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✫

✩

✪

Imperative Programming Languages

• Most of the languages we looked at so far are imperative languages

• Tied to the von Neumann architecture

• States are represented by variables, and executing statements changes

states
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✫

✩

✪

Pure Functional Programming

• All computations are expressed as mathematical functions: an

association of input to output

• There are no external states (or variables): the output of a function call

depends only on its input

• Many functional languages are not pure and provide imperative features

to increase efficiency
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✫

✩

✪

Mathematical Functions

• A mathematical function is a mapping from the domain to the range

• The domain can be cross product of sets (multiple arguments)

• Computations is generally defined by recursion and conditional, instead

of sequencing and iteration

• No side effects, operand evaluation order is irrelevant
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✫

✩

✪

Higher-order Functions

• A function that takes another function as a parameter, and may return a

function.

• “Apply-to-all” is a common operation. e.g. map in Racket, transform in

C++.
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✫

✩

✪

Lambda Calculus

• Lambda calculus was invented by Alonso Church (1930s)

• It can be used to model computation

• Computations are modelled as performing reductions on lambda terms.

• Basis of functional programming
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✫

✩

✪

Lambda Terms

• A “variable” is a lambda term.

• If M is a lambda term, so is (λx.M)

• If M and N are lambda terms, so is (M N)
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✫

✩

✪

Lambda Terms

• The second rule is called abstraction—corresponds to function definition

• x is the parameter of the function

• Note that a function can have only a single parameter

• The third rule is called application—corresponds to applying function M

to argument N
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✫

✩

✪

Lambda Terms

It is common to abbreviate:

• (. . . ((E1E2)E3) . . . En) ≡ (E1E2 . . . En)

• (λx.(λy.(λz.M))) ≡ (λxyz.M)

Functional Programming Languages 8 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Bound and Free Variables

• In (λx.M), each free occurrences of x is bound to the outer lambda. e.g.

(λx.(xy))

• But occurrences of x that are already bound is not bound to the outer

lambda. e.g. (λx.(λx.(xy)))

• We can define recursively when x is free in E:

– E = x

– E = (λy.A) where y 6= x and x is free in A

– E = (A B) where x is free in A and B

• Intuitively, how x is free or bound is similar to how local variables

override variables of the same name.
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✫

✩

✪

Reductions

• There are three main reductions that can be applied to lambda terms.

• α-conversion: rename a variable in λx and all instances of x bound to it.

• β-reduction: apply a function to its argument. This is done by

substitution: from ((λx.M)A), we substitute A into all free instances of

x in M .

((λx.(xy))A) → (Ay)

• η-conversion: if x is not free in M , then (λx.(Mx)) → M

• Notice that functions can be arguments to other functions, and results

can be functions as well
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✫

✩

✪

Reductions

• From any starting lambda terms, we can apply different reductions at

different points. This is how “computation” is done.

• The result of the computation is to perform reductions until we get to

the “simplest” form that cannot be further reduced (other than

α-conversions).

• Some lambda terms cannot be reduced and in fact β-reductions can be

applied forever:

((λx.xxx)(λx.xxx))

• When there are multiple reductions that can be applied at some point,

different choices can lead to different sequences of reductions

• Can this lead to two different simplest forms? No! (Church-Rosser

Theorem)

• Leftmost reduction will always get to the the simplest form, if it exists
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✫

✩

✪

Currying

• Named after logician Haskell Curry

• In Lambda calculus, each function can only have one parameter

• Functions with multiple parameters are simulated by nested one

parameter functions

• Applying an m-ary function to an argument results in an (m− 1)-ary

function

• Evaluating an m-ary function is the same as evaluating a sequence of m

unary functions

• This can be done (kind of) in C++ and other imperative languages as

well
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✫

✩

✪

Basic Operations

• Natural numbers can be represented as lambda terms.

• 0 ≡ (λsz.z)

• 1 ≡ (λsz.sz)

• 2 ≡ (λsz.s(sz))

• etc.

• Addition and multiplication can be done by applying the functions:

(λwzyx.wy(zyx))

(λwzy.w(zy))
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✫

✩

✪

Basic Operations

• True is represented by (λxy.x)

• False is represented by (λxy.y)

• Why does this make sense?

• If we want to say “if A then B else C” and A evaluates to one of the

above, then (ABC) would select the correct branch.

• not: (λw.wFT ) (F and T are from above)

• and: (λwz.wzF )

• or: (λwz.wTz)
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✫

✩

✪

Recursion

• Recursion can be modelled in Lambda calculus by applying functions

that can conditional replicate itself.

• There is a “fixed-point combinator function” Y such that applying it to

any other function R results in an arbitrarily long chain

R(R(. . . R(Y R) . . .)

• In particular, (Y R)A → R(Y R)A. If R is a binary function, it could

take the first argument as a copy of itself for the recursive call.
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✫

✩

✪

Lisp-based Languages

• Based on Lambda calculus

• Have lists as data structures (cons, car, cdr, etc.)

• Allows more than one parameter in a function

• Let expressions: (let ((x val)) body) is equivalent to

((lambda (x) body) val)

• Evaluating a let expression (or any expression in general) needs a list of

current name-value pairs. Use a stack-like structure for lookups.
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✫

✩

✪

Lambda/Let

• Let is essentially lambda function definition followed by an application of

the function

• If we know how to handle lambda definitions and applications, we can

implement let “for free”
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✫

✩

✪

Lambda/Let

• Generally, each expression is evaluated using a list of lists containing the

current environment

• Each function application can simply evaluating the function body but

using an updated environment: param = values
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✫

✩

✪

Lambda/Let

• To implement a lambda definition, we need to return a closure.

• Closure consists of: parameter list, function body, and the current

environment
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✫

✩

✪

Letrec

• Let does not allow for recursion. The value is evaluated from

surrounding scope

• One can use the fixed-point combinator trick in Lambda calculus but it

is not easy to read/write

• Letrec handles that internally

• Mutually recursive functions are more problematic but can be done by

other combinators as well
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✫

✩

✪

Lazy Evaluation

• Sometimes, arguments to functions need not be evaluated.

(define (f test a b)

(if (test) a b))

(f (...) (...) (...))

If the test evaluates to true, the third argument does not need to be

evaluated at all.

• Lazy evaluation: delay evaluation of an operand/argument until it is

needed

• The evaluation of the argument has to be wrapped in a package that can

be evaluated later. This is sometimes call a thunk.

• The package includes the current evaluation environment.
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