
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

What is this course about?

• Programming language concepts

– Syntax

– Semantics

– Names, bindings, scopes

– Data types

– Expressions and statements

– Control structures

– Subprograms

– Exception and event handling

– and more. . .

Introduction 1 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

What is this course about?

• Programming language paradigms

– Imperative

– Procedural

– Object-oriented

– Functional

– Logic

Introduction 2 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Why study this?

• Different languages are designed for different tasks

• Learn how to choose the right language

• Understand implementation issues and language behaviour

Introduction 3 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Problem Domains

• System programming

– Low-level

– Efficiency (space and time)

– e.g. C

• Scientific Computations

– Floating-point support

– Large integer support

– Matrix/vector

– e.g. Fortran, APL, MATLAB, Maple, Mathematica

• Business Applications

– Report generation

– Binary Coded Decimals

– e.g. COBOL

Introduction 4 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Problem Domains

• Artificial intelligence

– symbolic computation, logic programming

– self-modifying code

– e.g. LISP, Scheme, Prolog

• Web

– Easy to use

– Support multimedia and multiple platforms

– e.g. HTML, PHP, Javascript

Introduction 5 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Evaluating Programming Languages: Readability

• Simplicity

– number of features

– multiple meanings (e.g. operator overloading)

• Orthogonality

– small set of primitives can be combined in few ways to construct

many different control and data structures

• Data Types

• Syntax: control structures, reserved words, etc.

Introduction 6 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Evaluating Programming Lanaguages: Writability

• Simplicity and orthogonality

• Expressivity: number of constructs, what they can do

• Abstraction support: defining new data and control structures

Introduction 7 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Evaluating Programming Languages: Reliability

• Type checking

• Exception handling

• Aliasing

Introduction 8 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Cost

• Compiling and executing

• Training

• Development

• Maintenance

• Portability

Introduction 9 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Implementation

• To be useful, a language must have an implementation.

• Source code can be:

– compiled

– interpreted

– hybrid

Introduction 10 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Compilation

• A compiler reads the source code, and translates it into machine code.

• The compiler performs the following steps:

– preprocessing (e.g. #include)

– lexical analysis: separate text into tokens

– syntax analysis: parses the source code into structural units (often

trees)

– code generation

• A linker combines machine code from multiple source files as well as

libraries, and produce an executable

• Translation is slow, execution is fast

Introduction 11 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Interpretation

• No prior translation

• Source code is translated by an interpreter as it runs

• Usually easier and quicker to modify programs and see the results

immediately

• It may even be possible to change the program while it is running

• Execution is slower, generally require more memory space at runtime

Introduction 12 – 13 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Hybrid Implementation

• Source code is first compiled into an intermediate code

• An interpreter reads the byte code and executes on the machine

• Pros: byte code can be platform independent. Platform dependent

interpreters are used

• Still slower than compiled code but faster than pure interpretation

• Just-in-time (JIT) compilers: compile byte code before running. Incur

overhead to reduce run time.

Introduction 13 – 13 Howard Cheng


