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What is this course about?

• Programming language concepts

– Syntax

– Semantics

– Names, bindings, scopes

– Data types

– Expressions and statements

– Control structures

– Subprograms

– Exception and event handling

– and more. . .
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What is this course about?

• Programming language paradigms

– Imperative

– Procedural

– Object-oriented

– Functional

– Logic
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Why study this?

• Different languages are designed for different tasks

• Learn how to choose the right language

• Understand implementation issues and language behaviour
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Problem Domains

• System programming

– Low-level

– Efficiency (space and time)

– e.g. C

• Scientific Computations

– Floating-point support

– Large integer support

– Matrix/vector

– e.g. Fortran, APL, MATLAB, Maple, Mathematica

• Business Applications

– Report generation

– Binary Coded Decimals

– e.g. COBOL
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Problem Domains

• Artificial intelligence

– symbolic computation, logic programming

– self-modifying code

– e.g. LISP, Scheme, Prolog

• Web

– Easy to use

– Support multimedia and multiple platforms

– e.g. HTML, PHP, Javascript
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Evaluating Programming Languages: Readability

• Simplicity

– number of features

– multiple meanings (e.g. operator overloading)

• Orthogonality

– small set of primitives can be combined in few ways to construct

many different control and data structures

• Data Types

• Syntax: control structures, reserved words, etc.
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Evaluating Programming Lanaguages: Writability

• Simplicity and orthogonality

• Expressivity: number of constructs, what they can do

• Abstraction support: defining new data and control structures
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Evaluating Programming Languages: Reliability

• Type checking

• Exception handling

• Aliasing
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Cost

• Compiling and executing

• Training

• Development

• Maintenance

• Portability
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Implementation

• To be useful, a language must have an implementation.

• Source code can be:

– compiled

– interpreted

– hybrid
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Compilation

• A compiler reads the source code, and translates it into machine code.

• The compiler performs the following steps:

– preprocessing (e.g. #include)

– lexical analysis: separate text into tokens

– syntax analysis: parses the source code into structural units (often

trees)

– code generation

• A linker combines machine code from multiple source files as well as

libraries, and produce an executable

• Translation is slow, execution is fast
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Interpretation

• No prior translation

• Source code is translated by an interpreter as it runs

• Usually easier and quicker to modify programs and see the results

immediately

• It may even be possible to change the program while it is running

• Execution is slower, generally require more memory space at runtime
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Hybrid Implementation

• Source code is first compiled into an intermediate code

• An interpreter reads the byte code and executes on the machine

• Pros: byte code can be platform independent. Platform dependent

interpreters are used

• Still slower than compiled code but faster than pure interpretation

• Just-in-time (JIT) compilers: compile byte code before running. Incur

overhead to reduce run time.
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