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Abstract

Minimum spanning tree algorithms have been proposed for the lossy
compression of image sets. In these algorithms, a complete graph is con-
structed from the entire image set and an average image, and a minimum
spanning tree is used to determine which difference images to encode. In
this paper, we propose a hierarchical minimum spanning tree algorithm in
which the minimum spanning tree algorithm is first applied to clusters of
similar images and then it is applied to the average images of the clusters.
It is shown that the new algorithm outperforms the previous image set
compression algorithms for image sets which are not very similar, espe-
cially at lower bitrates. Furthermore, the computational requirement for a
minimum spanning tree is significantly lower than the previous minimum
spanning tree algorithms.

1 Introduction

Traditional image compression algorithms for individual images, such as predic-
tive coding and transform coding, have been shown to effectively reduce coding,
inter-pixel, and psychovisual redundancy [5]. Image sets, however, may contain
inter-image redundancy, or “set redundancy” [6], which are not reduced by these
algorithms. Some work has been done to address this issue. The centroid [6],
MST [1, 8], and MSTa [3, 4] algorithms have been shown to reduce inter-image
redundancy in sets of similar images.

In cases where images in a set form multiple clusters of similar images, there
is potential for improvement. With the centroid and MSTa algorithms, only
one average image is calculated for the entire set of images. As the number of
distinct clusters in a set increases, the average image becomes “less similar” to
any single image in the set, and is therefore a less effective predictor for the
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images in the set. This can negatively impact compression performance of the
image set compression schemes.

The hierarchical approach presented here combines the MSTa algorithm of
Gergel et al. [4, 3] with the clustering algorithm of Nielsen et al. [9], by parti-
tioning a set of images into clusters, and performing the MSTa scheme on each
of the clusters. The MSTa scheme is then applied to the set containing the
average images of each cluster.

Compression performance of the hierarchical algorithm is examined and com-
pared with the compression performance of the traditional, centroid, MST, and
MSTa compression schemes. The run time of performing the clustering scheme
on a set of images, and running MSTa on the individual clusters versus the run
time of the MSTa scheme on the entire set is also analyzed.

2 Previous Work

Karadimitriou and Tyler proposed the centroid and min-max “set mapping”
schemes to reduce “set redundancy” for lossless compression [6, 7]. The cen-
troid scheme involves computing an average image for a set of similar images,
calculating the difference between the average image and each image in the set,
and coding the average image and the difference images. In the min-max scheme,
a minimum image and a maximum image are created from the minimum and
maximum pixel vales across all images. Several methods may be used to predict
each original image from the minimum and maximum images. The minimum
image, maximum image, and the prediction error for each image are coded.
Their algorithm gave significant improvement in compression ratios compared
to compressing individual images. However, the images in the set must be quite
similar if the centroid and min-max algorithms are to perform well, and image
sets that contain dissimilar images are not considered. To ensure similarity of
the test images, clusters of ten images were selected from a larger set using a
simple genetic algorithm, and each cluster is compressed independently. This
algorithm runs quickly and produces clusters that are are quite similar. The
clustering algorithm, although very effective for experimental purposes, is not
practical in all environments. It requires the desired number of images in the
cluster as input, which may be impractical to determine for large sets of im-
ages. Also, due to the random nature of the algorithm, there is no optimality
guarantee for the output cluster.

Nielsen et al. proposed a clustering strategy that is adaptive to image sets
containing dissimilar images [9]. In their approach, the root mean square error
(RMSE) between images in the set and the average image is used to partition
the set into clusters of similar images. Each cluster is compressed indepen-
dently using the centroid scheme. JPEG2000 (lossless and lossy) [2] is used to
compress the average and difference images. Their results are compared to “tra-
ditional” JPEG2000, which refers to using JPEG2000 to compress each image
individually. The results of their experiments are encouraging, showing a 13%
to 25% improvement over traditional JPEG2000. Compression performance is
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clearly improved, but the effect of clustering on the run time performance of
the algorithms was not examined. Also, their experiments did not compare the
clustered centroid scheme with the centroid scheme on the entire image set, and
did not consider other set mapping strategies.

