
Optical Character Recognition of Printed Mathematical Symbols
using A Hierarchical Classifier

Jason Ranger, Fei Wang, Howard Cheng1
Department of Mathematics and Computer Science

University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada
jason.ranger@uleth.ca, f.wang@uleth.ca, howard.cheng@uleth.ca

1corresponding author

Abstract— In this paper, we examine the effectiveness of a
hierarchical approach for the optical character recognition
of printed mathematical symbols in a document. We make use
of a number of features extracted from the character bitmaps,
and experiments were performed to determine the effective-
ness of these features in identifying the actual character.
The characters are first classified using k-means clustering
with a subset of these features into smaller groups, and the
final recognition is performed using support vector machines
(SVM) in each group. The recognition rate of this approach
is over 97% and compares favourably with existing methods.

Keywords: Optical character recognition, k-means cluster-
ing, support vector machines.

1. Introduction
The problem of optical character recognition of “standard”

text documents has been well studied. The study of recog-
nizing printed mathematical symbols, however, is relatively
recent [2], [9], [10]. This problem has gained importance
in recent years because of interests in converting printed
mathematical documents into electronic form. For example,
one of the more successful projects is the Infty project [9],
[10].

One key step in the conversion of printed mathematical
documents into electronic form is the optical character recog-
nition (OCR) of individual mathematical symbols. A number
of challenges in mathematical OCR include [2], [6]:

• some symbols may play different roles in different
contexts. For example, a dot may be multiplication,
decimal point, or other;

• some groups of distinct symbols are very similar to each
other in appearance. For example, Latin v and Greek ν;

• different styles of the same symbol (e.g. italic, bold,
calligraphic, etc.) need to be distinguished as different
styles often carry different meanings in the document;

• it is more difficult to correct misrecognition as there is
often no easy “spelling” or “grammar” check that can
be performed.

In this work, we examine a hierarchical approach to OCR
of printed mathematical symbols. We restrict our work only

to the OCR step, so that no attempt is made to analyze the
recognition results of close-by symbols in order to improve
the accuracy. Contextual information such as the sizes, loca-
tions, and darkness of symbols in relation to other symbols is
not used. Through experiments, we select a subset of features
to be used by a k-means clustering to group similar symbols
into cluster. For clusters that contain more than one type of
symbols, a separate set of features is used to train support
vector machines to identify the symbol. We show that the
recognition rate of our approach is over 97%. This is similar
to the recognition rates of other existing approaches, but our
approach is more adaptive and can be more efficient.

2. Previous Works
In [6], [7], support vector machines (SVM) were used to

improve classification by an existing OCR system used by
the InftyReader engine [6] or a naïve classifier [7]. Classi-
fication results were used to produce a “confusion matrix”
which represents symbols that are misclassified. “Confusion
clusters” are then formed consisting of symbols that are
incorrectly recognized as the same symbol. For each cluster,
a set of SVMs is trained to identify the symbols in the
cluster. Although most of these clusters have fewer than 5
distinct types of symbols, some have as many as 26. The
large number of distinct types lead to the need to apply non-
standard multi-class SVM methods [6].

Features need to be extracted from each symbol for the
purpose of training as well as classification. The bitmap of
each character is first divided into a 3 × 5, 5 × 5, or 5 × 3
mesh depending on its aspect ratio. In each grid cell of
the mesh, the chain code of the boundary of the character
is followed and a histogram is built on the frequencies
of vertical, horizontal, diagonal-1, and diagonal-2 codes.
This results in 221-dimensional feature vectors1. Insignificant
blocks’ coordinates are changed to zero. The method has a
recognition rate of 97.70%.

There are other approaches that attempt to combine multi-
ple classifiers to perform recognition. See, for example, [4]. It
differs from the current work in that the results from multiple

1The classifier in [7] used meshes of different sizes, resulting in 160-
dimensional feature vectors.



classifiers are combined using a variety of methods. The
recognition rate is around 93%. The approach used by [1]
has a recognition rate of around 95%.

