CS 2620 Fundamentals of Programming II University of Lethbridge

The Standard Template Library'

e The Standard Template Library (STL) is a collection of commonly used

containers and algorithms.

e They are implemented with templates so they can be used with a variety
of data types.

e T'wo main categories: containers and algorithms

e Containers: template classes that deal with storing and accessing

collection of objects in various ways. (e.g. vector)

e Algorithms: template functions which perform common tasks (e.g.
sorting a collection of objects)

e We will talk about the most common containers and algorithms.

\ _/

The Standard Template Library 1 - 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Containers . \

Containers allow the programmer to store collection of objects.
There are many different containers with different characteristics.

We have seen vector: similar to an array, but can grow and shrink

dynamically.

Another class deque is almost the same as vector: the only difference is
that there is push_front () and pop_front () as well.

deque stands for “double-ended queue”.

vector and deque are “random-access’ containers: you can access any

element in the container just as easily (by [J).

Other containers may be “forward containers” or “reversible containers”.

i.e. the elements are accessed from beginning to end (or from end to

beginning). J

The Standard Template Library 2-34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Containers .

There are two broad types of containers

Sequences: the elements are arranged in a “linear” order. You can insert

and remove elements at specified positions. (e.g. vector, deque, 1ist)

Associative Containers: allows access of elements indexed by keys. e.g.
keys may be student ID, and the associated information may be grade.
You can insert and remove elements, but not at a specific location. (e.g.

set, multiset, map, multimap)

\ _/

The Standard Template Library 3—-34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Container Adaptors I

e Container Adaptors are special containers.

e They are special in that the elements can only be accessed in a certain

way.
e stack: can only insert or remove elements at the “top”.
e queue: can only insert at one end and remove at the other end.

e priority_queue: can insert an element, and only remove the “largest”

element.

\ _/

The Standard Template Library 4 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Iterators .

e Iterators provide a uniform way of accessing elements in different types

of containers (except container adapters).
e They work like pointers: they point to elements in the container.

e You can dereference iterators (*, —=>), increment (++), decrement (--)

and do iterator arithmetic (like pointer arithmetic)

e These operations are done with the same operators you used for pointers

(through operator overloading).

e Many STL algorithms use iterators to specify the range in a container to

operate on. You can use pointers in these too!

\ _/

The Standard Template Library 5—-34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Iterators . \

The basic way to declare an iterator for a container is:

container::iterator 1i;
For example, vector<int>::iterator ij;

An iterator for one type of container is different from an iterator for
another type of container (e.g. int * is different from char x*).

Every container (other than container adapters) has begin() and end ()

member functions.

begin(): returns an iterator that points to the first element in the

container. (e.g. in an array A, A is a pointer to the first element.)

end (): returns an iterator that points to one element past the end of

the container. (e.g. in an array A of size n, A+n points to

one-past-the-end.) /

The Standard Template Library 6 — 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Iterators .

A typical loop to run through the elements in a container:

list<double> L;

// code to put elements into L

list<double>::iterator it;

for (it = L.begin(); it != L.end(); ++it)
cout << *xit << endl;

We use ++it instead of it++ for efficiency.

We can also use the loop above with pointers if begin() and end () are

defined appropriately.

Order of elements for sequences: based on the order we used to build the

sequence.

Order of associative containers: sorted based on keys (from smallest to

largest).

~

_/

The Standard Template Library 7 — 34

Howard Cheng



CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Range-based for loops'

New in C+-+11:

list<double> L;
// code to put elements into L
for (double d : L) {

cout << d << endl;

}

This is equivalent to the iterator version above.

~

Use auto to automatically deduce type (useful in template functions).

Use reference if you want to modify the elements.

Use constant reference if you do not want copying (and do not want to

change elements).

_/

The Standard Template Library 8 —34

Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Iterators '

There are a number of different types of iterators.

e [terators to constants (const_iterator): analogous to pointers to

constants—you cannot change what they point to.

e Reverse iterators (reverse_iterator): move in reverse order. Use

rbegin() and rend() (why can’t you use normal iterators and —-it?)

e Reverse iterators to constants (const_reverse_iterator).

\ _/

The Standard Template Library 9-34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Iterators '

Another way to look at iterators:
Forward: supports increments (all iterators we study)

Bidirectional: supports increments and decrements (most iterators we
study)

Random Access: supports increments, decrements, and iterator arithmetic

(i.e. just like pointers). Only supported by vector and deque.

\ _/

The Standard Template Library 10 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

Defining Intervals with Iterators'

e Many member functions of containers operate on a section (interval) of

the container.

e An iterval is usually specified by an iterator pointing to the beginning,
and an iterator pointing to one-past-the-end. We usually denote the

interval as [begin, end).
e For arrays, we can use A+i, A+j to refer to the interval A[i..j-1].

e To specifty the whole container, use begin() and end() for the container.