The minimum spanning tree (MST) set mapping strategy, proposed by
Nielsen and Li, is based on a graph data structure [8]. A complete graph is
constructed, using images as the vertices and the RMSE between adjacent im-
ages as the edge weights. An MST for the graph is calculated, and one image
is chosen as the root. The root image and difference images represented by the
edges with the lowest total cost are encoded using lossy JPEG2000 [2]. The
results of these experiments showed a clear improvement in average distortion
(RMSE) when using the MST scheme over compressing each image individu-
ally, especially at lower bitrates. These experiments focused on sets of similar
images, and did not examine performance on sets containing dissimilar images.
They also did not compare the MST strategy with other set mapping strategies,
such as the centroid scheme, and did not consider the effect of clustering on the
MST results. Chen et al. [1] also applied a similar strategy to “object movies,”
which are sets of images of an object photographed at different pan and tilt
angles. The prediction errors from motion compensation are used as the edge
weights. They showed a clear improvement over previous methods. However,
their algorithm is designed specifically for object movies where the image set is
assumed to be similar.

Gergel et al. built upon this work with the MSTa scheme [3, 4]. An MST
is computed on a complete graph that includes a zero image and an average
image, using RMSE as edge weight. The MSTa scheme is a unified framework
that adaptively chooses the best scheme among the traditional, centroid, and
MST schemes. Gergel et al. compared lossy and lossless compression results
between the traditional, centroid, MST, and MSTa schemes. The MSTa scheme
is shown to be highly effective, outperforming the other schemes in many cases.
For image sets which are very similar, the MSTa strategy makes use of the
average image to arrive at a strategy very close to the centroid strategy. On
the other hand, for image sets which have clusters of similar images, the MSTa

strategy essentially chooses to compress each image independently because the
average image for the entire set is not a good predictor of the images in the
set. Furthermore, it may not be practical to construct the complete graph for
a large image set.

3 Approach

The existing set mapping strategies have been shown to be effective on sets of
similar images, but the images may not be similar in all cases. In the hierarchical
MSTa scheme, we partition the image set into clusters of similar images, and
apply the MSTa algorithm to each cluster. Since the average image for each
cluster should be very similar to all images in the cluster, it is a good predictor
for images in the cluster. This should produce difference images with a small
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range of pixel values that will compress well. The goal is that the increased
compression performance for the difference images offsets the added cost of
storing multiple average images.

3.1 Graph Theory and MSTa

Gergel et al. described the MSTa set mapping scheme as follows [3, 4]. Let
S = {I1, I2, . . . , In} represent a set of n images of identical dimensions. Two
additional images are defined: the zero image In+1 = Iz where Iz(i, j) = 0 for
all values of (i, j), and the average image In+2 = Ia where

Ia(i, j) =
1
n

n∑
k=1

Ik(i, j).

The average and zero images are added to S to create a new set as follows:

Sa = Sn+2 = Sn ∪ {Iz} ∪ {Ia}.

Gergel et al. defined a complete, undirected, weighted graph G = (V,E) from
Sa. The vertices of G are V = {Ii|Ii ∈ Sa}. The edges are E = {(Ii, Ij)|Ii, Ij ∈
V }. The weight for each edge (i, j) is defined as w(Ii, Ij) where w : Sa × Sa →
R≥0 is a function that measures the cost to reconstruct Ij assuming Ii is known.
For this paper, RMSE is used as the weight function and it is symmetric.

The minimum spanning tree T of G is calculated, and the difference images
represented by the edges in T are coded.

3.2 MSTa and Clustering: The Hierarchical MSTa

In this work, we add clustering to the MSTa scheme to form a hierarchical MSTa

(HMSTa). The set of images S is partitioned into k clusters S1∪S2∪. . .∪Sk = S
where Si ∩ Sj = ∅ for i 6= j. Each cluster Si contains ni images, such that
Si = {Ii,1, Ii,2, . . . , Ii,ni} and n1 + n2 + . . . + nk = n. The MSTa algorithm is
applied to each cluster. In the first step of the HMSTa algorithm, two images
are added to each cluster Si to form the set Sa,i:

• the zero image Ii,z as Ii,z(i, j) = 0 for all (i, j);

• the average image Ii,a as Ii,a(i, j) = 1
ni

∑ni

l=1 Ii,l(i, j).

Next, a new cluster SA of the average images of all other clusters is created as
SA = {I1,a, I2,a, . . . , Ik,a} with |SA| = k. The average image and zero image are
added to SA to form Sa,A:

• the zero image IA,z as IA,z(i, j) = 0 for all (i, j);

• the average image IA,a as IA,a(i, j) = 1
k

∑k
l=1 Il,a(i, j).
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An MST is computed from the complete graph constructed from each cluster
Sa,i as well as Sa,A. The difference images represented by the edges in the MSTs
are coded. Notice that the resulting edges may not be a spanning tree for the
complete graph constructed from the image set

(
∪k

i=1Sa,i

)
∪Sa,A because there

may be cycles involving the average images Ii,a. These cycles are broken by
removing edges connecting Ii,a to obtain a spanning tree.

