
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Exceptions

• Exceptions are unusual events

• They can be errors, or just unusual

• Can be detected by hardware or software

• When an exception is raised/thrown, an appropriate exception handler is

invoked.

Exceptions 1 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Error Handling Without Exceptions

• Not all programming languages support exception handling

• One can use return values/parameters to indicate errors

• e.g. Unix system calls: very tricky to use

• Must explicitly check for errors, easy to ignore by mistake, laziness, etc.

• Makes it hard to read main algorithm

• Sometimes we need to exit multiple levels of loops and subprograms

quickly (setjmp and longjmp)

• Can also pass error handlers as subprogram parameters

Exceptions 2 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Advantages of Exception Handling

• Clearly separate error handling code from main algorithm

• Allows exception propagation: single handler can be used for exceptions

raised in subprograms, exceptions can be handled at the appropriate

place

• Encourages programmers to consider possible errors, and to prevent

errors to be ignored

Exceptions 3 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Design Issues

• Exceptions: are there predefined exceptions (implicitly raised)? Are

there user-defined exceptions (explicitly raised)?

• How are different exceptions distinguished? Types? Any data attached

to the exceptions?

• How are exception handlers bound to exceptions raised?

• How do exceptions propagate when there are no handlers?

• How to continue execution after exceptions are handled?

• Finalization support

Exceptions 4 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

C++

• Use try-catch blocks

• Any type can be thrown, but preferrably a subclass of exception

• No predefined exceptions

• catch comes with a number of forms for the type of exception to catch.

Some require exact match, some require match of class or subclass.

• First handler that matches is executed

• catch (...) catches everything

• Can pass data in exception classes, can rethrow exception

• No finalize, continuation after the handler

Exceptions 5 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Java

• Similar to C++

• Exceptions must be subclasses of Throwable

• Finalization support

• Some exceptions (anything other than Error and RuntimeException)

must be checked: either handled or listed as a throwable exception from

the function

• Some predefined exceptions are thrown implicitly (e.g. array out of

bounds)

Exceptions 6 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Finalization in Java

try {

}

catch (...) {

}

finally {

}

• No exception thrown: finally clause executed after try block

• Exception thrown and caught: handler and then finally clause execute

• Exception thrown but not caught: finally clause execute, then exception

propagate

• Other ways to exit try block (e.g. return, break, etc.): finally clause

execute before exiting

Exceptions 7 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Implementation

• Each time an exception is thrown, the local variables in the enclosing

scope (e.g. try block) needs to be cleaned up/destroyed

• We can record on the stack all exception handlers defined.

• The stack is unwound until a matching exception handler is found.

Variables/objects on the stack are cleaned up as the stack is unwound.

• This requires more memory usage on the stack.

Exceptions 8 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Implementation

• We generally would like to avoid overhead if no exceptions are generated

• Each function has an exception frame, which contains a reference to an

exception table describing how to process the exception

• The exception table usually describes for each exception handled, what

action to take. The action usually passes control to a landing pad

• The landing pad is usually code to execute the catch statements

(including selecting which catch to use)

• When an exception is thrown, a structure is created to hold the

exception object. This object cannot be allocated on the stack. Why?

Exceptions 9 – 10 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Implementation

• When a try block is entered, code to exit normally and code to landing

pad are both inserted.

• When an exception is thrown, local variables are cleaned up. Then

execution jumps to the landing pad which tests which catch to use.

• Some implementations do clean up at the landing pad before testing the

catch clauses.

• Stack is unwound if needed

• The exception table can be stored elsewhere, even not loaded into

memory unless needed.

Exceptions 10 – 10 Howard Cheng