\ _/

The Standard Template Library 11 - 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

Operations with Iterators'

If C is a sequence and p, i, and j are iterators to the appropriate data types:

e seq<type> C(i, j): constructs a sequence C and initialize it with the
elements in [i,j). Note that i and j are iterators to a different
container (can be a different type, but element type is the same). They

can even be pointers to array elements.

e.g. vector<int> v(A, A+5); If A is an integer array, this initializes v
to the first 5 elements of A.

e C.assign(i, j): similar to above, except it is an assignment.

e C.insert(p, e): inserts the value e into the position p. p must be an

iterator for C.

e C.insert(p, n, e): inserts n copies of e into the position p.

\ _/

The Standard Template Library 12 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Operations with Iterators'

e C.insert(p, i, j): inserts the elements in [i,j) into the position p.
e C.erase(p): erases the element at position p.

e C.erase(i, j): erases the elements in the interval [i,j). i and j must

be iterators for C.

\ _/

The Standard Template Library 13 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Algorithms I

e There are a number of commonly used algorithms in STL.
e Need to #include <algorithm>.

e Many algorithms work on containers and use iterators to specity

intervals.

e That means they work on arrays and pointers too.

\ _/

The Standard Template Library 14 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Insert Iterators .

We often want to insert elements to the end of a container.

But end () returns one-past-the-end, and does not point to a valid

location.

Use back_inserter(). e.g.
copy(Cl.begin(), Cl.end(), back_inserter(C2));
This inserts all elements of C1 to the end of C2.

i.e. uses push_back() on each element copied.
p

front_inserter() works in a similar way.

To insert in the middle (at position pointed to by iterator it), use

inserter(C, it) where C is the container.

~

_/

The Standard Template Library 15 - 34

Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

/ Common Algorithms I \

e copy(p, g, r): copies the range [p, q) into the location referred to by

r.

e transform(p, q, r, f): transforms the element x in the range [p,q)
to £ (x) and stores the result in to r. (f is a unary function, r can be the

same as p).

e £fill(p, q, val): sets the elements in [p,q) to val. e.g.
fill(v.begin(), v.end(), 10); sets all elements in container to 10.

e find(p, q, val): returns an iterator to an element in the range [p,q)
whose value is val. Returns q if not found. e.g.

if (find(v.begin(), v.end(), 10) != v.end()) A
cout << "found" << endl;

N _/

The Standard Template Library 16 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Common Algorithms I

e sort(p, q): sorts the elements in [p,q) from smallest to largest

(operator< defined for elements).

e min_element(p, q): returns an iterator pointing to the smallest

element in [p,q). max_element (p,q) is similar.

e binary_search(p, q, val): returns true if and only if the sorted
sequence [p,q) contains val. If you actually want to find the locations,

use equal_range ().

\ _/

The Standard Template Library 17 - 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Algorithms I

The STL has many more algorithms. See various web sites if you want to

find out more.

\ _/

The Standard Template Library 18 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Function Parameters '

e Many STL algorithms take an optional parameter to fine-tune its

behavior.

e c.g. transform uses a unary function to specify the desired

transformation.

e c.g. sort: what if you want to sort from largest to smallest, or in some

other order?

e There are two ways to pass in the function parameter into an algorithm:

pointers to functions or function objects.

\ _/

The Standard Template Library 19 - 34 Howard Cheng




CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

Pointers to Functions.

int f(int x) { return x*x; }

int A[5] = {1, 2, 3, 4, 5};
transform(A, A+5, A, f);

f is treated as a pointer to the function f£.

\

~

_/

The Standard Template Library 20 - 34

Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

Pointers to Functions'

bool less_than(const string &sl, const string &s2)

{
if (sl.length() !'= s2.length())
return sl.length() > s2.length();
else
return sl < s2;
by

string A[5];

sort (A, A+5, less_than);

Sorts A from longest string to shortest string, break ties lexicographically. /

The Standard Template Library 21 - 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Anonymous (Lambda) Functions'

e In C++ you can define functions with no names. They can be used as

parameters to pass into other functions.

transform(A, A+5, A, [J(int x) { return x*x; 1});
e The start of the function is [], followed by parameter list.
e Body of function is enclosed in braces.

e Usually no need to specify return types (deduced automatically).

\ _/

The Standard Template Library 22 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

Anonymous (Lambda) Functions'

e return types can be specified explicitly:

transform(A, A+5, A, [](int x) -> int { return x*x; });

e You can assign an anonymous function to a variable if you wish:
auto square = [](int x) { return x*x; };

You must use auto to get the type.

e Advanced: [] needs not be empty. It captures content of other variables

to be used inside the function.

