
CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Trees: Definitions

• A tree is a dynamic data structure in which data are stored in nodes.

• Each node has a number of pointers to other nodes.

• If a node A points to a node B, then B is a child of A and A is a

parent of B.

• One of the nodes in the tree is the root: no node in the tree points to it.

• A node with no children (i.e. null pointer) is called a leaf node.

• The number of children of each node can be fixed or variable.

• A tree is usually drawn “upside down” with the root at the top and the

leaves at the bottom.

Trees 1 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Trees: Properties

• There is a unique path from the root to every node in the tree.

• There are pointers from parent to child, but not in the reverse direction.

• The children of the root node can be thought of as the roots of smaller

subtrees. That is, the data structure is recursive.

• A tree in which every node has one child is the same as a singly linked

list.

Trees 2 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Binary Trees

• A binary tree is a tree in which every node has at most two children:

left and right.

• If there is no left or right child, the corresponding pointer is null.

• A node is defined as

class Node {

public:

int data;

Node *left, *right;

Node(int d, Node *l, Node *r)

: data{d}, left{l}, right{r} {}

};

• A pointer to the root node is used to access the tree.

Trees 3 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Inserting Nodes

• To add the root node: root = new Node(data, nullptr, nullptr);

• To add a left child to a node pointed to by p (assuming that there was

no left child before):

p->left = new Node(data, nullptr, nullptr);

• Inserting a right child is similar.

Trees 4 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Removing Nodes

• Removing a leaf node is easy, as long as we have a pointer p to its parent.

• For example, to remove the left child (a leaf) of p:

delete p->left;

p->left = nullptr;

• If we do not have a pointer to the parent, it is hard (how do we find the

parent?).

• If we delete a non-leaf node, how do we link the subtrees?

Trees 5 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Traversing Trees

• We can do this recursively:

– If the pointer is null, do nothing (empty tree); otherwise

– recursively traverse left subtree

– examine item in node

– recursively traverse right subtree

• This is called inorder traversal: the elements are traversed from left to

right.

• Preorder traversal: examine the node first, and then visit the children.

• Postorder traversal: visit the children first, then examine the node.

Trees 6 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example: Printing Elements in Order

void print(Node *root)

{

if (root) { // only do something if nonempty

print(root->left);

cout << root->data << endl;

print(root->right);

}

}

Trees 7 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example: Height of a Tree

int height(Node *root)

{

if (!root)

return 0; // empty tree

else

return 1 + max(height(root->left), height(root->right));

}

Trees 8 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Deleting All Nodes

It is important to delete the subtrees before deleting the root (postorder).

void deleteTree(Node *&root)

{

if (root) {

deleteTree(root->left);

deleteTree(root->right);

delete root;

root = nullptr;

}

}

Trees 9 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Binary Search Trees

• A binary search tree is a binary tree in which the data in each node is

greater than or equal to every node in the left subtree and less than or

equal to every node in the right subtree.

• To look for an item, look at the data at the root. If it is not there,

repeat the search with either the left or the right subtree.

• To insert an item, follow a path to a leaf node and insert as either a left

or a right child.

Trees 10 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Searching in a Binary Search Tree

Node *find(Node *root, int data)

{

if (!root) return nullptr; // not found

if (root->data == data)

return root;

else if (root->data > data)

return find(root->left, data);

else

return find(root->right, data);

}

Trees 11 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Inserting a Node

void insert(Node *&root, int data)

{

if (!root) {

root = new Node(data, nullptr, nullptr);

} else if (root->data >= data) {

insert(root->left, data);

} else {

insert(root->right, data);

}

}

Trees 12 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Deleting a Node (Sketch)

• We wish to delete a node pointed to by p.

• Deleting a leaf node is the same as before.

• Otherwise, look at the leftmost leaf of the right subtree, call it N. i.e. go

to p->right and follow the left children for as long as possible.

• N is the element that comes after p.

• So we copy the value in L to p, and recursively delete the node N until it

is a leaf (which is easy to delete).

Trees 13 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Efficiency

• The amount of work to find, insert, or delete a node in the tree is

proportional to the height of the tree.

• For a “bushy” tree, we have:

– nodes = 1: height = 1

– nodes = 3: height = 2

– nodes = 7: height = 3

– nodes = 15: height = 4

– . . .

– nodes = 1048575: height = 20

• If there are n elements in the tree, each operation takes approximately

log
2
n steps.

• Doubling the size of the tree requires just a little bit more work.

Trees 14 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Efficiency

• But if the tree is not “bushy”, then the height can be very bad.

• For example, if we insert the elements from smallest to largest, the tree

becomes a linked list.

• In that case, the height is n.

• A number of variations on binary search trees allow “rebalancing”

whenever the heights of the two subtrees are very different. This ensures

that the operations are fast.

• The STL containers map and set are implemented with a balanced

binary search tree.

• In a map, each data element is a key-value pair and the comparison

operator is defined to compare only the key.

Trees 15 – 16 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Other Uses of Trees

Trees are used in many applications in computer science.

• Expression trees represent arithmetic expressions for evaluation: nodes

contain operators (binary) and children contain the operands. Use

postorder traversal to evaluate.

• Parse tree: represent the source code of a program by its logical units.

May have more than two children per node.

• Image compression with quadtrees.

• and a lot more.

Trees 16 – 16 Howard Cheng


