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Abstract— An automatic compression strategy proposed by
Gergel et al. is a near-optimal lossy compression scheme
for a given collection of similar images whose inter-image
relationships are unknown. That algorithm uses the root mean
square error (RMSE) as a measure of the similarity between
two images. Since RMSE is a metric, provable guarantees
on the quality of the decompressed images can be made.
However, it is well known that the RMSE does not correspond
well to the human visual system. Recently, Brunet et al.
introduced a metric based on structural similarity (SSIM).
In this work, we show that the application of a SSIM-based
metric instead of RMSE in the lossy image set compression
scheme give improvements on some types of image sets.
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1. Introduction
Many modern applications, such as medical imaging cen-

ters, store and generate enormously large volumes of im-
ages [20]. A number of different strategies to remove inter-
image redundancies in sets of similar images have been
proposed [2], [4], [5], [14], [15], [16], [17], [19], [21],
[22], [23], [24], [25]. Many of these techniques, such as the
Centroid method [15], [17], perform well on image sets with
particular inter-image relationships, but are less effective on
others. It is not clear which method will perform best a priori
for any particular image set.

The automatic lossy compression strategy of Gergel et
al. [7], [9] allows for the efficient storage of collections of
similar images without any prior knowledge of the images.
The unifying graph theoretical framework allows for the
comparison of all previous techniques that look at the rela-
tionship between pairs of images [7], [8], [9]. This framework
led to the discovery of an automatic compression strategy
performing no worse than any previous strategy, and often
performing better. Instead of storing n original images, a
subset of n − 1 difference images are stored. The subset
of difference images are selected by studying the compress-
ibility of each of the

(
n
2

)
difference images. The root mean

square error (RMSE) is used to predict the compressibility
of the difference images, and the accuracy of this prediction

directly affects the performance of the image set compression
scheme. It was assumed heuristically that the RMSE between
two images is small if and only if the difference image
is easy to compress. In addition, the RMSE is a metric
in the mathematical sense, which implies that a guarantee
on the overall quality of the decompressed images can be
made from quality guarantees of the decompressed difference
images. It is important to note that the RMSE is used in
two different ways here—for estimating compressibility of
difference images and for measuring the quality of each
decompressed image.

Despite the fact that RMSE is easy to analyze mathemati-
cally, it is well known that it does not always correspond to
the human visual system (HVS)—two images that are similar
to human may have a very large RMSE between them. More-
over, two images may have a large RMSE between them and
yet their difference can be easily compressed. For example,
two images whose difference image is a large constant will
have a large RMSE even though the difference image can be
compressed extremely well. Many other measures for image
quality have been proposed to model the HVS more closely
but they are generally not metrics [26]. In particular, they do
not satisfy the triangle inequality.

The structural similarity (SSIM) index is a measure de-
signed to provide better assessments of visual distortions
between two images [27], and recently a metric based on the
SSIM measure have been proposed [3]. This paper examines
the application of a SSIM-based metric in lossy image set
compression to see if there are benefits in replacing RMSE
with this metric. It will be shown that for some types of image
sets, using a SSIM-based metric gives slightly better results.
We also discuss when the simple application of a SSIM-
based metric may not be useful for other types of image
sets. This points to the need for more research in a better
way to incorporate SSIM-based metrics into the lossy image
set compression framework, so that their properties can be
better exploited.



2. Preliminaries
2.1 Image Set Compression

Traditionally images in a set are compressed individually
using standard image compression algorithms (see, for exam-
ple, [12]). Often a set of images are similar and inter-image
redundancies can be used to further improve compression
performance. For example, a video can be considered a
sequence of images whose inter-image redundancies are
defined by the time index. In these cases, each image can
be predicted from another one known to be very similar
(e.g. previous frame in a video), so that the overall storage
requirement is reduced.

In some applications, the images in the collection are
similar but the relationships are not known a priori. Gergel
et al. [7], [9] modelled this problem as a complete weighted
graph, so that each image is represented as a vertex. A “zero
image” is also added to the set as a known starting point for
both the encoder and the decoder. The edge between a pair
of images has a weight that is used to predict the difficulty in
compressing one image when the other one is known. Some
choices of edge weights include the entropy (different orders)
of the difference image, the root mean square error (RMSE)
between the two images, or even the actual bit rate obtained
by a compression algorithm on the difference image. Other
measures are studied in [10]. In cases in which images in
the set are very similar, it may also be helpful to insert an
additional average image that is the centroid of the entire set.

