
CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

The Standard Template Library

• The Standard Template Library (STL) is a collection of commonly used

containers and algorithms.

• They are implemented with templates so they can be used with a variety

of data types.

• Two main categories: containers and algorithms

• Containers: template classes that deal with storing and accessing

collection of objects in various ways. (e.g. vector)

• Algorithms: template functions which perform common tasks (e.g.

sorting a collection of objects)

• We will talk about the most common containers and algorithms.

The Standard Template Library 1 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Containers

• Containers allow the programmer to store collection of objects.

• There are many different containers with different characteristics.

• We have seen vector: similar to an array, but can grow and shrink

dynamically.

• Another class deque is almost the same as vector: the only difference is

that there is push_front() and pop_front() as well.

• deque stands for “double-ended queue”.

• vector and deque are “random-access” containers: you can access any

element in the container just as easily (by []).

• Other containers may be “forward containers” or “reversible containers”.

i.e. the elements are accessed from beginning to end (or from end to

beginning).

The Standard Template Library 2 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Containers

There are two broad types of containers

Sequences: the elements are arranged in a “linear” order. You can insert

and remove elements at specified positions. (e.g. vector, deque, list)

Associative Containers: allows access of elements indexed by keys. e.g.

keys may be student ID, and the associated information may be grade.

You can insert and remove elements, but not at a specific location. (e.g.

set, multiset, map, multimap)

The Standard Template Library 3 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Container Adaptors

• Container Adaptors are special containers.

• They are special in that the elements can only be accessed in a certain

way.

• stack: can only insert or remove elements at the “top”.

• queue: can only insert at one end and remove at the other end.

• priority_queue: can insert an element, and only remove the “largest”

element.

The Standard Template Library 4 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Iterators

• Iterators provide a uniform way of accessing elements in different types

of containers (except container adapters).

• They work like pointers: they point to elements in the container.

• You can dereference iterators (*, ->), increment (++), decrement (--)

and do iterator arithmetic (like pointer arithmetic)

• These operations are done with the same operators you used for pointers

(through operator overloading).

• Many STL algorithms use iterators to specify the range in a container to

operate on. You can use pointers in these too!

The Standard Template Library 5 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Iterators

• The basic way to declare an iterator for a container is:

container::iterator i;

• For example, vector<int>::iterator i;

• An iterator for one type of container is different from an iterator for

another type of container (e.g. int * is different from char *).

• Every container (other than container adapters) has begin() and end()

member functions.

• begin(): returns an iterator that points to the first element in the

container. (e.g. in an array A, A is a pointer to the first element.)

• end(): returns an iterator that points to one element past the end of

the container. (e.g. in an array A of size n, A+n points to

one-past-the-end.)

The Standard Template Library 6 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Iterators

• A typical loop to run through the elements in a container:

list<double> L;

// code to put elements into L

list<double>::iterator it;

for (it = L.begin(); it != L.end(); ++it)

cout << *it << endl;

• We use ++it instead of it++ for efficiency.

• We can also use the loop above with pointers if begin() and end() are

defined appropriately.

• Order of elements for sequences: based on the order we used to build the

sequence.

• Order of associative containers: sorted based on keys (from smallest to

largest).

The Standard Template Library 7 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Range-based for loops

• New in C++11:

list<double> L;

// code to put elements into L

for (double d : L) {

cout << d << endl;

}

• This is equivalent to the iterator version above.

• Use auto to automatically deduce type (useful in template functions).

• Use reference if you want to modify the elements.

• Use constant reference if you do not want copying (and do not want to

change elements).

The Standard Template Library 8 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Iterators

There are a number of different types of iterators.

• Iterators to constants (const_iterator): analogous to pointers to

constants—you cannot change what they point to.

• Reverse iterators (reverse_iterator): move in reverse order. Use

rbegin() and rend() (why can’t you use normal iterators and --it?)

• Reverse iterators to constants (const_reverse_iterator).

The Standard Template Library 9 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Iterators

Another way to look at iterators:

Forward: supports increments (all iterators we study)

Bidirectional: supports increments and decrements (most iterators we

study)

Random Access: supports increments, decrements, and iterator arithmetic

(i.e. just like pointers). Only supported by vector and deque.

The Standard Template Library 10 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Defining Intervals with Iterators

• Many member functions of containers operate on a section (interval) of

the container.

• An iterval is usually specified by an iterator pointing to the beginning,

and an iterator pointing to one-past-the-end. We usually denote the

interval as [begin, end).