\ _/

The Standard Template Library 23 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Sequences: vector and deque'

e Can access any element easily.
e Inserting/deleting in the middle of sequence may be expensive.

e Difference: with vector it is easy to add to the back, with deque it is also

easy to add to the front.

\ _/

The Standard Template Library 24 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Sequence: list I

e Can easily access first and last elements (begin() and rbegin()).

e All other elements: must use iterators and step through with ++ and —--.
i.e. no indexing with []

e Inserting/removing element at any point: very fast.
e Some algorithms need random access iterators. e.g. sort.
e But 1list provides its own sort function.

e Example: a text editor stores the text as a list of characters.

\ _/

The Standard Template Library 25 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Associative Containers.

Tables whose entries are identified by keys rather than positions. e.g.
name, student ID.

The data type of the keys must be comparable: operator< must be
defined (default), or you can supply your own comparison function.

The entries are sorted: you can iterate through the entries from smallest

key value to largest key value (or vice versa).

You cannot insert elements at a particular position.
Provides bidirectional iterators, but not random access.
Most standard algorithms can be applied through iterators.

Accessing entries are relatively efficient. We will talk about how the data

is stored later on. /

The Standard Template Library 26 — 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Associative Container: map'

~

A map is a table of key-value pair. For example, a name-telephone

number pair.

There is at most one entry associated to each key.

Entries are accessed by the key. e.g. we can access a phone number by

Iaine.

To declare a map, you need to specify the data types for the key and the

value:

#include <map>

map<string, int> marks; // store student marks by name

Items are stored as pair<key_type,value_type>.

_/

The Standard Template Library 27 — 34

Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Associative Container: map' \

The easiest way to access entries is through the [] operator:
marks["John Doe"] = 75;

This adds the entry with key = “John Doe” and value = 75. If an entry
with the same key already exists, it is replaced.

If you write m[k] where m is a map and there is no entry with key k, an
entry is created whose value is the default value (default constructor for
value type is called).

You can use iterators and begin() and end() to iterate through a map.
An iterator points to a pair<key_type,value_type>.

If p is such a pair, p.first gives the key and p.second gives the value.

If it is an iterator to a map element, it->first gives the key and

it->second gives the value. /

The Standard Template Library 28 — 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

Associative Container: map'

Some operations require parameters of pair. Use make_pair(key, value)

to make a pair.

Common functions:

e insert(p): inserts the pair p into the map. Returns a pair <it,b> such
that it points to the inserted pair if b is true, or b is false if an entry
with the same key already exists.

e find(k): returns an iterator that points to the key-value pair in the

map whose key is k. If such a pair does not exist, returns end ().
e count(k): returns the number of pairs with the given key.

e erase(k): erases all entries with the given key.

e clear(): empties the map.

\ _/

The Standard Template Library 29 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Associative Containers: set and multiset'

These are similar to the mathematical notion of set and multiset.
Similar to map and multimap, but entries are keys only (no value).

Must specify key type:

#include <set>

set<string> names;

The supported functions are similar to map/multimap, except that the
parameters are keys instead of pairs. See p. 457—458.

There are also set_union, set_intersection, set_difference,

~

set_symmetric_difference, and includes (i.e. subset). They have the

usual meanings from mathematics.

_/

The Standard Template Library 30 — 34 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Examples I

set_union(sl.begin(), sl.end(), s2.begin(), s2.end(),

inserter(s3, s3.begin()));
inserts the union of s1 and s2 into s3.

if (s1.count("John Doe") > 0)
cout << "member" << endl;
else

cout << "not member" << endl;

\ _/

The Standard Template Library 31 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Stacks .

e A stack is a container in which you can push elements into the top, and

pop elements from the top.
e “Last in first out”
e Include <stack>

e The operation top() returns the element at the top. Use pop() to

remove 1t.

e [t is an error to use top() or pop() if the stack is empty. Use empty ()
or size() to check first.

e Efficient.

\ _/

The Standard Template Library 32 - 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Queues I

e A queue is a container in which you can push elements into the back,

and pop elements from the front.
e “First in first out”
e Include <queue>

e The operation front () and back() gives the element in the front and
back of the queue.

e It is an error to pop from an empty queue.

e Efficient.

\ _/

The Standard Template Library 33 — 34 Howard Cheng




CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Priority Queues I

e A priority_queue is a queue where elements are ordered based on

“priority”. A comparison function must be defined for the elements (< is
default).

e Include <queue>
e You can push() and pop() elements.

e The element at the top is the largest element (defined by the

comparison).
e If there are multiple largest element, the top may be any one.

e Relatively efficient.

\ _/

The Standard Template Library 34 — 34 Howard Cheng