3.2.1 The Clustering Algorithm

For these experiments, we implemented the clustering algorithm described by
Nielsen and Li [9]. Their algorithm sorts images into clusters based on both the
percentage of pixels outside of the range [−127, 127] in the differences between
the images in the cluster and the average image for that cluster, and the RMSE
between the images and the average image. Let Sk represent the kth cluster.
Let Ik,a represent the average image for Sk. Let ∆(I1, I2) represent the RMSE
between images I1 and I2, and %(I) represent the percentage of pixels in image
I that are in the range [−127, 127]. A percentage threshold, φ, is chosen. For
each image I ∈ Sk, if %(Ik,a − I) < φ, then ∆(Ik,a, I) is computed. The image
I in cluster Sk with the highest ∆(Ik,a, I) is moved to cluster Sk+1. Ik,a is
then recalculated, and the comparison is repeated for images remaining in Sk.
These steps are repeated until a pass is made through Sk where no images are
removed. This process is repeated for all clusters. The clustering algorithm
described is presented in Algorithm 1 [9].

Algorithm 1 Pseudocode for Nielsen and Li’s clustering algorithm.
create S0, containing all images
k ← 0
repeat

repeat
create average image, Ik,a

max rmse← −1
rm img ← NULL
for all I ∈ Sk do

if %(Ik,a − I) < φ then
if ∆(Ik,a, I) > max rmse then

rm img ← I
max rmse← ∆(Ik,a, I)

end if
end if

end for
move rm img to cluster k + 1

until no image is removed
k ← k + 1

until there are no more clusters
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4 Analysis

4.1 Run time Analysis

The run time analysis is done in terms of operations per pixel in a single image.
For example, if an operation is performed once for each pixel on n images, it
would be considered to be performed n times per pixel in a single image.

4.1.1 Clustering

The analysis for clustering is performed in two stages. First, the amount of
work required to remove all except k images from a set of n images using the
clustering algorithm is analyzed. The result of this analysis is used to analyze
the clustering of n images into n/k clusters of size k.

The number of RMSE calculations required is dependent on the properties
of the image set. In the worst case, RMSE will be calculated on each image
for each iteration of the clustering algorithm. In the best case, RMSE will only
be calculated on the one image that is being removed. Both of these cases are
unlikely. To simplify the analysis, a few assumptions are made:

1. all clusters have the same size (i.e. n mod k = 0)

2. The RMSE summations used in this paper represent an “average” case.
For this paper, it is assumed that an RMSE calculation is required for
each iteration for each image that will be removed from the cluster (i.e.
%(I) < φ for all images that will be removed from the cluster and only
for images that will be removed from the cluster).

Let Rk,n represent the number of operations that must be performed to remove
all but k images from a set of size n (leaving two clusters: one containing k
images, and another containing n− k images):

R1,n =

avgs︷︸︸︷
n∑

i=1

i+

%−in︷︸︸︷
n∑

i=1

i +

RMSE︷︸︸︷
n−1∑
i=1

i

=
2n(n + 1)

2
+

(n− 1)(n)
2

=
2n2 + 2n + n2 − n

2

=
3n2 + n

2

The three summations represent calculations for average images, “percent
inlying” values, and RMSE.

To remove all but two images from a set of size n:
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R2,n =
n∑

i=2

i +
n∑

i=2

i +
n−2∑
i=1

i

=
2(n− 2 + 1)(n + 2)

2
+

(n− 2)(n− 1)
2

=
2(n2 + 2n− 2n− 4 + n + 2) + (n2 − n− 2n + 2)

2

=
2(n2 + n− 2) + (n2 − 3n + 2)

2

=
2n2 + 2n− 4 + n2 − 3n + 2

2

=
3n2 − n− 2

2

To remove all but k images from a set of size n:

Rk,n =
n∑

i=k

i +
n∑

i=k

i +
n−k∑
i=1

i

=
2(n− k + 1)(n + k)

2
+

(n− k)(n− k + 1)
2

=
2(n2 + nk − nk − k2 + n + k) + (n2 − nk + n− nk + k2 − k)

