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Abstract

While the compression of individual images have been
studied extensively, there have been fewer studies on
the problem of compressing image sets. A number of
schemes have been proposed to compress an image set
by taking advantage of the inter-image redundancy be-
tween pairs of images. In this paper, we present a uni-
fied graph-theoretic framework that includes all such
previous schemes. A minimum spanning tree gives the
optimal compression method for lossless compression.
We also show that while this framework does not nec-
essarily give the optimal compression scheme for lossy
compression, we can provide performance guarantees
relative to the optimal scheme. Our experiments show
that the new minimum spanning tree method performs
better than the previous schemes, especially when the
image sets are not well suited for any of the previously
proposed schemes.

1. Introduction

As the availability and use of digital images in-
crease, the efficient storage of images becomes an im-
portant area of research. Traditionally, each image in a
set is compressed individually, taking advantage of the
coding, interpixel, and psycho-visual redundancies ex-
isting within the image [8]. In the related area of video
compression, a video sequence is decomposed into in-
dividual frames. Video compression algorithms take
advantage of redundancy existing among consecutive

frames as well as the redundancy existing within each
frame.

Many applications involve the storage of a large
number ofsimilar images. This is in sharp contrast to
personal photo-album type databases where the images
are often drastically different. All the images in the
set have identical dimensions and the same color and
grayscale range. For example, a medical database may
contain a large number of X-ray images of the same
body part; a database of satellite images of the same
viewing angle of the earth may possess similar charac-
teristics. Unlike video compression, these applications
use image sets whose inter-image relationships are un-
known. Webcam image databases may also contain a
tremendous number of images of similar scenes. Each
image is taken minutes or hours apart, instead of 1/30 of
a second, thus video coding (e.g., MPEG) is not always
suitable.

In some applications such as medical imaging,
compressed images must be identical to the original im-
ages, therefore lossless compression must be used. On
the other hand, lossy compression can be tolerated in
other applications, such as agriculture imaging.

Compared with traditional image compression, the
compression of a set of images has received relatively
little attention from researchers [5, 7, 9, 10, 11, 12, 13,
14]. These earlier schemes have only been effective on
image sets with certain properties, and it is not clear
which scheme is besta priori.

In [5, 12], a graph is constructed from the images
to represent inter-image redundancy, and a minimum
spanning tree (MST) is computed to decide which dif-



ference images to compress with a lossy compression
algorithm. In this case, however, it is not obvious that
the resulting structure is optimal. An overlooked fact
is that the coding error in the lossy compression pro-
cess perturbs the graph, so that the MST computed from
the original graph may not be an MST for the modified
graph actually used. In fact, if the errors introduced
by the lossy compression process is large, the MST for
the modified graph may be very different. A further
complication is that the errors introduced depend on
which edges are used in the compression process, and
the edges are in turn chosen based on the graph. This
cyclic dependency makes it difficult to guarantee opti-
mality.

The main contributions provided in this paper are
the unification of previous schemes under one frame-
work, as well as a theoretical basis for the MST scheme
for lossy compression. We represent an image set as
a graph and compute its MST to decide which images
and differences to encode. By modifying the underly-
ing graph, the Centroid scheme [9, 10] and the previous
MST schemes [5, 12] can both be represented as a span-
ning tree in our graph. For lossless compression, our
scheme isguaranteedto be no worse than these previ-
ous schemes, regardless of the properties of the image
sets. For lossy compression, we show that the difference
between the computed MST and the actual MST de-
pends on the amount of error introduced by lossy com-
pression. This gives us a performance guarantee rela-
tive to the optimal scheme. In particular, this implies
that when the errors are small, the MST scheme indeed
gives a good approximation to the optimal compression
scheme. This also provides a first step in understand-
ing the trade-off between coding optimality and image
quality for lossy set compression.

The paper is organized as follows. We review the
previous schemes in Section 2. In Section 3, we in-
troduce our framework for lossless compression. The
framework is then extended to lossy compression in
Section 4. In Section 5, we show how previous schemes
can be modelled within our framework. We show our
experimental results in Section 6. Our concluding re-
marks follow in Section 7.

