CPSC 3740 Programming Languages

University of Lethbridge

-

Exceptions I

Exceptions are unusual events
They can be errors, or just unusual

Can be detected by hardware or software

~

_/

e When an exception is raised /thrown, an appropriate exception handler is
invoked.
Exceptions 1-10 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

-

Error Handling Without Exceptionsl

Not all programming languages support exception handling
One can use return values/parameters to indicate errors

e.g. Unix system calls: very tricky to use

Must explicitly check for errors, easy to ignore by mistake, laziness, etc.

Makes it hard to read main algorithm

Sometimes we need to exit multiple levels of loops and subprograms

quickly (setjmp and longjmp)

Can also pass error handlers as subprogram parameters

~

_/

Exceptions 2—-10

Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Advantages of Exception Handling'

e Clearly separate error handling code from main algorithm

e Allows exception propagation: single handler can be used for exceptions
raised in subprograms, exceptions can be handled at the appropriate

place

e Encourages programmers to consider possible errors, and to prevent

errors to be ignored

_ _/

Exceptions 3 — 10 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Design Issues I

e Exceptions: are there predefined exceptions (implicitly raised)? Are

there user-defined exceptions (explicitly raised)?

e How are different exceptions distinguished? Types? Any data attached

to the exceptions?
e How are exception handlers bound to exceptions raised?
e How do exceptions propagate when there are no handlers?
e How to continue execution after exceptions are handled?

e Finalization support

_ _/

Exceptions 4 - 10 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

-

C++

Use try-catch blocks

Any type can be thrown, but preferrably a subclass of exception

No predefined exceptions

catch comes with a number of forms for the type of exception to catch.

Some require exact match, some require match of class or subclass.

First handler that matches is executed
catch (...) catches everything
Can pass data in exception classes, can rethrow exception

No finalize, continuation after the handler

\

_/

Exceptions 5—10

Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

- B

e Similar to C++
e Exceptions must be subclasses of Throwable
e Finalization support

e Some exceptions (anything other than Error and RuntimeException)
must be checked: either handled or listed as a throwable exception from

the function

e Some predefined exceptions are thrown implicitly (e.g. array out of
bounds)

_ _/

Exceptions 6 — 10 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

/ Finalization in J ava' \

try {
+
catch (...) {

+
finally {

+

e No exception thrown: finally clause executed after try block
e Exception thrown and caught: handler and then finally clause execute

e Exception thrown but not caught: finally clause execute, then exception
propagate

e Other ways to exit try block (e.g. return, break, etc.): finally clause

k execute before exiting /

Exceptions 7—10 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Implementation I

e Each time an exception is thrown, the local variables in the enclosing

scope (e.g. try block) needs to be cleaned up/destroyed
e We can record on the stack all exception handlers defined.

e The stack is unwound until a matching exception handler is found.

Variables/objects on the stack are cleaned up as the stack is unwound.

e This requires more memory usage on the stack.

_ _/

Exceptions 8 — 10 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Implementation I

e We generally would like to avoid overhead if no exceptions are generated

e Each function has an exception frame, which contains a reference to an

exception table describing how to process the exception

e The exception table usually describes for each exception handled, what

action to take. The action usually passes control to a landing pad

e The landing pad is usually code to execute the catch statements

(including selecting which catch to use)

e When an exception is thrown, a structure is created to hold the
exception object. This object cannot be allocated on the stack. Why?

_ _/

Exceptions 9 - 10 Howard Cheng

CPSC 3740 Programming Languages

University of Lethbridge

-

_

Implementation I

When a try block is entered, code to exit normally and code to landing

pad are both inserted.

When an exception is thrown, local variables are cleaned up. Then
execution jumps to the landing pad which tests which catch to use.

Some implementations do clean up at the landing pad before testing the

catch clauses.

Stack is unwound if needed

The exception table can be stored elsewhere, even not loaded into

memory unless needed.

~

_/

Exceptions 10 — 10

Howard Cheng