2

=
2(n2 + n + k − k2) + (n2 + n− k − 2nk + k2)

2

=
2n2 + 2n + 2k − 2k2 + n2 + n− k − 2nk + k2

2

=
3n2 + 3n− 2nk + k − k2

2

Let Ck,n represent the number of operations required to separate n images
into clusters of equal size k, using the above formula:
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Ck,n =
n/k∑
i=1

3(ki)2 + 3(ki)− 2(ki)k + k − k2

2

= k/2

n/k∑
i=1

(3ki2 + 3i− 2ki + 1− k)


= k/2

n/k∑
i=1

3ki2 +
n/k∑
i=1

3i−
n/k∑
i=1

2ki +
n/k∑
i=1

1−
n/k∑
i=1

k


= k/2

3k

n/k∑
i=1

i2 + 3
n/k∑
i=1

i− 2k

n/k∑
i=1

i + n/k − n


= k/2

(
3k

(n/k)(n/k + 1)(2n/k + 1)
6

+ (3− 2k)
(n/k)(n/k + 1)

2
+ n/k − n

)
= k/2

(
k(n2/k2 + n/k)(2n/k + 1) + (3− 2k)(n2/k2 + n/k)

2
+ n/k − n

)
= k/2

(
k(n2+nk

k2 )( 2n+k
k ) + (3− 2k)(n2+nk

k2 )
2

+ n/k − n

)

= k/2

(
(n2+nk)(2n+k)

k2 + (3−2k)(n2+nk)
k2

2
+ n/k − n

)

= k/2
(

(n2 + nk)(2n + k) + (3− 2k)(n2 + nk) + 2nk − 2nk2

2k2

)
= 1/2

(
2n3 + n2k + 2n2k + nk2 + 3n2 + 3nk − 2n2k − 2nk2 + 2nk − 2nk2

2k

)
=

2n3 + 3n2 + n2k + 5nk − 3nk2

4k

After the clusters have been calculated, an MST must be calculated for
each cluster (each containing k + 2 images: the images in the cluster, plus
the average and zero images for that cluster), including the average cluster
(containing n/k + 2 images):
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n/k

(
k + 2

2

)
+
(

n/k + 2
2

)
=

n(k + 2)(k + 1)
2k

+
(n/k + 2)(n/k + 1)

2

=
n(k + 2)(k + 1)

2k
+

(n+2k
k )(n+k

k )
2

=
n(k + 2)(k + 1)

2k
+

(n + 2k)(n + k)
2k2

=
nk(k + 2)(k + 1) + (n + 2k)(n + k)

2k2

=
nk(k2 + 3k + 2) + n2 + 3nk + 2k2

2k2

=
nk3 + 3nk2 + 2nk + n2 + 3nk + 2k2

2k2

=
nk3 + 3nk2 + n2 + 2k2 + 5nk

2k2

Therefore, the total number of operations required to cluster n images into
clusters of size k and calculate the MST for each cluster is:

Tk,n =
2n3 + 3n2 + n2k + 5nk − 3nk2

4k
+

nk3 + 3nk2 + n2 + 2k2 + 5nk

2k2

=
k(2n3 + 3n2 + n2k + 5nk − 3nk2) + 2(nk3 + 3nk2 + n2 + 2k2 + 5nk)

4k2

=
2n3k + 3n2k + n2k2 + 5nk2 − 3nk3 + 2nk3 + 6nk2 + 2n2 + 4k2 + 10nk

4k2

=
2n3k + 2n2 + 3n2k + n2k2 + 11nk2 − nk3 + 4k2 + 10nk

4k2

4.1.2 MSTa

For MSTa, the average image must be calculated, followed by the complete
graph on all images plus the zero and average images:

TMSTa = n +
(

n + 2
2

)
= n +

(n + 2)(n + 1)
2

=
(n + 2)(n + 1) + 2n

2

=
n2 + 3n + 2 + 2n

2

=
n2 + 5n + 2

2
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Figure 1: Number of images vs. number of operations.

4.1.3 Comparison

The clustering scheme, as implemented, is slower than the MSTa scheme. This
is clear when the above equations for number of operations based on the number
of images in the set is plotted on a graph, as in Figure 1. MSTa is slower until
the number of images in the set exceeds the size of a single cluster. This trend
continues for larger cluster sizes. Practically, it does not make sense to cluster
the images unless the image set is larger than a single cluster. This means that
for practical purposes, the MSTa scheme is always faster than the clustering
scheme.

