A pointer to a function can be used to call the function it points to.

_ _/

Pointers 16 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Pointers to Functions'

int (*calc) (int x);

bool (*compare) (int A, int B);

int sqr(int n) { return n*n; }
int cube(int n) { return n*n*n; }
calc = sqr;

calc = cube;

bool same(int x, int y) { return x == y; }

compare = Sale,

_ _/

Pointers 17 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Pointers to Functions'

Usually passed as a parameter to function

void transform(int A[], int n, int (*f) (int)) {
for (int i = 0; i < n; i++) {
A[i] = £(A[i]);

transform(A, n, cube); // cube every element

_ _/

Pointers 18 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Type Conversions I

e Automatic

— arithmetic: narrow to wide is okay; wide to narrow may lose

precision /overflow
— bool: 0 is false, nonzero is true
— arrays: array name is converted to constant pointer to first element
— functions: function name converted to pointer to function

— nullptr: can be automatically converted to bool
e Explicit
— use static_cast

— avoid old style cast: i.e. (double)x.

_ _/

Pointers 19 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Miscellaneous I

e (C++11) array class: acts like an array but provide some convenience

features such as copying and comparing arrays.

e (C++11) “smart pointers”: prevent aliasing, dangling pointers, memory

leak. There are many kinds to choose from.

e (C++11) auto variable type for complicated data types.

_ _/

Pointers 20 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Vectors |

e It is often convenient to have an array that grows automatically when

needed.

e A vector is exactly what we need. It is a container and can contain any

type (but all objects must have the same type).

e Syntax:

#include <vector>

using namespace std;

vector<int> A; // a vector of int

vector<char *> B; // a vector of char *
vector<double> C(3); // a vector of 3 doubles (0.0)
vector<int> primes { 2, 3, 5, 7, 11, 13, 17 }; // C++11

_

Pointers 21 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Vectors |

e Other constructors: see references

e To get the size of vector: A.size()

e ith element: A[i], as long as ¢ is between 0 and size-1. e.g.

for (int i = 0; i < A.size(); i++)

cout << A[i] << endl;

e Can assign or compare a vector:

bool t = (vl == v2); // true if all elements of vl and v2
// are the same, and
// vl.size() == v2.size()

vl = v2; // each member of v2 is copied to vl

_ _/

Pointers 22 — 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Vectors I

e To grow a vector, use push_back():

vector<int> v;
v.push_back(4); v.push_back(3); v.push_back(2);
// v has elements [4, 3, 2]

e Use pop_back() to shrink a vector.

e See any C++ reference web site for other functions.

_

~

_/

Pointers 23 — 23 Howard Cheng

