
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Arithmetic Expressions

• Typically consists of operators, operands, parentheses, and possibly

function calls.

• Operators may be unary, binary, or even ternary.

• Operators may be infix, prefix, or postfix.

• Issues:

– precedence

– associativity

– order of operand evaluation

– side effects from operand evaluation

– user-defined operator overloading

– type mixing

Expressions and Assignment Statements 1 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Precedence

• Define different precedence levels for operators

• Unary operators are often at the top, though parentheses may be

needed. e.g. a + (-b) * c

• Parentheses can always be used to override order

Expressions and Assignment Statements 2 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Associativity

• Associativity defines the order of operations when two adjacent

occurrence of operators at the same level of precedence

• Usually it is either left-to-right (left associative) or right-to-left (right

associative).

• Most operators are left associative, but = and exponentiation are often

right associative

• Note that changing associativity may affect results even for

mathematical operations that are normally associative (overflow,

precision, etc.)

Expressions and Assignment Statements 3 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Conditional Expressions

• In C-based languages there is a conditional ternary expression:

expression1 ? expression2 : expression 3

• This means if expression1 is true, the value of the expression is that of

expression2. Otherwise, the value is expression3.

• This is also available in Perl, JavaScript, and Ruby.

Expressions and Assignment Statements 4 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Operand Evaluation Order

• In an arithmetic expression, there are operands.

• These operands may in turn require evaluation. e.g.

f(1) + f(2) + f(3)

• Does it matter what order the operands are evaluated?

Expressions and Assignment Statements 5 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Operand Evaluation Order

• If evaluating the operands does not have any side effects, the evaluation

order of the operands is irrelevant

• If there are side effects (e.g. changing global variables, printing to

screen, static variables, etc.), the order can be important

• Having side effects make it more difficult for compiler to optimize code

Expressions and Assignment Statements 6 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Side Effects

• Changing global variables

• Changing static variables

• Interacting with shared resources (files, screen, etc.)

• Functions defined in the mathematical sense do not have side effects

• Pure functional languages (e.g. Lisp, Scheme, Racket) do not have

variables and functions cannot have side effects (not exactly)

Expressions and Assignment Statements 7 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Referential Transparency

• A program has the property of referential transparency if any two

expressions in the program with the same value can be substituted for

one another anywhere in the program, without affecting the action of the

program.

• i.e. a referential transparent function depends only on the value of its

parameters, not the order in which they are evaluated

• Semantics is much easier to understand

• Functions in pure functional languages are referentially transparent

Expressions and Assignment Statements 8 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Overloaded Operators

• A single operator may have many different meaning depends on context

(e.g. operand type)

• Many languages have bulit-in operator overloading (e.g. + can be used

for both integer and floating-point additions)

• Some languages allow for user-defined operator overloading

• It can be used to aid readability (e.g. addition for fraction objects)

• But there is no way to prevent misuse (e.g. define + to do

multiplication)

• Precedence of operators usually cannot be changed

Expressions and Assignment Statements 9 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Type Conversions

• Narrowing conversion: converts a value to a type that cannot store even

approximations of all of the values of the original type

• Widening conversion: converts a value to a type that can include

approximations of all of the values of the original type (e.g. int to float)

• Widening conversions are almost always “safe”, but can result in

reduced accuracy.

• Coercion: implicit type conversion, common when operands do not have

the required types (e.g. float + int)

• Many languages also have explicit type conversion (e.g. casting in C++)

Expressions and Assignment Statements 10 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Mixed-mode Expressions

• Some languages allow mixed-mode expressions, some do not

• Rules must be defined for implicit operand conversions

• Language designers need to balance flexibility vs. type checking

Expressions and Assignment Statements 11 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Errors in Expressions

• Some possible errors in evaluation of expressions are: overflow,

underflow, divide by zero.

• Some language detect these as exceptions. Some may not.

Expressions and Assignment Statements 12 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Relational Expressions

• A relational operator compares the values of operands. Usually there are

equality tests, and greater/less comparisons for certain types

• Relational operators should have lower precedence than arithmetic

operators. What about assocativity? Does it matter?

Expressions and Assignment Statements 13 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Boolean Expressions

• Common to have AND, OR, NOT, possibly XOR

• Precedence among AND and OR?

• Perl and Ruby provides two sets of AND and OR with different

precedence (e.g. && vs. and)

Expressions and Assignment Statements 14 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Short-circuit Expressions

• Can be used to shorten code if used wisely

• Possibly more difficult to read

• Must also be careful about side effects: if the second part has side effects

it may or may not execute

• Some languages such as Ada allows user to choose (and then and

or else)

Expressions and Assignment Statements 15 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Assignment Statements

• Most use =, some use :=

• Some languages allow conditional target (l-value):

($flag ? $count1 : $count2) = 0 in Perl

• Many languages allow compound assignment operators: a += b

• Some have unary compound operators (e.g. ++ and --). Prefix vs.

Postfix, side effects, what if there are multiple occurrences?

• In some languages assignment statements are expressions (have values).

Can be used inside loop conditions or to chain assignments (right

associative).

Expressions and Assignment Statements 16 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Assignment Statements

• Some languages allow multiple assignments: e.g. (a,b,c) = (1,2,3)

• Swap could be done without using any temporaries: e.g. (a,b) = (b,a)

• Is it simultaneous or sequential (conceptually)?

Expressions and Assignment Statements 17 – 18 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Functional Languages

• In functional languages, assignments are simply to names (not variables).

• e.g. let in Lisp-style languages

Expressions and Assignment Statements 18 – 18 Howard Cheng