• For arrays, we can use A+i, A+j to refer to the interval A[i..j-1].

• To specify the whole container, use begin() and end() for the container.

The Standard Template Library 11 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Operations with Iterators

If C is a sequence and p, i, and j are iterators to the appropriate data types:

• seq<type> C(i, j): constructs a sequence C and initialize it with the

elements in [i,j). Note that i and j are iterators to a different

container (can be a different type, but element type is the same). They

can even be pointers to array elements.

e.g. vector<int> v(A, A+5); If A is an integer array, this initializes v

to the first 5 elements of A.

• C.assign(i, j): similar to above, except it is an assignment.

• C.insert(p, e): inserts the value e into the position p. p must be an

iterator for C.

• C.insert(p, n, e): inserts n copies of e into the position p.

The Standard Template Library 12 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Operations with Iterators

• C.insert(p, i, j): inserts the elements in [i,j) into the position p.

• C.erase(p): erases the element at position p.

• C.erase(i, j): erases the elements in the interval [i,j). i and j must

be iterators for C.

The Standard Template Library 13 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Algorithms

• There are a number of commonly used algorithms in STL.

• Need to #include <algorithm>.

• Many algorithms work on containers and use iterators to specify

intervals.

• That means they work on arrays and pointers too.

The Standard Template Library 14 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Insert Iterators

• We often want to insert elements to the end of a container.

• But end() returns one-past-the-end, and does not point to a valid

location.

• Use back_inserter(). e.g.

copy(C1.begin(), C1.end(), back_inserter(C2));

This inserts all elements of C1 to the end of C2.

(i.e. uses push_back() on each element copied.)

• front_inserter() works in a similar way.

• To insert in the middle (at position pointed to by iterator it), use

inserter(C, it) where C is the container.

The Standard Template Library 15 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Common Algorithms

• copy(p, q, r): copies the range [p, q) into the location referred to by

r.

• transform(p, q, r, f): transforms the element x in the range [p,q)

to f(x) and stores the result in to r. (f is a unary function, r can be the

same as p).

• fill(p, q, val): sets the elements in [p,q) to val. e.g.

fill(v.begin(), v.end(), 10); sets all elements in container to 10.

• find(p, q, val): returns an iterator to an element in the range [p,q)

whose value is val. Returns q if not found. e.g.

if (find(v.begin(), v.end(), 10) != v.end()) {

cout << "found" << endl;

}

The Standard Template Library 16 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Common Algorithms

• sort(p, q): sorts the elements in [p,q) from smallest to largest

(operator< defined for elements).

• min_element(p, q): returns an iterator pointing to the smallest

element in [p,q). max_element(p,q) is similar.

• binary_search(p, q, val): returns true if and only if the sorted

sequence [p,q) contains val. If you actually want to find the locations,

use equal_range().

The Standard Template Library 17 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Algorithms

The STL has many more algorithms. See various web sites if you want to

find out more.

The Standard Template Library 18 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Function Parameters

• Many STL algorithms take an optional parameter to fine-tune its

behavior.

• e.g. transform uses a unary function to specify the desired

transformation.

• e.g. sort: what if you want to sort from largest to smallest, or in some

other order?

• There are two ways to pass in the function parameter into an algorithm:

pointers to functions or function objects.

The Standard Template Library 19 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Pointers to Functions

int f(int x) { return x*x; }

int A[5] = {1, 2, 3, 4, 5};

transform(A, A+5, A, f);

f is treated as a pointer to the function f.

The Standard Template Library 20 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Pointers to Functions

bool less_than(const string &s1, const string &s2)

{

if (s1.length() != s2.length())

return s1.length() > s2.length();

else

return s1 < s2;

}

string A[5];

...

sort(A, A+5, less_than);

Sorts A from longest string to shortest string, break ties lexicographically.

The Standard Template Library 21 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Anonymous (Lambda) Functions

• In C++ you can define functions with no names. They can be used as

parameters to pass into other functions.

transform(A, A+5, A, [](int x) { return x*x; });

• The start of the function is [], followed by parameter list.

• Body of function is enclosed in braces.

• Usually no need to specify return types (deduced automatically).

The Standard Template Library 22 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Anonymous (Lambda) Functions

• return types can be specified explicitly:

transform(A, A+5, A, [](int x) -> int { return x*x; });

• You can assign an anonymous function to a variable if you wish:

auto square = [](int x) { return x*x; };

You must use auto to get the type.

• Advanced: [] needs not be empty. It captures content of other variables

to be used inside the function.