Additional analysis reveals that most of the computational work is done on
the clustering step of the clustering scheme, not the MSTa step. Further, the
computational work involved in simply clustering the images (without running
MSTa on the clusters) exceeds that of performing the MSTa algorithm on the
entire set of images (see Figure 2). As expected, the computational work re-
quired to run the MSTa algorithm on the clustered image set is less than that
required to run the MSTa algorithm on the unclustered set (see Figure 3).

5 Experimental Results

Preliminary experiments have been conducted on the two image sets—the com-
bination set and the Joe image set [3, 4]. Results for the combination set can
be seen in Figure 4, and results for the Joe set can be seen in Figure 5, which
plot bitrate against average distortion. For these experiments, we coded the
image sets using each set mapping scheme at varying bitrates, and measured
the distortion of the reconstructed image using RMSE for each image in the set
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Figure 2: Number of images vs. number of operations: clustering portion of
clustering algorithm only.

Figure 3: Number of images vs. number of operations: MSTa portion of clus-
tering algorithm only.
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Figure 4: Results for the combination image set.

at each bitrate. Therefore, a curve that is lower and to the left represents better
compression performance. For both image sets, the HMSTa scheme outperforms
the other set mapping strategies.

5.1 Explanation of Results

5.1.1 Combination

The combination image set contains 29 images from the pig image set and 28
images from the Galway image set [3, 4]. Clearly, the images form two tight,
distinct clusters (the images in a single cluster are quite similar to each other,
but quite dissimilar to the images in the other cluster. See Figures 6 and 7).

With the other set mapping schemes such as centroid and MSTa, only one
average is formed for the entire set. In the case of the combination set, the
average image contains elements of both the pig and Galway images, and is not
a good predictor for any image in the set. Figure 8 shows the average image
from the application of MSTa on the combination set. This shows that the
prediction using the average image is poor.

With the HMSTa strategy, the two clusters are identified and separated,
and an average image is calculated for each cluster. The average images are
much better predictors for the images in the clusters, because they only contain
elements from a set of similar images. As a result, the difference images are
easier to compress. See Figure 9 for a sample cluster average image from the
HMSTa algorithm.
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Figure 5: Results for the Joe image set.

Figure 6: Sample image from the pig set.
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Figure 7: Sample image from the Galway set.

Figure 8: Average image from MSTa on the combination set.
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Figure 9: Sample average image from HMSTa on the combination set.

Figure 10: Sample images from the Joe set.

5.1.2 Joe

The Joe image set contains time lapsed photographs of an outdoor scene, cap-
tured from a webcam. They are intended to allow the viewer to see the weather
in Victoria, B.C., so most of the image is taken up by sky. The images used
in these experiments were captured at different times throughout the day, and
in different weather conditions, so the sky portion of the images is significantly
different among the images. See Figure 10 for sample images. The drastic vari-
ance in the sky portion of the images has a strong affect on the average image,
and as a result, the average image is a poor predictor for the images, and the
difference images contain a wide range of pixel values. The average image of the
entire set is shown in Figure 11, and a sample difference image from the MSTa

scheme is shown in Figure 12. The HMSTa strategy performs well on the Joe
set for reasons similar to why it performs well on the combination set. Images
in similar clusters show similar sky conditions. This means that the average im-

15



Figure 11: Average image from MSTa on the Joe set.

Figure 12: Sample difference image from MSTa on the Joe set.

age for each cluster will be a better predictor for images in that cluster, which
means that difference images are easier to compress. Figure 13 shows a sample
difference image from the application of HMSTa on the Joe image set.

6 Conclusion

The compression performance of the HMSTa strategy is better than that of
the traditional, centroid, MST, and MSTa strategies on image sets that con-
tain multiple tight clusters. This is at the computational expense of running a
clustering algorithm on the images prior to applying the HMSTa algorithm. In

Figure 13: Sample difference image from HMSTa on the Joe set.
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some cases, this computational expense may be avoidable if some outside infor-
mation about the images is available. For example, if it is known that certain
images are photographs of certain objects, the clustering step may be avoided.

Future experiments will be conducted to determine how well HMSTa per-
forms for image sets that do not contain tight clusters, and to gauge the impact
of using wavelet packet coding rather than JPEG2000 to compress the differ-
ence images. Future work may also include the application of different clustering
algorithms before the application of the HMSTa scheme.
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