
CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Generic Programming

• Certain kinds of functions or data structures are “generic” in the sense

that they can be used for many data types.

• Minimum/Maximum: you can compute it as long as you can compare

two items

• Sorting: you can sort as long as you can compare two items

• Vectors: you can have vectors of ints or vectors of strings.

• We do not want to rewrite similar (sometimes the same) code for

different types.

• In C++, we use templates to write the code only once.

Templates 1 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Class Template

• The vector is a class template: you can define the element type using

<...>. e.g. vector<int>, vector<string>.

• The two vector classes are different classes, but they have the same

member functions.

• The vector class template is only defined once. It is instantiated twice.

Templates 2 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Class Template Syntax

The syntax for a class template is

template<typename T>

class Name {

...

};

Inside the class, T is used as a parameter and refers to a type name.

Templates 3 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example

Recall our DArray example:

template<typename T>

class DArray {

public:

DArray(int size = 10);

...

private:

int n;

T *A; // elements are type T

};

Then we can declare variables of type DArray<int>, DArray<bool>, etc.

It is as if we typed the same class interface and implementation twice: once

with T = int and once with T = bool.

Templates 4 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example

template<typename T>

DArray<T>::DArray(int size)

: n(size)

{

A = new T[n];

for (int i = 0; i < n; i++)

A[i] = 0; // only works if this makes sense:

// It must be okay to assign 0 to type T

}

Templates 5 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Implementation Issues

• Normally, the interface goes into .h file and the implementation goes

into .cc file.

• For templates, put everything into .h file. (Alternatively, include the

.cc file in .h file.)

• In order for the compiler to instantiate the templates, it needs to know

the implementations as they are being used.

• Different compilers may handle this differently. . .

• Strange syntax for static members (see text) and friends (see example in

class).

• You may get strange errors if the supplied type does not make sense.

Templates 6 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Function Templates

• We can also write templates for functions.

• This is useful for certain functions that look the same for different types.

• e.g. minimum/maximum, sort, swap, etc.

• Write it once, and instantiated as many times as necessary.

Templates 7 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Function Templates

template<typename T>

const T &mymin(const T &a, const T &b)

{

if (a < b) // operator< must be defined for T

return a;

else

return b;

}

We use constant references because of potential inefficiencies if T is a

complicated class.

Templates 8 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Function Templates

To use:

int a, b;

double x, y;

string u, v;

cout << mymin(a, b) << endl; // int version

cout << mymin(x, y) << endl; // double version

cout << mymin(u, v) << endl; // string version

cout << mymin(a, y) << endl; // ambiguous!

cout << mymin<double>(a, y) << endl; // double version

Templates 9 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Complicated Example

template<typename T>

void transform(T A[], int n, T (*f)(const T &x))

{

for (int i = 0; i < n; i++)

A[i] = f(A[i]);

}

template<typename T>

T square(const T &x) { return x * x; }

int A[10];

transform(A, 10, square);

Templates 10 – 11 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Some Standard Function Templates

• C++ provides a number of function templates for commonly used

algorithms (#include <algorithm>)

• e.g. min(a,b) computes minimum of two elements

• e.g. sort(A, A+10) sorts an array of 10 elements from smallest to

largest (pointer to beginning, pointer to one-past-the-end).

• Only works if element type can be compared by <.

• There are others: binary_search, find, etc.

Templates 11 – 11 Howard Cheng