2. Previous Work

Karadimitriou and Tyler investigated a lossless
scheme, called the Centroid scheme, of compressing a
set of medical images around an average image [9, 10].
In this scheme, an average image of the set is computed;
only the average and the difference between the average
and each image are encoded. A similar idea compresses
the difference between each image and a template [14].

Karadimitriou and Tyler also showed that a clustering
algorithm can be applied to partition the set into clus-
ters of similar images, and each cluster is compressed
independently. This idea was examined by Nielsenet
al. [13], who used the global average approach and pro-
posed a lossy compression algorithm based on differ-
ent clustering criteria. This work was mainly focused
on parameter selection and trade-off analysis. Their
experiments showed up to 25% performance improve-
ment over JPEG2000. Note that an average image is
introduced for each cluster, so the overhead increases
with the number of clusters. As a result, this scheme
is suitable when the image set contains few tight clus-
ters. Furthermore, redundancy among the clusters is not
exploited as they are encoded independently.

Another way to exploit inter-image redundancy
was proposed by Chenet al. [5] and Nielsenet al. [12].
In this scheme, an MST is computed from a complete
graph. The vertices of the graph represent the images,
and the weight of each edge is a measure of the cost
of encoding one image given the other image of the
edge. Chenet al. [5] used this scheme to link different
views of 3D objects to represent the prediction relation-
ship among the views. The edge weight used is based
on motion estimation and compensation. On the other
hand, Nielsenet al.[12] used the root-mean-squared er-
ror (RMSE) between the two images on the edge as the
edge weight. This scheme performs better than the Cen-
troid scheme when the images do not form tight clus-
ters, but worse otherwise. Both of these schemes were
proposed for lossy compression. The idea of represent-
ing lossless compression schemes as spanning trees of
a graph was briefly examined by Gergelet al. [7].

Although principal components analysis has been
used successfully for the recognition problem in large
sets of similar images, it is not suitable for compres-
sion especially when images must be coded in a lossless
manner [9]. Specifically, this technique can only work
for lossy compression on a set of images that are very
similar so that the set can be approximated by a sub-
space of small dimensions. Furthermore, the computa-
tional cost is high, and a large number of eigenimages
must be stored to accurately reconstruct the images.

3. Graph Theoretical Framework

Let Sn = {I1, I2, . . . , In} be a set ofn images of the
same dimensions. We define two additional images for
our framework:

• the zero imageIn+1 = Iz with Iz(i, j) = 0 for all
(i, j);

• the average imageIn+2 = Ia where Ia(i, j) =



1
n ∑n

k=1 Ik(i, j).

Additional images may also be introduced if necessary.
We define two image sets:

• Sz = Sn+1 = Sn∪{In+1};

• Sa = Sn+2 = Sn+1∪{In+2}.

Given an image setS∗ ∈ {Sz,Sa}, we define a complete
undirected, weighted graphG = (V,E). The vertices of
G areV = {Ii | Ii ∈S∗}, andE = {(Ii , I j) | Ii , I j ∈V} de-
fines the graph edges. The weight for each edge(Ii , I j)
is defined by the functionw(Ii , I j), wherew : S∗×S∗→
R≥0 is a function that measures the cost to reconstruct
I j assumingIi is known. We will assume thatw is sym-
metric in this paper, and that the weight of an edge is
the cost of encoding the difference imageIi − I j . For
example, the functionw can be an entropy measure of
the difference image, which represents the potential of
compressing the difference image. Another choice of
w is the actual size of the compressed difference image
using compression algorithms such as JPEG2000 [6].

A compression scheme is represented by a subset
of edges inG, so that the chosen edges correspond to
the difference that is coded. The chosen edges must
form a spanning tree in order for the entire set to be de-
compressed. The zero imageIz (called the virtual node
in [5]) allows the original images to be represented as
the difference imageIi − Iz on the edges. This allows
spanning forests to be included in our framework as a
spanning tree.

