
CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Review of Data Types

Integer types: int, long long, char, bool, enum:

• unsigned: stored as binary

• signed: two’s complement

Floating-point types: float, double

• sign bit, exponent, mantissa

• double has more bits in mantissa (higher precision)

• round-off errors: don’t use == or !=

Arrays: collection of objects of the same type

Classes/structs: collection of objects of possibly different types

Pointers 1 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Memory Addresses

• Each variable is stored in memory

• The memory consists of a number of cells, each with a unique number

called the address

• The number of bytes used depends on the type of variable (e.g. char = 1

byte, int = 4 bytes on our machines)

• To find out how many bytes used by a variable, used the sizeof

operator:

e.g. sizeof(int), sizeof(double)

• Since there may be multiple programs running at the same time, the

exact memory address of a variable may be different each time a

program is run. We cannot use absolute addresses inside our programs.

Pointers 2 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Types of Main Memory

Stack: • grows and shrinks at the “top”

• local variables are “pushed” onto the stack when the function starts

(allocation)

• local variables are “popped” off the stack when the function exits

(deallocation)

• handled automatically by compiler

• number of local variables is fixed at compile time

Heap: • memory allocated and deallocated dynamically

• programmer specifies when (and how much) to allocate and deallocate

• memory allocated until explicitly deallocated

• allows size to be determined at run time

Pointers 3 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

The & Operator

• Take the address of a variable:

int i;

cout << &i << endl; // prints the address of i

• What if we want to store the address in a variable?

• We need pointers

Pointers 4 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Pointers

• A pointer is a variable that stores the address of a variable.

• To declare a pointer, we also need to specify which data type it points to

(so it knows the size):

int *iPtr; // pointer to an integer

char *c1, *c2; // pointers to characters

iPtr = &i;

c1 = &c;

c2 = c1;

• Special address nullptr (old C++: 0 or NULL): means pointer to nothing

• Note: pointers (like other variables) are uninitialized when declared and

can point to anywhere

Pointers 5 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Dereferencing Pointers

• We can refer to the variable pointed to by a pointer using the

dereferencing operator *:

int a = 10;

int *p1, *p2;

p1 = p2 = &a;

*p1 = 15; // lvalue: can be assigned to

cout << *p2 << endl; // aliasing: changing *p1 changes

// *p2 too!

• To dereference a pointer to a class and refer to its members, use

(*p).f() or p->f() as a shorthand.

Pointers 6 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Constant Pointers, Pointers to Constants

const int a = 100, b = 200; // constants

int c = 300;

const int *pa = &a; // pointer to constant

int *const pc = &c; // constant pointer

*pa = 10; // Error

pc = &b; // Error

pa = &b; // Okay

*pc = 10; // Okay

Pointers 7 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Arrays and Pointers

• Arrays are treated the same way as constant pointers—name of array

points to the first element

• If we have int A[10]; Then:

*A is the same as A[0]

(A+i) is the same as A[i] (has higher precedence than +)

• A is the same as &A[0]

A+i is the same as &A[i]

• When passing arrays as parameters, int A[] is the same as

int *const A

• Can also do p++, p--, p-q. Be careful with the last one!

• Pointer arithmetic can be “dangerous”

Pointers 8 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Allocating Memory Dynamically

• The new operator is used to allocate memory from the heap.

• Must specify type and number (for arrays) of objects.

• A pointer to the memory allocated is returned (if successful)

• If unsuccessful (e.g. out of memory), an exception is generated

(“crashes”, for now)

• Syntax:

<type> *p;

p = new <type>; // allocate object, default constructor

p = new <type>(10); // call constructor to initialized

p = new <type>[n]; // allocate array of size n

// default constructor called

• Allocated memory is uninitialized for basic types

Pointers 9 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Deallocating Memory

• Unlike local variables, memory allocated dynamically is used until

explicitly deallocated.

• Should deallocate as soon as the memory is no longer needed—other

parts of the program (or other programs) can re-use it

• Syntax:

delete p; // deallocate single object

delete[] p; // deallocate array

• Deleting a null pointer does nothing.

• Each delete must have a matching new. Deleting a pointer twice is an

error.

Pointers 10 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Common Errors

Dereferencing uninitialized or null pointer: an uninitialized pointer

can point anywhere!

