
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Von Neumann Architecture

• Central Processing Unit (Control, Arithmetic, Logic)

• Communicate with memory, input and output devices

• Memory stores both instructions and data

• The concept of variables allows one to refer to specific memory locations.

Variables 1 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Variable Properties

• Data type

• Scope

• Lifetime

Variables 2 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Names

• A string of characters to identify some entity in a program

• Some issues:

– maximum length? (e.g. FORTRAN 95: 31, C++: no limits in

standard)

– case sensitivity, camel notation

– legal forms? Letters, digits, underscore. Starting letter?

– language design vs. style

– special words: reserved or can be redefined? Too many reserved

words?

Variables 3 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Variables

• Abstraction of some memory location.

• Described by the attributes:

– name (can be anonymous)

– address

– data type

– value

– lifeime

– scope

Variables 4 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Variable Address

• Each time a variable is created (e.g. local variable) it may be at a

different location

• Sometimes called l-value

• Aliasing: multiple variable names referring to the same address (e.g.

pointers, references, unions)

• Bad for readability and maintainability

Variables 5 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Data Type

• Determines size of the memory location, and how to interpret the binary

bit pattern in memory

• Determines valid range (for numeric values) and also valid operations

• More on this later

Variables 6 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Value

• The content of the memory locations referred to by the variable

• Sometimes called r-value

• To access the value, we need the address of the variable (l-value)

• The value is simply a sequence of bits. Its interpretation depends on the

data type.

Variables 7 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Binding

• Binding is the association between an attribute and an entity

• e.g. associating the name of a variable to its type or value

• e.g. associating the operator symbol with its meaning

• Binding time is when the association is determined.

• Binding time can be at:

– language design (e.g. int)

– static/compile time (e.g. int x;)

– dynamic/run time (e.g. int *x = new int;)

Variables 8 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Binding

• Static binding occurs before run time (usually at compilation time) and

remains unchanged during program execution

• Dynamic binding occurs during run time and may change during

program execution

Variables 9 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Type Binding

• A variable needs to be bound to a data type

• In static binding:

– explicit declarations: e.g. C-like languages

– implicit declarations: first use determines its type through some

convention

• Implicit declarations are more convenient but not good for reliability

because compilers cannot always perform type checking

• Some languages like Perl uses special characters to indicate data type

(e.g. $ for scalars, @ for arrays)

Variables 10 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Type Binding

In dynamic binding:

• type is assigned when a value is assigned to a variable

• the type is based on the RHS of the assignment

• the type of a variable can change during program execution

• more flexible (e.g. no need to worry about which numeric type to use)

• common in scripting languages (e.g. Python, JavaScript, PHP)

• Hard for compiler/interpreter to detect errors

• Higher cost to implement dynamic type binding: type checking is done

at run time, and more storage is needed to describe current type

Variables 11 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Storage Bindings and Lifetime

• Allocation: process to associate a variable to a memory location from

the pool of available memory

• Deallocation: process of returning the memory location to the pool

• The lifetime of a variable is the time during which the variable is bound

to a memory location

• Four types:

– static

– stack-dynamic

– explicit heap-dynamic

– implicit heap-dynamic

Variables 12 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Static Variables

• Bound before program execution and does not change until program

terminates

• Global variables are often static

• In C/C++: static local variables

• efficient: no overhead for allocation/deallocation, compiler can generate

direct addresses

• reduced flexibility: cannot support recursion, cannot share storage

Variables 13 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Stack-Dynamic Variables

• Binding is done when program execution reaches the declaration

• Allocated from the run-time stack

• Typical for local variables

• Needed for recursion

• Memory can be reused

• Small overhead for allocation and deallocation, indirect addressing

Variables 14 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Explicit Heap-Dynamic Variables

• Anonymous memory cells allocated and deallocated by explicit run-time

instructions (e.g. new and delete)

• Must be referenced through pointer or reference variables

• Allows memory to be allocated and deallocated as needed

• Can be inefficient and error-prone

Variables 15 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Implicit Heap-Dynamic Variables

• Bound to heap storage only when they are assigned values

• e.g. In Python you can create a list L = [1,2,3,4], even if L was used

for some other variable before

• Very flexible

• Can be inefficient with many allocations/deallocations

• Can be hard for compilers/interpreters to detect errors

Variables 16 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Scope

• Scope is the set of statements in which a variable is visible

• Scope and lifetime are not necessarily the same (e.g. static local variable)

• Static scoping: scope can be determined before run time

• Many of the modern languages are block-structured and allows for new

local scopes to be created

• Global scope: in the same source file or visible across source files (e.g.

extern in C/C++)

• Variables with the same name can be hidden

Variables 17 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Dynamic Scoping

• Scope of variables depend on the calling sequence of functions

• Poor readability, not reliable

• Not possible for static type checking

Variables 18 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Lifetime and Scope

• Lifetime and scope are often correlated, but not always

• e.g. static local variables in C++

• In nested function calls (e.g. f calls g), the local variables in the caller

function are alive but not in the scope of the called function

• Sometimes, scope and lifetime mismatch can lead to problems (e.g.

memory leak)

Variables 19 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Referencing Environment

• The referencing environment of a statement is a collection of all variables

that are visible in that statement

• Static-scoped language: variables declared in local scope and all

variables in surrounding scopes

• Compilers maintain referencing environment to generate code

• Dynamic-scoped language: a list of active subprograms is maintained at

runtime

• Active subprograms: a subprogram has begun but not yet finished

• Referencing environment are local variables and all visible variables in

the sequence of active subprograms

Variables 20 – 21 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Named Constants

• Name constants are variables that is bound to a value once

• Improve readability and reliability

• Easier to change

• Some languages allow only static binding. Others allow dynamic binding

(e.g. C++)

Variables 21 – 21 Howard Cheng