3. Feature Selection
In this study, we chose a number of well-known features to

examine their suitability for the OCR of printed mathematical
symbols. Before extracting the features, each character is
segmented into a bounding box and normalized to have the
same size. It is assumed that this step has already been done
and is not examined in this paper.

Below, we list the features that were finally selected. For a
more detailed description of these features, see, for example,
[3].

Area: number of foreground pixels.
Aspect Ratio: quantized into one of three cate-

gories: “short”, “square”, or “tall”.
Centroid: centroid of the shape.
Centroid Distance: the maximum, minimum, and mean

distance of boundary pixels to the
centroid.

Crossings: number of times each scanline
crosses a boundary.

Density: the bitmap is divided into 16 zones
and the number of foreground pixels
in each zone is the density of the
zone.

Diameter: maximum distance between pixels in
the foreground.

Directional Features: mesh features used in [7]. There are
160 dimensions.

Distance Transform: the average distance of a pixel from
the foreground to the background.

Feature Points: after the shape has been skele-
tonized, the number of endpoints, T-
intersections, and other intersections
in the skeleton.

Holes: number of holes in the symbol.
Perimeter: number of pixels on the boundary.
Profile: the distance from a background pixel

on the boundary of the bitmap to
a foreground pixel. There are 64
background pixels used.

Projection: number of pixels on each scanline.
There are 32 scanlines.

Shape Complexity: ratio of the average distance trans-
form and area.

Symmetry: measure of how symmetric the shape
is in vertical and horizontal direc-
tions.

Shape Number: normalized chain code of the bound-
ary.

Hu Moments. Normalized to be translation, scale,
and rotation invariant.

4. Test Data
In our experiments, we use the InftyCDB-3 [8] database

to train and test our classifier. This database is used in our
testing instead of the InftyCDB-1 database [11] because we
are only interested in the characters and not the structural
information of the characters in the expressions. The database
consists of bitmap images each containing an image of a sin-
gle symbol. The symbols come from a variety of publications.
Ground truth for each symbol is provided, so that a desired
label is known.

However, the ground-truth labels have some interesting
properties. In some cases, distinct types of symbols may be
labelled the same. For example, a horizontal line may be
minus, overbar, underbar, and so on. When the character is
taken out of context, it is impossible to distinguish them.

Some symbols that look different but are not distinguished
in mathematical usage are also labelled the same way (e.g.
ε and ε, slanted and italic). This means that some symbols
may actually be represented by multiple distinct clusters in
the feature space.

Finally, some symbols that look almost the same out of
context are labelled differently in this database. For example,
some uppercase and lowercase letters (e.g. ’C’ and ’c’, ’S’
and ’s’) are very difficult (even by human) to distinguish out
of context.

To ensure that there are enough data to train and evaluate
our classifiers, characters with too few samples are not used
in the training and testing of our classifier. We randomly
select a portion of the samples of each remaining symbol for
training. The rest of the samples are used for testing.

5. Hierarchical Classifier
The proposed approach consists of classifiers at a number

of different levels. For training, a set of features is used to
put each symbol into an appropriate bin. For each bin, k-
means clustering is applied to a second set of features to
obtain clusters of symbols. Finally, a third set of features is
used to train support vector machines (SVMs) in each clusters
to identify individual symbols. For classifying symbols, the
appropriate features are extracted. The appropriate bin is
computed, and the closest cluster in that bin is found. The
SVMs associated with that cluster is used for the final recog-
nition. The structure of the classifier is shown in Figure 1.

The main advantage of the hierarchical approach is when
there are symbols that are represented by a number of distinct
clusters in the feature space. This situation occurs often as
the same symbol may be corrupted in a few different ways,
leading to distinct clusters (e.g. some of the digit “8” may be
broken, resulting in fewer than 2 holes). It can also happen
because a symbol may appear differently depending on the
font used, and we want to recognize these symbols as the
same (e.g. ε and ε). If we consider all of these symbols as one



Bin Classification

Feature Extraction Feature Vector

k−means Classification Support Vector Machine

Recognition Result

Bitmap

Fig. 1: Structure of hierarchical classifier.

type in a classification scheme (e.g. k-means and SVM), the
clusters for each type will be large and may even overlap with
each other. On the other hand, if the top-level classifier can
partition these clusters into tighter subclusters, lower-level
classifiers will be more accurate. The hierarchical approach
is also beneficial for using SVMs since SVMs are inherently
two-class methods. Having fewer distinct types of symbols
in each cluster will make it easier to train SVMs for the
cluster, so that sophisticated multi-class SVM schemes are
not needed. That is the reason for using SVMs only at the
bottom level.

