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Imperative Programming Languages'

~

e Most of the languages we looked at so far are imperative languages

e Tied to the von Neumann architecture

e States are represented by variables, and executing statements changes

\_

states
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Pure Functional Programming'

e All computations are expressed as mathematical functions: an
association of input to output

e There are no external states (or variables): the output of a function call

depends only on its input

e Many functional languages are not pure and provide imperative features
to increase efficiency
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Mathematical Functions '

e A mathematical function is a mapping from the domain to the range
e The domain can be cross product of sets (multiple arguments)

e Computations is generally defined by recursion and conditional, instead

of sequencing and iteration

e No side effects, operand evaluation order is irrelevant
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Higher-order Functions I

e A function that takes another function as a parameter, and may return a

function.

o “Apply-to-all” is a common operation. e.g. map in Racket, transform in
C++.
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Lambda Calculus I

e Lambda calculus was invented by Alonso Church (1930s)
e It can be used to model computation
e Computations are modelled as performing reductions on lambda terms.

e Basis of functional programming
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Lambda Terms '

e A “variable” is a lambda term.

e If M is a lambda term, so is (Ax.M)
e If M and N are lambda terms, so is (M N)
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Lambda Terms '

e The second rule is called abstraction—corresponds to function definition
e 1 is the parameter of the function
e Note that a function can have only a single parameter

e The third rule is called application—corresponds to applying function M
to argument N
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Lambda Terms '

It is common to abbreviate:
o (Mx.(A\y.(Az.M))) = (Axyz.M)
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Bound and Free Variables'

e In (Ax.M), each free occurrences of = is bound to the outer lambda. e.g.
(Az.(zy))

e But occurrences of x that are already bound is not bound to the outer
lambda. e.g. (Ax.(Ax.(zy)))

e We can define recursively when x is free in E:
— E=x
— EF = (\y.A) where y # x and z is free in A
— FE = (A B) where z is free in A and B

e Intuitively, how x is free or bound is similar to how local variables

override variables of the same name.
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Reductions I

e There are three main reductions that can be applied to lambda terms.

e (-conversion: rename a variable in Az and all instances of 2 bound to it.

e [-reduction: apply a function to its argument. This is done by

substitution: from ((Ax.M)A), we substitute A into all free instances of
x in M.

(Az.(zy))A) — (Ay)
e 7-conversion: if x is not free in M, then (\z.(Mx)) — M

e Notice that functions can be arguments to other functions, and results

can be functions as well

\_ _/

Functional Programming Languages 10 — 21 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

-

=

Reductions ' \

From any starting lambda terms, we can apply different reductions at
different points. This is how “computation” is done.

The result of the computation is to perform reductions until we get to
the “simplest” form that cannot be further reduced (other than
a-conversions).

Some lambda terms cannot be reduced and in fact S-reductions can be
applied forever:

(A\x.xzx)(Ar.zrx))

When there are multiple reductions that can be applied at some point,
different choices can lead to different sequences of reductions

Can this lead to two different simplest forms? No! (Church-Rosser
Theorem)

Leftmost reduction will always get to the the simplest form, if it existS/
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Currying I

e Named after logician Haskell Curry

e In Lambda calculus, each function can only have one parameter

e Functions with multiple parameters are simulated by nested one

parameter functions

e Applying an m-ary function to an argument results in an (m — 1)-ary

function

e Evaluating an m-ary function is the same as evaluating a sequence of m

unary functions

e This can be done (kind of) in C++ and other imperative languages as

well
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Basic Operations I

e Natural numbers can be represented as lambda terms.

o 0= (\sz.2)

o 1 =(Asz.52)

o 2= (\Asz.5(s2))
e ctc.

e Addition and multiplication can be done by applying the functions:
(Awzyx.wy(zyx))
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Basic Operations I

e True is represented by (Azy.x)

e False is represented by (Azy.y)
e Why does this make sense?

o If we want to say “if A then B else C” and A evaluates to one of the
above, then (ABC') would select the correct branch.

e not: (Aw.wFT) (F and T are from above)
o and: (A\wz.wzF)

o or: (Awz.wTz)
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Recursion '

e Recursion can be modelled in Lambda calculus by applying functions

that can conditional replicate itself.

e There is a “fixed-point combinator function” Y such that applying it to

any other function R results in an arbitrarily long chain

R(R(...R(YR)..))

e In particular, (YR)A — R(YR)A. If R is a binary function, it could
take the first argument as a copy of itself for the recursive call.

\_ _/
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Lisp-based Languages I

Based on Lambda calculus
Have lists as data structures (cons, car, cdr, etc.)
Allows more than one parameter in a function

Let expressions: (let ((x val)) body) is equivalent to
((lambda (x) body) val)

~

Evaluating a let expression (or any expression in general) needs a list of

current name-value pairs. Use a stack-like structure for lookups.

_/
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Lambda/Let I

e Let is essentially lambda function definition followed by an application of

the function

e If we know how to handle lambda definitions and applications, we can

implement let “for free”
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Lambda/Let I

e Generally, each expression is evaluated using a list of lists containing the

current environment

e Each function application can simply evaluating the function body but

using an updated environment: param = values
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Lambda/Let I

~

e To implement a lambda definition, we need to return a closure.

e Closure consists of: parameter list, function body, and the current

\_

environment
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Letrec I

e Let does not allow for recursion. The value is evaluated from

surrounding scope

e One can use the fixed-point combinator trick in Lambda calculus but it

is not easy to read/write
e Letrec handles that internally

e Mutually recursive functions are more problematic but can be done by

other combinators as well
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Lazy Evaluation I

e Sometimes, arguments to functions need not be evaluated.

(define (f test a b)
(if (test) a b))
£ C...) C...) (...))

If the test evaluates to true, the third argument does not need to be

evaluated at all.

e Lazy evaluation: delay evaluation of an operand/argument until it is

needed

e The evaluation of the argument has to be wrapped in a package that can

be evaluated later. This is sometimes call a thunk.

e The package includes the current evaluation environment.

\_ _/

Functional Programming Languages 21 - 21 Howard Cheng