Our framework differs from that of Chenet al. [5]
in two ways. First, we introduce an average image,
which allows one to include previous schemes in this
framework as well (see Section 5). Also, we assume
that the edge weights are symmetric, which is necessary
for our extension to lossy compression (see Section 4).

Any compression scheme that takes advantage of
inter-image redundancy between pairs of images can be
represented as a spanning tree within our framework.
For each compression scheme, the total weight of the
spanning tree represents the storage cost for the scheme.
For lossless compression, a minimum spanning tree
(MST) gives us the optimal compression scheme given
the image set. We remark also that the spanning tree for
each scheme has to be encoded either implicitly in the
algorithm or explicitly, but the cost is negligible.

4. Extension to Lossy Compression

The previous MST schemes [5, 12] were actually
proposed for lossy compression. If the MST compu-
tation is performed on the graph constructed from the
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Figure 1. Using an edge in TG as an edge of a
spanning tree in G′.

original images, errors introduced by lossy compres-
sion may change the actual graph. As a result, it is not
necessarily true that the MST computed is the optimal
scheme. Furthermore, it is difficult to compute the MST
of the “optimal perturbed graph”—how each image is
perturbed in the final graph depends on its path fromIz
in the spanning tree, and the path in turn depends on the
tree edges chosen.

In this section, we give a bound on the difference
between the optimal MST compared to the computed
MST. This bound depends on the maximum distortion
introduced by the lossy compression process. Our result
is valid for an MST of any graph that results from per-
turbing each vertex in the original graph by less than the
maximum distortion. Therefore, the bound gives a per-
formance guarantee of the MST scheme based on the
original graph compared to the optimal MST scheme,
without explicitly computing the optimally perturbed
graph. The optimally perturbed graph is difficult to
compute because the cyclic dependency between the
choice of tree edges and the perturbation on vertices.

The derivation of our results assumes that the edge
weight function is a metric. For example, the root-
mean-squared error (RMSE) is a metric commonly
used to measure differences between images, and cor-
responds reasonably well to actual compression cost.

In the following, we letN be the number of vertices
in the graphG. Let I ′i be images such that the RMSE
betweenIi andI ′i is bounded by∆, andG′ be the graph
constructed from{I ′i }. We can think of∆ as a “quality”
parameter in our lossy compression algorithm, andI ′i as
the reconstructed images. We will useTG and TG′ to
denote an MST ofG andG′, respectively. In addition,
for any spanning treeT we denote its cost (the sum of
edge weights) byw(T).

Supposeei j is the edge betweenIi andI j in G and it
is included inTG. Let e′i j be the edge connectingI ′i and
I ′j in G′ (Figure 1). Since the edge weight function is a



metric, we may apply the triangle inequality to see that

δ −∆ ≤ w(e′i j )≤ δ +∆,

w(ei j )−∆ ≤ δ ≤ w(ei j )+∆,

so that

w(ei j )−2∆ ≤ w(e′i j )≤ w(ei j )+2∆. (1)

Now, if Ii = Iz, there is no reconstruction error soIz = I ′z.
In that case, we may refine the bound to be

w(ei j )−∆ ≤ w(e′i j )≤ w(ei j )+∆. (2)

Since there areN−1 edges in a spanning tree, we ar-
rive at the following performance guarantee on using
the MST computed fromG in G′.

Theorem 1 Let TG be an MST of G, and d be the degree
of Iz in TG. If T is the spanning tree of G′ obtained by
using the same edges as TG, then

|w(T)−w(TG)| ≤ (2N−2−d)∆.

�

This gives us a bound on the performance of the com-
pression scheme. However, it does not relate to the op-
timal scheme given by an MST ofG′.

Now, sinceT in Theorem 1 is a spanning tree ofG′,
it follows that

w(TG′)≤ w(T)≤ w(TG)+(2N−2−d)∆. (3)

In the derivation of Theorem 1, we note that the only
assumptions onG andG′ are thatIz = I ′z and the RMSE
betweenIi and I ′i is bounded by∆. It does not matter
whetherG or G′ is the graph constructed from the orig-
inal images. Therefore, we may interchange the role of
G andG′ to also obtain

w(TG)≤ w(T)≤ w(TG′)+(2N−2−d′)∆. (4)

Sinced,d′ ≥ 1, we get from (3) and (4) that

|w(TG)−w(TG′)| ≤ (2N−3)∆. (5)

Combining with Theorem 1 gives the following perfor-
mance guarantee of the MST compression scheme rela-
tive to the optimal scheme.

