CPSC 3740 Programming Languages University of Lethbridge

4 N

What is Syntax?'

e The form of its expressions, statements, and program units
e c.g. it describes what a “while loop” looks like
e But it does not describe what the program means

e e.g. c = a + b; is a syntactically valid statement. What does it mean?

\ _/

Syntax and Semantics 1-25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 A
Syntax Description'

e Programming languages are defined by formal rules

e Lexemes are small units of characters that are usually considered
indivisible
e c.g. varname, 1234

e Tokens are categories of lexemes (e.g. identifier, semicolon, plus

operator, string literals)
e A lexical analyzer tokenizes the program

e Different types of tokens are often described by regular expressions (not

covered in this course)

\ _/

Syntax and Semantics 2 —-25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Syntax Description I

e The syntax of the language is usually described by a grammar
e Backus-Naur Form (BNF)

e A “metalanguage” to describe other languages

\ _/

Syntax and Semantics 3 —25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N
Backus-Naur Form '

e Abstractions are enclosed in < >. e.g. <var>

e Each abstraction is defined by a number of rules of the form:
< abs >— ...

For example,

< assign >—< var >=< expression >

< expression >—< term > + < expression >

e The definition is sometimes called rules or productions.

e The left-hand side (LHS) is defined by the right-hand side (RHS).

\ _/

Syntax and Semantics 4 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Backus-Naur Form I

e Nonterminals are abstractions: they must be defined by rules
e Terminals are lexemes and tokens: they are not further defined
e Many nonterminals have multiple different rules

e [t is common (necessary?) to have recursion

e Parser translates tokenized programs into parse trees

\ _/

Syntax and Semantics 5— 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

BNF Examples I

e If-then and If-then-else statements
e Lists of items

e Arithmetic expressions

\ _/

Syntax and Semantics 6 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N
Derivations '

e A grammar usually has a start symbol (e.g. <program>)

e A derivation starts with the start symbol, and repeatedly chooses a rule
whose LHS matches a nonterminal and replaces it by the RHS.

e A derivation is finished when the current string has only terminals.

e At any point, there may be multiple nonterminals that can be replaced:
leftmost derivations always chooses the leftmost one

e There may also be multiple rules that can be applied to a given

nonterminal.

e The parser has to choose the correct rule so the final string of terminals

is the given source code.

\ _/

Syntax and Semantics 7 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N
Parse Trees I

e Describes syntactic structure of a program

e The root is the start symbol

e Fach time a nonterminal is replaced by its RHS, children nodes are
added corresponding to RHS

e Nonterminals are internal nodes, terminals are leave nodes

e An inorder traversal of the leave nodes should give the original source
code

\ _/

Syntax and Semantics 8 — 25 Howard Cheng




CPSC 3740

Programming Languages

University of Lethbridge

-

\

same expressions.

Ambiguity I

e A grammar is ambiguous if there can be two different parse trees for the

e We do not want ambiguity generally: what does it mean?

e It may depend on the context (need extra information).

~

_/

Syntax and Semantics

925

Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

-

\

~

Operator Precedence and Associativity'

When writing grammars, we want operators with higher precedence to

be “deeper down” in the parse trees

Operator precedence describes which operators are applied first when

multiple types of operators are involved

Associativity describes which operators are applied first when operators

with the same precedence are involved

Example: arithmetic operators

_/

Syntax and Semantics 10 — 25

Howard Cheng



CPSC 3740 Programming Languages

University of Lethbridge

-

Extended BNF I

e More convenient form of BNF
e Optional part: use square brackets

e Optional repeated part: use braces

e Multiple choice: use parentheses and vertical bars.

e Eixample: arithmetic expressions

\

~

_/

Syntax and Semantics 11 - 25

Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

Attribute Grammar (Advanced)'

e Context-free grammars do not completely specify the language

e Without context, the parser does not know:
— if variable has been declared

— data types are compatible

e In attribute grammar, every nonterminal has a set of attributes to keep
track of context (e.g. data type)

e Rules are used to pass attributes up and down the parse tree

e Predicates (boolean functions) are used to check the attribute at each

node

\ _/

Syntax and Semantics 12 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Semantics '

e Semantics refer to the meaning of the program: what does it do?