We performed experiments in choosing the subset of
features at each level. An exhaustive search on the possible
choices of features and classifiers at each level is performed.
Based on this search, we describe the optimal arrangement
of the classifiers below. It is interesting to note that we did
not find the directional features used in [6], [7] helpful for
classification compared to the other features we examined.

At the top level, the Holes and Aspect Ratio features are
used to classify each symbol into an appropriate bin. Through
experiments, it was discovered that an optimal way to classify
symbols into bins is based on Holes and Aspect Ratio. The
feature Holes is classified into three groups—0 holes, 1 hole,
and 2 or more holes. For Aspect Ratio it was determined that
it was best to classify the symbols into “short” and “tall”,
with “square” being grouped with “tall” as well. This results
in 6 bins of symbols after the first step.

For each of the 6 bins, k-means clustering is performed
using the Distance Transform, Density, and Profile features.
For this clustering k is set to be the number of different
classes of symbols in each bin. The centroid of each resulting
cluster is computed. During classification, the closest cluster
(with respect to the centroid) is chosen. There are in fact
few clusters with 2 or more types of symbols. 80.0% of the
clusters have only 1 type of symbol, 14.8% of the clusters
have two types, 4.3% of the clusters have 3 types, and the
remaining clusters have 4 types. No clusters have more than
4 types of symbols.

Label

Cluster

Bin

Character

Bin

Cluster

Label

SVM

Closest Cluster

Bin Assignment

Fig. 2: Tree representation of hierarchical classifier.

For each of the clusters that has more than one type
of symbols, we build SVM classifiers on small subsets of
the remaining features to identify the individual type of
symbols using one-vs-one SVMs and linear kernels [5]. In
our experiments, only two or three additional features are
needed for the SVMs to distinguish the different symbols,
although the subset of features used may be different for
each cluster.

The resulting hierarchical classifier can be represented
as a tree of height 3, with the nodes at the three levels
representing the bins, the clusters, and finally the individual
symbols (Figure 2). A classifier is associated to each non-leaf
node that uses a subset of features to classify the incoming
character into a leaf node. Since the subset of features needed
to recognize a character may be different due to the adaptive
nature of our classifier, it is computationally more efficient
to extract features incrementally as needed. Only “difficult”
symbols require more work. For many symbols, there is no
need to apply SVM classifier (and hence to compute addi-
tional features) because the corresponding cluster uniquely
identifies the symbol.

There are some similarities between our approach and that
of [6], [7]. Their approach first uses a classifier to produce a
potential label, and the result is corrected by SVMs. This can
be considered a hierarchical method in which the confusion
clusters produced by the first classifier are analogous to the
clusters we obtain with k-means clustering. An important
difference in our approach is that the subset of features used
by the SVMs in each cluster is adaptive to each cluster, while
their approach uses the same set of features for each cluster.
Since each cluster may have different statistical properties
in the feature space, our approach is adaptive in that it
chooses the most effective subset of features to distinguish
the symbols in each cluster. In addition, some of the features
chosen for the clusters in our approach are significantly
simpler than the high-dimensional mesh features used in [6],
[7], so our approach can be more efficient in both the training
and classifying steps. Furthermore, our clusters generally



(a) (b)

Fig. 3: A typical pair of characters misclassified. (a) Upper-
case ’X’. (b) Lowercase ’x’.

have significantly fewer distinct types of symbols compared
to the confusion clusters in [6], [7], facilitating the use of
SVMs in these clusters.