The automatic compression scheme examines this graph
and computes a minimum spanning tree (MST). The edges in
the MST represent the difference images that are compressed.
These edges must form a connected subgraph to ensure that
all images in the set can be decompressed. When the edge
weights correspond exactly to the compressibility of differ-
ence images, this gives an optimal compression scheme. As
in any predictive coding scheme, error propagation is avoided
by predicted the next image using the reconstructed version
of the previous image instead of the original image. We refer
to the automatic compression scheme the MST method, or
the MSTA method if the average image is included.

The difference images are compressed using “standard”
image compression algorithms. In our experiments, we use
JPEG2000 [1] and wavelet packet compression [18]. It was
shown that wavelet packet compression generally outper-
forms JPEG2000 [7] since the statistical properties of differ-
ence images are very different from those of the photographic
images that JPEG2000 is designed for.

Since the prediction is based on the reconstructed version
of the previous image while the MST calculation is based
on the original images, the optimality of the computed
MST can no longer guarantee that the selected difference
images result in the best compression scheme. However, near-
optimality can still be obtained when the distortion measure
(between original and reconstructed images) is a metric and

is the same as the chosen edge weight. In particular, if the
distortion between each original image and the corresponding
reconstructed image is bounded by ∆, then the total weight
of the edges chosen by the MST methods is at most O(n∆)
worse than the MST of the “hidden” graph where all images
can be distorted by at most ∆ where n is the number of
images [7], [9]. Thus, the scheme is at most O(∆) away
from the optimal compression scheme per image, on average.
When the prediction measure correlates well with the actual
bit rate used, this can be used as a guarantee on the optimality
(in terms of bit rate) given a particular distortion bound.

2.2 Structural Similarity
It is well known that while the RMSE has many useful

mathematical properties, it is not necessarily suitable for
comparing images. In our application, we may have two
images whose difference image is easy to compress and
yet have a large RMSE. The main reason is that RMSE
simply averages the pixelwise differences without regard to
the trends and structures in the images.

Structural similarity (SSIM) was introduced to overcome
some of these issues and more closely correlate to human
perception [27]. Given two signals x and y of N samples
each, a simplified form of SSIM that is commonly used in
application is

S(x,y) = S1(x,y)S2(x,y) (1)

=
[

2x̄ȳ + ε1
x̄2 + ȳ2 + ε1

] [
2sxy + ε2

s2
x + s2

y + ε2

]
,

where

x̄ =
1
N

N∑
i=1

xi, ȳ =
1
N

N∑
i=1

yi

s2
x =

1
N − 1

N∑
i=1

(xi − x̄)2, s2
y =

1
N − 1

N∑
i=1

(yi − ȳ)2

(2)

sxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ),

and ε1 and ε2 are small constants to prevent numerical
instability. Intuitively, the first component S1(x,y) compares
the means of the signal while the second component S2(x,y)
measures the correlation and contrast distortion. The value of
S(x,y) is in the range [−1, 1], and it is not a metric. It was
shown that pairs of images with the same value of S(x,y)
have a similar amount of visual distortions subjectively [27].
The same could not be said about RMSE.

Brunet et al. [3] constructed a metric (in the mathematical
sense) based on SSIM that also corresponds well with SSIM.
We will only present one of the many related metrics defined
in [3] and simplify it for our application. Given the signals



x and y, define the function

d̄(x,y) =

{ ‖x−y‖2√
‖x‖22+‖y‖22

(x,y) 6= (0,0)

0 otherwise.
(3)

The D2 metric is defined as

D2(x,y) =
√

d̄2(x̄, ȳ) + d̄2(x− x̄,y − ȳ). (4)

The D2 metric is a good approximation for the SSIM
measure [3].

3. Structural Similarity in Image Set
Compression

The SSIM measure (as well as the D2 metric as defined in
Equation (4)) are often used in “maps” in which the measure
is applied to (possibly smoothed) windows to show areas
in a reconstructed image with the most distortion from the
original image. In our application, however, we must arrive
at a single numerical value for measuring the differences
between two images. In this work, we have chosen to apply
the D2 metric on the entire images to arrive at a single value.