The Standard Template Library 23 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Sequences: vector and deque

• Can access any element easily.

• Inserting/deleting in the middle of sequence may be expensive.

• Difference: with vector it is easy to add to the back, with deque it is also

easy to add to the front.

The Standard Template Library 24 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Sequence: list

• Can easily access first and last elements (begin() and rbegin()).

• All other elements: must use iterators and step through with ++ and --.

i.e. no indexing with []

• Inserting/removing element at any point: very fast.

• Some algorithms need random access iterators. e.g. sort.

• But list provides its own sort function.

• Example: a text editor stores the text as a list of characters.

The Standard Template Library 25 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Associative Containers

• Tables whose entries are identified by keys rather than positions. e.g.

name, student ID.

• The data type of the keys must be comparable: operator< must be

defined (default), or you can supply your own comparison function.

• The entries are sorted: you can iterate through the entries from smallest

key value to largest key value (or vice versa).

• You cannot insert elements at a particular position.

• Provides bidirectional iterators, but not random access.

• Most standard algorithms can be applied through iterators.

• Accessing entries are relatively efficient. We will talk about how the data

is stored later on.

The Standard Template Library 26 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Associative Container: map

• A map is a table of key-value pair. For example, a name-telephone

number pair.

• There is at most one entry associated to each key.

• Entries are accessed by the key. e.g. we can access a phone number by

name.

• To declare a map, you need to specify the data types for the key and the

value:

#include <map>

map<string, int> marks; // store student marks by name

• Items are stored as pair<key_type,value_type>.

The Standard Template Library 27 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Associative Container: map

• The easiest way to access entries is through the [] operator:

marks["John Doe"] = 75;

This adds the entry with key = “John Doe” and value = 75. If an entry

with the same key already exists, it is replaced.

• If you write m[k] where m is a map and there is no entry with key k, an

entry is created whose value is the default value (default constructor for

value type is called).

• You can use iterators and begin() and end() to iterate through a map.

An iterator points to a pair<key_type,value_type>.

• If p is such a pair, p.first gives the key and p.second gives the value.

• If it is an iterator to a map element, it->first gives the key and

it->second gives the value.

The Standard Template Library 28 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Associative Container: map

Some operations require parameters of pair. Use make_pair(key, value)

to make a pair.

Common functions:

• insert(p): inserts the pair p into the map. Returns a pair <it,b> such

that it points to the inserted pair if b is true, or b is false if an entry

with the same key already exists.

• find(k): returns an iterator that points to the key-value pair in the

map whose key is k. If such a pair does not exist, returns end().

• count(k): returns the number of pairs with the given key.

• erase(k): erases all entries with the given key.

• clear(): empties the map.

The Standard Template Library 29 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Associative Containers: set and multiset

• These are similar to the mathematical notion of set and multiset.

• Similar to map and multimap, but entries are keys only (no value).

• Must specify key type:

#include <set>

set<string> names;

• The supported functions are similar to map/multimap, except that the

parameters are keys instead of pairs. See p. 457–458.

• There are also set_union, set_intersection, set_difference,

set_symmetric_difference, and includes (i.e. subset). They have the

usual meanings from mathematics.

The Standard Template Library 30 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Examples

set_union(s1.begin(), s1.end(), s2.begin(), s2.end(),

inserter(s3, s3.begin()));

inserts the union of s1 and s2 into s3.

if (s1.count("John Doe") > 0)

cout << "member" << endl;

else

cout << "not member" << endl;

The Standard Template Library 31 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Stacks

• A stack is a container in which you can push elements into the top, and

pop elements from the top.

• “Last in first out”

• Include <stack>

• The operation top() returns the element at the top. Use pop() to

remove it.

• It is an error to use top() or pop() if the stack is empty. Use empty()

or size() to check first.

• Efficient.

The Standard Template Library 32 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Queues

• A queue is a container in which you can push elements into the back,

and pop elements from the front.

• “First in first out”

• Include <queue>

• The operation front() and back() gives the element in the front and

back of the queue.

• It is an error to pop from an empty queue.

• Efficient.

The Standard Template Library 33 – 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Priority Queues

• A priority_queue is a queue where elements are ordered based on

“priority”. A comparison function must be defined for the elements (< is

default).

• Include <queue>

• You can push() and pop() elements.

• The element at the top is the largest element (defined by the

comparison).

• If there are multiple largest element, the top may be any one.

• Relatively efficient.

The Standard Template Library 34 – 34 Howard Cheng