6. Experimental Results
We performed exhaustive search to determine the optimal

arrangement of classifier described above. We varied the
number of levels of classifiers and the different subsets of
features used at each node. Each choice of parameters was
evaluated by first training the classifiers with the training
portion of the database and then classifying the testing
portion. The choice leading to the highest recognition rate
was chosen.

Our recognition rate on the testing portion of the
InftyCDB-3 database was 95.6%, which appears lower than
some other existing methods at first glance. Of the 4.4%
of symbols incorrectly recognized, 1.6% of these symbols
are classified incorrectly into the wrong bin at the first step.
In these cases, no training samples with the correct label
were available in the bin. This shows a disadvantage of
the hierarchical approach—an incorrect classification at the
top level (possibly because of lack of training samples) are
impossible to correct at lower levels.

The results of our classifier are actually better on closer
examination of the misclassified symbols. Many of the mis-
classified symbols are those symbols in the InftyCDB-3 that
are visually very similar out of context but have different
labels. For example, uppercase and lowercase ’c’, ’o’, ’s’,
’v’, ’x’, ’w’ are commonly mislabelled (Figure 3). Without
surrounding context, it is impossible to distinguish them even
for human viewers. When these results are discarded (they
are also discarded in [7], for example), the recognition rate of
our classifier is 97.8%, which is amongst the best in existing
work [1], [4], [6], [7].

Finally, we also see from the classification results that
labels consisting of different distinct symbols are indeed
classified correctly. This justifies the use of the hierarchical
approach.

7. Conclusions
In this paper, we examined a wide range of features and

performed an exhaustive search to determine an optimal
arrangement in a hierarchical classifier for printed mathemat-
ical symbols. Our final classifier performs favourably against
other existing classifiers. We believe that the results can be
further improved by preprocessing as well as context infor-
mation, and we are currently investigating this possibility.

References
[1] F. Álvaro and J.A. Sánchez. Comparing several techniques for offline

recognition of printed mathematical symbols. In 20th International
Conference on Pattern Recognition (ICPR), pages 1953–1956, aug.
2010.

[2] K.-F. Chan and D.-Y. Yeung. Mathematical expression recognition: a
survey. International Journal on Document Analysis and Recognition,
3:3–15, 2000. 10.1007/PL00013549.

[3] L. Costa and R. Cesar, Jr. Shape Analysis and Classification: Theory
and Practice. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,
2000.

[4] U. Garain, B.B. Chaudhuri, and R.P. Ghosh. A multiple-classifier sys-
tem for recognition of printed mathematical symbols. In Proceedings
of the 17th Intl. Conf. on Pattern Recognition (ICPR’04), pages 380–
383, 2004.

[5] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass
support vector machines. IEEE Transactions on Neural Networks,
13(2):415–425, mar 2002.

[6] C. Malon, S. Uchida, and S. Masakazu. Mathematical symbol
recognition with support vector machines. Pattern Recognition Letters,
29(9):1326–1332, 2008.

[7] C. Malon, S. Uchida, and M. Suzuki. Support vector machines
for mathematical symbol recognition. In Structural, Syntactic, and
Statistical Pattern Recognition, volume 4109 of Lecture Notes in
Computer Science, pages 136–144. Springer Berlin Heidelberg, 2006.

[8] The Infty Project. http://www.inftyproject.org/.
[9] M. Suzuki, T. Kanahori, N. Ohtake, and K. Yamaguchi. An integrated

OCR software for mathematical documents and its output with acces-
sibility. In Computers Helping People with Special Needs, volume
3118 of Lecture Notes in Computer Science, pages 648–655. Springer
Berlin Heidelberg, 2004.

[10] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori. INFTY:
an integrated OCR system for mathematical documents. In Proceedings
of the 2003 ACM Symposium on Document Engineering, DocEng ’03,
pages 95–104, 2003.

[11] M. Suzuki, S. Uchida, and A. Nomura. A ground-truthed mathematical
character and symbol image database. In Proceedings of the Eighth
International Conference on Document Analysis and Recognition (IC-
DAR ’05), pages 675–679, 2005.