As described in Section 2.1, the MST and MSTA lossy
image compression schemes use image distortion measures
in two ways—for predicting the compressibility of the dif-
ference image and to assess the quality of the reconstructed
images. In order for near-optimality guarantees to be made,
the same measure must be used in both settings. However,
we also wish to compare our results with those when RMSE
are used. As a result, experiments will be done in all four
combinations using RMSE and D2 in each of the two
components.

Four image sets were used in the experiments. They were
also used in previous works by Gergel et al. [7], [9] and
Nielsen et al. [21], [22]. Figure 1 shows a typical image from
the first four image sets. The Galway set contains webcam
images from a street in Galway City, Ireland [6]. The Pig set
is composed of ultrasound images of pig rib cages. The Joe
set is another webcam image set taken from a camera directed
at a beach in Victoria, British Columbia [13]. Satellite images
from the GOES project [11] make up the GOES set. All the
images were 8-bit gray scale images.

We present the results for the experiments in Figures 2– 9.
For brevity, we only present the results for the MST scheme
as the results for the MSTA scheme are very similar. We show
the rate-distortion curves using RMSE and D2 metrics as the
prediction measures in the MST scheme. Here the distortion
is the average distortion between each reconstructed image
in the set and the corresponding original image. Intuitively,
a “lower” curve indicates a better compression scheme.

The results show that for every image set except the Joe
set, using RMSE as the prediction measure in the MST
lossy image set compression scheme is better than using
D2. The results are similar whether RMSE or D2 is used

(a) Galway (b) Pig

(c) Joe (d) GOES

Fig. 1
TYPICAL IMAGES FROM EACH SET.

to measure the average distortion, and whether JPEG2000 or
wavelet packet compression is used to compress the differ-
ence images. As expected, the results using wavelet packet
compression are generally better than using JPEG2000.

For the Joe set, however, the results are slightly better when
the D2 metric is used. This can be understood by examining
the properties of the image set. The images in this set consists
of webcam images of a natural scene at different times of the
day, over a number of days. Since the main differences among
the images are the illumination, many difference images are
easily compressible. However, the RMSE values are large and
so the easily compressible difference images are not chosen
by the MST scheme. Since the D2 metric compares both the
means and the signal with the means removed, it allows the
easily compressible difference images to be chosen.

The Galway set also consists of webcam images but
there are many more differences than simply variations of
illumination (e.g. moving pedestrians). Although the RMSE
metric performs better on this set, the gap is smaller here
than in the remaining two sets—Pig and GOES. The images
in these two sets have many more differences throughout
the entire images (e.g. noise in ultrasound images and cloud
patterns), so the correlation part of the SSIM measure (and
hence the D2 metric) will result in a large value even though
the differences are in the high-frequency part of the spectrum
and may be quantized away anyway, especially at lower bit
rates.

We have also attempted to assess the quality of the recon-
structed images visually, but neither method is consistently
better for an entire set. Even within the same image, we find
that some parts may be better when RMSE is used but some
parts are worse compared to when the D2 metric is used.
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Fig. 2
RMSE RATE-DISTORTION RESULTS FOR THE GALWAY IMAGE SET.
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Fig. 3
D2 RATE-DISTORTION RESULTS FOR THE GALWAY IMAGE SET.

4. Conclusions and Future Directions
In this paper, we examined the application of the D2

SSIM-based metric as the prediction measure in MST-based
lossy image set compression algorithms. We observed that for
certain types of images, the D2 metric can be used in place of
RMSE to improve the performance of the MST lossy image
set compression scheme.

This work represents our first step in this direction. The
experimental results gave us some insights on how SSIM-
based metrics behave in the MST compression scheme. We
are currently investigating the use of a “windowed” SSIM
metric that should adapt to local statistics better, as well as
a number of ideas arising from this research.
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Fig. 4
RMSE RATE-DISTORTION RESULTS FOR THE PIG IMAGE SET.
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Fig. 5
D2 RATE-DISTORTION RESULTS FOR THE PIG IMAGE SET.
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