
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

What is Syntax?

• The form of its expressions, statements, and program units

• e.g. it describes what a “while loop” looks like

• But it does not describe what the program means

• e.g. c = a + b; is a syntactically valid statement. What does it mean?

Syntax and Semantics 1 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Syntax Description

• Programming languages are defined by formal rules

• Lexemes are small units of characters that are usually considered

indivisible

• e.g. varname, 1234

• Tokens are categories of lexemes (e.g. identifier, semicolon, plus

operator, string literals)

• A lexical analyzer tokenizes the program

• Different types of tokens are often described by regular expressions (not

covered in this course)

Syntax and Semantics 2 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Syntax Description

• The syntax of the language is usually described by a grammar

• Backus-Naur Form (BNF)

• A “metalanguage” to describe other languages

Syntax and Semantics 3 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Backus-Naur Form

• Abstractions are enclosed in < >. e.g. <var>

• Each abstraction is defined by a number of rules of the form:

< abs >→ . . .

For example,

< assign >→< var >=< expression >

< expression >→< term > + < expression >

• The definition is sometimes called rules or productions.

• The left-hand side (LHS) is defined by the right-hand side (RHS).

Syntax and Semantics 4 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Backus-Naur Form

• Nonterminals are abstractions: they must be defined by rules

• Terminals are lexemes and tokens: they are not further defined

• Many nonterminals have multiple different rules

• It is common (necessary?) to have recursion

• Parser translates tokenized programs into parse trees

Syntax and Semantics 5 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

BNF Examples

• If-then and If-then-else statements

• Lists of items

• Arithmetic expressions

Syntax and Semantics 6 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Derivations

• A grammar usually has a start symbol (e.g. <program>)

• A derivation starts with the start symbol, and repeatedly chooses a rule

whose LHS matches a nonterminal and replaces it by the RHS.

• A derivation is finished when the current string has only terminals.

• At any point, there may be multiple nonterminals that can be replaced:

leftmost derivations always chooses the leftmost one

• There may also be multiple rules that can be applied to a given

nonterminal.

• The parser has to choose the correct rule so the final string of terminals

is the given source code.

Syntax and Semantics 7 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Parse Trees

• Describes syntactic structure of a program

• The root is the start symbol

• Each time a nonterminal is replaced by its RHS, children nodes are

added corresponding to RHS

• Nonterminals are internal nodes, terminals are leave nodes

• An inorder traversal of the leave nodes should give the original source

code

Syntax and Semantics 8 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Ambiguity

• A grammar is ambiguous if there can be two different parse trees for the

same expressions.

• We do not want ambiguity generally: what does it mean?

• It may depend on the context (need extra information).

Syntax and Semantics 9 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Operator Precedence and Associativity

• When writing grammars, we want operators with higher precedence to

be “deeper down” in the parse trees

• Operator precedence describes which operators are applied first when

multiple types of operators are involved

• Associativity describes which operators are applied first when operators

with the same precedence are involved

• Example: arithmetic operators

Syntax and Semantics 10 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Extended BNF

• More convenient form of BNF

• Optional part: use square brackets

• Optional repeated part: use braces

• Multiple choice: use parentheses and vertical bars.

• Example: arithmetic expressions

Syntax and Semantics 11 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Attribute Grammar (Advanced)

• Context-free grammars do not completely specify the language

• Without context, the parser does not know:

– if variable has been declared

– data types are compatible

– . . .

• In attribute grammar, every nonterminal has a set of attributes to keep

track of context (e.g. data type)

• Rules are used to pass attributes up and down the parse tree

• Predicates (boolean functions) are used to check the attribute at each

node

Syntax and Semantics 12 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Semantics

• Semantics refer to the meaning of the program: what does it do?

• Many alternative ways to describe semantics:

– Operational

– Denotational

– Axiomatic

Syntax and Semantics 13 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Operational Semantics

• Describe the meaning of each statement by specifying the effect of

running it on a machine

• Need to define machine states:

– memory content

– registers (data and program counter)

– etc.

• Often use an informal “abstract machine” for platform independence

• Not always very precise

• Each statement defines how the state of the machine changes.

Syntax and Semantics 14 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Denotational Semantics

• Mathematical way to specify the meaning of each statement

• Each language construct is associated with a mathematical object

• Each language construct has a function to map it to the appropriate

mathematical objects and how they are manipulated

• The state of the machine can be denoted as a set of ordered pairs

(variable, value).

• It is very precise mathematically and can be used to reason about the

program.

• It is also very complex to describe and understand.

Syntax and Semantics 15 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Axiomatic Semantics

• Uses predicate logic

• Can be used to prove program correctness

• For each statement, assertions (boolean expressions) are used to describe

what are true before and after the statement

• Precondition: an assertion before a statement, usually describes

relationship and constraints of input to the statement

• Postcondition: an assertion after a statement, usually describes the

result of the statement

• Typically put in braces before and after a statement

Syntax and Semantics 16 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Axiomatic Semantics

• One way to prove program correctness:

– Write a postcondition for the final statement that implies correctness

of the program

– Find the weakest precondition for the final statement that makes the

postcondition true

– Continue working backwards until we arrive at the weakest

precondition for the first statement

– Check that input specification implies the precondition of the first

statement

Syntax and Semantics 17 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Weakest Precondition

• If Q is a given postcondition, then the weakest precondition P :

– guarantees Q after the statement

– for any other precondition P ′ that guarantees Q after the statement,

P ′ implies P .

• That is, P is what is needed to guarantee Q, nothing more.

Syntax and Semantics 18 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Program Proofs

• The proof of a program is simply a list of the statements with their

preconditions and postconditions.

• We have a sequence of statements S1, . . . , Sn and associated

preconditions P1, . . . , Pn and postconditions Q1, . . . , Qn:

– Input specification implies P1

– Pi guarantees Qi

– Qi implies Pi+1

– Qn implies output specification

Syntax and Semantics 19 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Program Proof Example

• Assignment: {P} x = 2 * y - 3 {x > 25}

Syntax and Semantics 20 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Program Proof for Selection

• For the statement:

{P}

if B then

S1

else

S2

{Q}

• Need to consider both branches:

– {P and B} S1 {Q}

– {P and not B} S2 {Q}

Syntax and Semantics 21 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Program Proof for Loops

• Consider only while loops:

while B do

S

end

• Idea: use mathematical induction

• Need a loop invariant I that is true before, during each iteration, and

after the loop.

• Need {I and B} S {I}

• Loop precondition is {I}

• Loop postcondition is {I and not B}

Syntax and Semantics 22 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Program Proof for Loops Example

• Linear search in array

Syntax and Semantics 23 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Program Proof for Loops

• Does the loop terminate?

• Need a loop variant: a non-negative integer quantity that decreases after

each loop iteration.

• For example, number of array elements not yet examined.

• Limitations: very difficult to obtain useful variants and invariants in

general

Syntax and Semantics 24 – 25 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Axiomatic Semantics

• Can be used to prove program correctness

• Can be very difficult to use for large programs (tedious)

Syntax and Semantics 25 – 25 Howard Cheng