Theorem 2 Let T be a spanning tree of G′ obtained by
using the same edges as TG, and d as defined in Theo-
rem 1. Then

|w(T)−w(TG′)| ≤ (4N−5−d)∆.

�

We make an important note that there is no assump-
tion on the actual perturbations made on the images for
the graphG′, so that the performance bound above ap-
plies to any graph with the same quality bound∆. Thus,
the performance bound indeed gives a relationship be-
tween the quality of compression∆ and the coding per-
formance relative to the optimal scheme. This is a first
step in understanding the trade-off between quality and
compression performance.

5. Compression Schemes

We examine four compression schemes and model
them within our framework. Although we only men-
tion four schemes, any compression scheme that uti-
lizes inter-image redundancy between two images can
be represented within our framework.

Traditional Scheme The traditional scheme results in
a star graph created from the setSz with Iz as the center
as shown in Figure 2(a). The spanning tree represents
encoding each image individually as the only edges are
(Ii , Iz).

I1

I5

I3IzI7

I4

I8 I2

I6

(a) Traditional

Iz

I4 I6

Ia

I2 I5I3I1 I7

(b) Centroid

Figure 2. Two compression schemes in our
framework.

Centroid Scheme In our framework, the Centroid
scheme with a single cluster is represented by a star
graph created fromSa. The center for this spanning
tree is the average imageIa, and each edge(Ii , Ia) is
the difference of the imageIi from the averageIa (Fig-
ure 2(b)). Similarly, the Centroid scheme with multiple
clusters can be represented by a spanning tree with an
extra vertex for each cluster average. In addition, tem-
plate extraction schemes can also be represented by us-
ing the template image in place of the average image in
the spanning tree.



MST Scheme (MST) The previous MST schemes [5,
12] can be adapted for lossless compression to obtain
the optimal lossless compression scheme. If it is used
for lossy compression, the result is not necessarily opti-
mal as shown in Section 4.

MST Scheme with Average (MSTA) This scheme is
similar to the MST scheme above except thatSa is used
to construct the graph. There are situations when the
Centroid scheme is better than the MST scheme, and
vice versa. This scheme automatically chooses the best
scheme locally for a subset of the images in the graph
G. For example, ifSn contains a group of similar images
and a few outliers, it may be more efficient to encode
the outliers using inter-image differences instead of the
differences to the average. As in the Centroid scheme,
we may introduce additional average images if there are
multiple clusters.

6. Experimental Results

For lossless compression, we report the actual com-
pression results using JPEG2000 [6] to represent edge
weights in the graph. For lossy compression, RMSE is
used as the edge weight function because it is a metric.
For each image set, a spanning tree was generated for
each of the four compression schemes presented in Sec-
tion 5. In our experiments, we report the total number of
bytes required to store the whole set. JPEG2000 com-
pression is performed using the JasPer software pack-
age [4].

Since we are not interested in clustering algorithms
in this work, we only show the result of the Cen-
troid scheme with one cluster. We note, however, that
the Centroid scheme with multiple clusters can also
be modelled within our framework. Thus, our MST
scheme is still no worse than the Centroid scheme.

A typical image from each image set is shown in
Figure 3. The results are given in Table 6 for lossless
compression. The best results are highlighted for each
set. Note that the minimum is always achieved by one
of the two MST schemes.

For lossy compression, we show the percentage im-
provement over the traditional scheme at various values
of average RMSE, which is controlled indirectly by the
bit rate (Table 6). It is not always possible to obtain re-
sults for a particular RMSE value (shown as “n/a”). We
have not included results for the MSTA scheme. Simi-
lar to the lossless case, its performance is not worse than
the Centroid scheme. The Centroid scheme (and hence
the MSTA scheme) performs very well compared to the
traditional scheme in most cases.