e Many alternative ways to describe semantics:
— Operational
— Denotational

— Axiomatic

\ _/

Syntax and Semantics 13 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

Operational Semantics I

e Describe the meaning of each statement by specifying the effect of

running it on a machine

e Need to define machine states:
— memory content
— registers (data and program counter)

— etc.
e Often use an informal “abstract machine” for platform independence
e Not always very precise
e Each statement defines how the state of the machine changes.

\ _/

Syntax and Semantics 14 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

Denotational Semantics.

e Mathematical way to specify the meaning of each statement

e Fach language construct is associated with a mathematical object

e Each language construct has a function to map it to the appropriate
mathematical objects and how they are manipulated

e The state of the machine can be denoted as a set of ordered pairs

(variable, value).

e It is very precise mathematically and can be used to reason about the

program.

e It is also very complex to describe and understand.

\ _/

Syntax and Semantics 15 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

-

\

Axiomatic Semantics I

Uses predicate logic

Can be used to prove program correctness

~

For each statement, assertions (boolean expressions) are used to describe

what are true before and after the statement

Precondition: an assertion before a statement, usually describes
relationship and constraints of input to the statement

Postcondition: an assertion after a statement, usually describes the
result of the statement

Typically put in braces before and after a statement

_/

Syntax and Semantics 16 — 25 Howard Cheng



CPSC 3740

Programming Languages

University of Lethbridge

-

\

Axiomatic Semantics '

e One way to prove program correctness:

Write a postcondition for the final statement that implies correctness

of the program

Find the weakest precondition for the final statement that makes the

postcondition true

Continue working backwards until we arrive at the weakest

precondition for the first statement

Check that input specification implies the precondition of the first

statement

~

_/

Syntax and Semantics

17 — 25

Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

4 N

Weakest Precondition '

e If () is a given postcondition, then the weakest precondition P:
— guarantees () after the statement
— for any other precondition P’ that guarantees ) after the statement,

P’ implies P.

e That is, P is what is needed to guarantee (), nothing more.

\ _/

Syntax and Semantics 18 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 A
Program Proofs I

e The proof of a program is simply a list of the statements with their

preconditions and postconditions.
e We have a sequence of statements Sq,..., S5, and associated
preconditions Py, ..., P, and postconditions Q)1,...,Q,:
— Input specification implies P;
— P; guarantees ();
— ; implies P44

— (), implies output specification

\ _/

Syntax and Semantics 19 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Program Proof Examplel

e Assignment: {P} x = 2 x y - 3 {x > 25}

\ _/

Syntax and Semantics 20 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

-

\

Program Proof for Selection'

e For the statement:

{P}

if B then
S1

else

S2
{Q}

e Need to consider both branches:
— {P and B} S1 {Q}
— {P and not B} S2 {Q}

~

_/

Syntax and Semantics 21 — 25

Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

Program Proof for Loops'

e Consider only while loops:

while B do
S

end
e Idea: use mathematical induction

e Need a loop invariant I that is true before, during each iteration, and

after the loop.
e Need {I and B} S {I}
e Loop precondition is {I}

e Loop postcondition is {I and not B}

\ _/

Syntax and Semantics 22 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Program Proof for Loops Examplel

e Linear search in array

\ _/

Syntax and Semantics 23 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Program Proof for Loops'

e Does the loop terminate?

e Need a loop variant: a non-negative integer quantity that decreases after

each loop iteration.
e For example, number of array elements not yet examined.

e Limitations: very difficult to obtain useful variants and invariants in

general

\ _/

Syntax and Semantics 24 — 25 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Axiomatic Semantics '

e Can be used to prove program correctness

e Can be very difficult to use for large programs (tedious)

\ _/

Syntax and Semantics 25 — 25 Howard Cheng




