
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Object-Oriented Programming

• Major components and issues:

– Inheritance

– Instance variables/methods vs. class variables/methods

– Single vs. multiple inheritance

– Dynamic binding/dynamic dispatch/polymorphism

– Abstract classes

Object-Oriented Programming 1 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Some Terminologies

• Messages: call to methods

• Message protocol/interface: collection of methods

• Message passing: calling a method

Object-Oriented Programming 2 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Exclusivity of Objects

• Are all types objects? Are there primitive types?

• Advantage: Uniformity in language and its use

• Disadvantage: even simple operations must be done through

message-passing process (e.g. adding two integers), can be less efficient

• Common: retain primitive types from imperative languages, add

object-oriented support

Object-Oriented Programming 3 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Subclasses vs. Subtypes

• Principle of Substitution: A variable of a class can be substituted for a

variable of one of its ancestor classes in any situation, without causing

type errors and without changing the behaviour of the program

• If class B is a subclass of class A, and the behaviour of the object of

class B is identical to that of object of class A when used as an object of

class A, then B is a subtype of A.

• e.g. In Ada: subtype Small_Int is Integer range -100..100;

• For subtypes to work, inheritance must be public.

• Not all subclasses are subtypes, and not all subtypes are subclasses

• Subclasses are by default subtypes in many languages (C++, Java)

unless methods are overriden.

Object-Oriented Programming 4 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Single vs Multiple Inheritance

• Multiple inheritance: allows inheritance from more than one class

• Can be useful

• Can be ambiguous, especially with diamond inheritance

• Languages that support multiple inheritance often have ways to specify

diamond inheritance (virtual inheritance in C++)

• Java: multiple inheritance only on interfaces

Object-Oriented Programming 5 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Allocation and Deallocation of Objects

• Can they be allocated on the stack? Or must they be a reference/pointer

to objects on the heap?

• Stack dynamic: what if an object of class B is assigned to an object of

class A?

• In C++, this results in object slicing and lose data. Need to use pointers

explicitly to avoid this.

• In Java, there is no issue with losing data

Object-Oriented Programming 6 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Dynamic vs. Static Binding

• Dynamic binding: if a variable can hold an object of class A or objects

of any subclass of A, then the version of the method called on the object

should depend on the real class of that object.

• Static binding: the method called is based on the (static) type of the

variable referring to the object.

• In some languages, dynamic binding is done (e.g. Java)

• Some languages allow users to choose. Why? (e.g. C++)

Object-Oriented Programming 7 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Nested Classes

• Many languages allow classes to be defined inside other classes

• Visibility is limited, different languages have different rules

Object-Oriented Programming 8 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Smalltalk

• Perhaps the first object-oriented language

• Everything is an object, even integer constants

• No nested classes or multiple inheritance

• Even adding two numbers is implemented as sending a “+” message to

one of the operands

• All objects are allocated from heap and referenced through reference

variables

• Only dynamic binding supported, dynamic type binding

Object-Oriented Programming 9 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

C++

• Objects on top of primitive types

• Both imperative and object-oriented

• Objects can be static, stack dynamic or heap dynamic

• Multiple inheritence, nested classes supported

• Static binding by default, dynamic binding can be specified

• public, private and protected members and inheritance

• pure virtual functions and abstract classes

Object-Oriented Programming 10 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Data Storage

• Class instance record (CIR): storage structure of instance variables of an

object. Similar to a record

• Every class has its own CIR, known at compile time

• Subclasses have CIRs that are copies of those of parent class, with extra

“fields” for additional instance variables

Object-Oriented Programming 11 – 12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Dynamic Binding

• When dynamic binding is used, the CIR for each class needs to have

information about the methods it defines

• Typically address/pointer to the code for the methods

• A virtual method table (vtable) is used to hold the address to each

method defined in the class

• A pointer to the vtable is stored in the CIR

• When a method is called, code is generated to look at the vtable entry

and call the appropriate version of the method

• Multiple inheritance: possibly needs multiple pointers to multiple

vtables.

Object-Oriented Programming 12 – 12 Howard Cheng