Dangling pointer: two pointers to the same location, which has been

returned to the heap by deleting one of the pointers. The other pointer

is no longer valid.

int *p1 = new int;

int *p2 = p1;

delete p1;

*p2 = 10; // error

Memory leak: not returning memory, or losing reference to it.

int *p1 = new int;

p1 = new int; // the address to old

// location is gone!

Pointers 11 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Common Errors

• Errors with pointers are hard to debug.

• A stray pointer may point to another variable—it gets overwritten

instead of a run-time error.

• A stray pointer may also point to important “system information”.

Overwriting this can result in unpredictable behaviour.

• Memory leak will not result in a run-time error unless you run out of

memory.

• Programs with errors may work on some machines but not others.

Pointers 12 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example: Dynamic Array

int n;

cin >> n;

int *A = new int[n]; // allocate n elements

...

// change size to 2n

int *temp = A; // don’t lose the old one!

A = new int[2*n];

for (int i = 0; i < n; i++) { // copy old elements

A[i] = temp[i];

}

delete[] temp; // delete the old array

temp = nullptr; // ensure no dangling pointer

Pointers 13 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example: 2-dimensional Dynamic Array

int **A;

A = new int *[m]; // first dimension

for (int i = 0; i < m; i++) {

A[i] = new int[n];

}

for (int i = 0; i < m; i++) {

delete[] A[i]; // delete the inner dimensions first

}

delete[] A;

Pointers 14 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

References

• A reference is just an alias to the same variable. It must be initialized

when declared.

int a = 10;

int &b = a;

b = 20; // changes a too

• There is no need to dereference a reference.

• It cannot be changed once assigned. i.e. It can be treated as a constant

pointer.

• Mostly used for parameter passing.

Pointers 15 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Pointers to Functions

• Pointer to a function: points to the address where the code for the

function is stored.

• A function name is the starting address of its code.

• Definition:

returnType (*ptrName)(<parameterTypes>);

• A pointer to a function can be used to call the function it points to.

Pointers 16 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Pointers to Functions

int (*calc)(int x);

bool (*compare)(int A, int B);

int sqr(int n) { return n*n; }

int cube(int n) { return n*n*n; }

calc = sqr;

calc = cube;

bool same(int x, int y) { return x == y; }

compare = same;

Pointers 17 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Pointers to Functions

Usually passed as a parameter to function

void transform(int A[], int n, int (*f)(int)) {

for (int i = 0; i < n; i++) {

A[i] = f(A[i]);

}

}

transform(A, n, cube); // cube every element

Pointers 18 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Type Conversions

• Automatic

– arithmetic: narrow to wide is okay; wide to narrow may lose

precision/overflow

– bool: 0 is false, nonzero is true

– arrays: array name is converted to constant pointer to first element

– functions: function name converted to pointer to function

– nullptr: can be automatically converted to bool

• Explicit

– use static_cast

– avoid old style cast: i.e. (double)x.

Pointers 19 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Miscellaneous

• (C++11) array class: acts like an array but provide some convenience

features such as copying and comparing arrays.

• (C++11) “smart pointers”: prevent aliasing, dangling pointers, memory

leak. There are many kinds to choose from.

• (C++11) auto variable type for complicated data types.

Pointers 20 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Vectors

• It is often convenient to have an array that grows automatically when

needed.

• A vector is exactly what we need. It is a container and can contain any

type (but all objects must have the same type).

• Syntax:

#include <vector>

using namespace std;

vector<int> A; // a vector of int

vector<char *> B; // a vector of char *

vector<double> C(3); // a vector of 3 doubles (0.0)

vector<int> primes { 2, 3, 5, 7, 11, 13, 17 }; // C++11

Pointers 21 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Vectors

• Other constructors: see references

• To get the size of vector: A.size()

• ith element: A[i], as long as i is between 0 and size-1. e.g.

for (int i = 0; i < A.size(); i++)

cout << A[i] << endl;

• Can assign or compare a vector:

bool t = (v1 == v2); // true if all elements of v1 and v2

// are the same, and

// v1.size() == v2.size()

v1 = v2; // each member of v2 is copied to v1

Pointers 22 – 23 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Vectors

• To grow a vector, use push_back():

vector<int> v;

v.push_back(4); v.push_back(3); v.push_back(2);

// v has elements [4, 3, 2]

• Use pop_back() to shrink a vector.

• See any C++ reference web site for other functions.

Pointers 23 – 23 Howard Cheng