The experimental results show the effectiveness of

our framework in adapting to any given image set. We
now give some remarks on the results for the specific
image sets.

Galway The first image set contains 28 images from
a webcam [1]. All the images are similar except that
the people in the image are moving. Because of the
large amount of redundancy among the images, we see
that the Centroid method performs the best with this set
for lossless compression. Of course, the MSTA scheme
cannot perform worse than the Centroid scheme. The
MST scheme did not provide much improvement for
either lossless and lossy compression.

Pig The second test set consists of 304 Ultrasound
images of pig ribcages. Most of the images of this
set are very similar and therefore form a tight cluster.
Here the MSTA scheme provides the best performance
for lossless compression, a 39% improvement over the
traditional scheme. The majority of images in the set
are connected through the average image in the MST
computed, but there are also some images connected
through inter-image edges. Our framework allows the
best compression scheme to be chosen locally in an
image set. This is an improvement over using either
scheme independently.

Joe The third image set contains 162 webcam images
from Joe Tourist Weather [3]. The images are taken at
intervals throughout the day. This results in interpixel
redundancy in the difference images as large portions
of each image change in a similar manner due to the
lighting conditions. The MST scheme provides the best
result for the lossless compression of this image set.
For sets of images that do not form a tight cluster but
have small inter-image difference, MST without an av-
erage image provides the best encoding scheme. Since
the image set contains many small clusters, even if we
combine clustering with the Centroid scheme, it does
not perform as well as the MST scheme without aver-
age images. This can also be seen from the results from
lossy compression.

GOES Satellite images of earth from the GOES
Project are used for the fourth image set [2]. This set
contains 128 images. The set contains two distinct clus-
ters of images with the focus on eastern and western
North America. Here, the traditional scheme provides
the best lossless compression performance because the
difference images require more storage than the origi-
nal images using JPEG2000. In fact, the 4th order en-
tropy indicates that the original images are indeed eas-
ier to compress than the difference images. Thus, it is
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Figure 3. Typical images from each set.

Table 1. Lossless compression results (in bytes).
Scheme Galway Pig Joe GOES Combination

Traditional 3,792,948 47,681,737 4,696,170 56,234,650 9,587,002
Centroid 3,710,070 29,109,705 4,560,285 60,051,481 7,879,385

MST 3,792,948 31,347,677 4,434,349 56,234,650 7,117,393
MSTA 3,710,070 29,019,727 4,451,390 56,503,150 7,159,164

Table 2. Lossy compression results: percentage improvement over traditional scheme at various
average RMSE values.

Image Set RMSE = 3.0 RMSE = 4.0 RMSE = 5.0
Centroid MST Centroid MST Centroid MST

Galway 14.4% n/a 21.3% 4.4% 25.1% 9.3%
Pig 34.4% n/a 34.2% 0.5% n/a 6.8%
Joe 3.0% 5.1% 15.9% 16.7% 25.6% 23.1%

GOES 25.4% n/a 26.7% n/a 31.0% n/a



not always better to compress difference images instead
of the original ones. On the other hand, the centroid
scheme performs quite well for lossy compression. It
is important to note that our graph-theoretical frame-
work automatically chooses the best scheme depending
on the situation.

Combination The final set of test images is com-
posed of the Galway image set combined with the first
30 images from the Pig set. The goal was to test the
framework with two clusters of images that have no re-
lation to one another. As expected, the resulting span-
ning tree has two independent subtrees for each cluster.
The MST scheme gives the best performance for this set
for lossless compression.

7. Conclusion

In this paper, we proposed a new framework for all
lossless compression schemes that consider inter-image
redundancy between two images in a set. Our exper-
imental results have shown that our framework allows
us to compute the optimal compression scheme that is
guaranteed to be no worse than the previously proposed
schemes. In the lossy case, we also showed that al-
though computing the optimal scheme is difficult be-
cause of the errors introduced by the compression pro-
cess, we can compute a compression scheme whose
performance is “close to” that of the optimal scheme.
Experimental results once again showed significant im-
provement over the traditional scheme in the lossy case.
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