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Abstract

The automatic compression strategy proposed by
Gergel et al. is a near-optimal lossy compression
scheme for a given collection of images whose inter-
image relationships are unknown. Their algorithm uses
the root mean square error (RMSE) as a measure of the
similarity between two images, in order to predict the
compressibility of the difference image. Gergel et al.
found that RMSE performed well at high compression
ratios, but it did not perform as well at lower compres-
sion ratios. This paper explores the choice of prediction
measure by analyzing the performance of a number of
different measures. The experimental results show that
entropy performs better than RMSE at lower compres-
sion ratios. Furthermore, an adjusted L1-norm offers
nearly the same performance as RMSE at high com-
pression ratios but is easier to compute.

Keywords: image set compression, difference im-
age.

1. Introduction

The rapid growth in the use of digital images re-
quires new compression strategies for efficient storage.
Many modern applications, such as medical imaging
centers, store and generate enormously large volumes
of images [21]. The automatic lossy compression strat-
egy of Gergel et al. [9, 11] allows for the efficient stor-
age of image collections without any prior knowledge
of the images. Instead of storing n original images, a
subset of n−1 difference images are stored. The subset
of difference images are selected by studying the com-
pressibility of each of the

(n
2

)
difference images. The

root mean square error (RMSE) is used to predict the
compressibility of the difference images. The accuracy
of this prediction directly affects the performance of the
image set compression scheme. It was assumed that the
RMSE between two images is small if and only if the

difference image is easy to compress. This paper takes
a closer look at this issue and examines four measures,
including RMSE, in terms of their prediction power and
computation efficiency.

Traditionally, image compression research has fo-
cused on reducing the redundancies contained within an
image [13]. A large collection of images may contain
other redundancies, and a number of different strate-
gies to remove inter-image redundancies have been pro-
posed [2, 3, 4, 15, 16, 18, 17, 20, 22, 23, 24, 25,
26]. Many of these techniques, such as the Centroid
method [16, 18], perform well on image sets with par-
ticular inter-image relationships, but are less effective
on others. It is not clear which method will perform
best a priori.

The unifying graph theoretical framework pro-
posed by Gergel et al. allows for the comparison of
all previous techniques that look at the relationship be-
tween pairs of images [9, 10, 11]. Their framework led
to the discovery of an automatic compression strategy
performing no worse than any previous strategy, and of-
ten performing better.

The remainder of the paper is structured as fol-
lows. Section 2 summarizes the theoretical framework
of Gergel et al. used for compressing sets of images.
Four different measures for predicting compression per-
formance are studied in Section 3. Section 4 concludes
the paper with a review of the results of this paper.

2. Graph Theoretical Framework

The graph theoretical framework of Gergel et al.
facilitates analyzing and comparing compression strate-
gies that reduce inter-image redundancies between pairs
of images [9, 10, 11]. The framework defines a com-
plete undirected weighted graph G = (V,E). Each ver-
tex v ∈V in the graph represents an image.

An additional two images are added to the image
set, and subsequently to the vertex set, to allow the



framework to accommodate modeling various proposed
compression strategies. These two images are the zero
image, which is an image composed of pixels with a
value of zero, and the average image, which is a global
average for the input image set.

The edges of the graph define the relationship be-
tween the images. Each edge e∈ E is assigned a weight
value w(e) that is computed from the difference be-
tween a pair of images. The weight of an edge is the
cost to reconstruct one image given the other image,
and it can be approximated using a measure such as the
root mean square error (RMSE). This graph structure
allows compression strategies to be modeled and com-
pared within an unified framework.

Using this graph representation, all previous com-
pression strategies can be represented as a spanning tree
T = (V,E ′) of the graph G where E ′ ⊆ E. The stor-
age cost for a compression strategy is the total weight
of all the edges e ∈ E ′ of the spanning tree T . Intu-
itively, choosing the edges with the smallest weights
should yield the best compression for an image set. The
strength of this strategy is that a smaller edge weight
represents a smaller difference between a pair of images
and that this difference takes less space to store. Gergel
et al. showed that the MST strategy will be no worse
than any previous strategy. In some cases, they showed
up to a 72% improvement of overall compression for
the set when compared to traditional compression [11].

The graph theoretical set compression algorithm
consists of three main stages.

1. Compute the complete graph.

2. Compute a minimum spanning tree of the graph.

3. Compress the edges chosen in the MST.

The second stage involves computing an MST of the
graph. This can be done using any of the well known
algorithms such as Kruskal’s algorithm [6]. Once an
MST has been found, the difference images for the cho-
sen edges can be compressed using a standard compres-
sion algorithm in the third stage.

The first stage is the most time-intensive part of
the algorithm. A complete graph has

(n+2
2

)
edges,

which has a computational complexity of O(n2) oper-
ations where n is the number of images. The weight
for each edge is the cost to store the difference im-
age. Ultimately, the compressibility of a difference im-
age (the byte size of the compressed image) should be
used as the weight of the corresponding edge. How-
ever, this results in

(n+2
2

)
calls to the underlying com-

pression algorithm and it is computationally intensive.
We consider four possible prediction measures below.
Let f1(x,y) and f2(x,y) be two M × N images with

d(x,y) = f1(x,y)− f2(x,y) their difference image, and
d̄ = 1

MN ∑
M−1
x=0 ∑

N−1
y=0 d(x,y) is the mean pixel value of

the difference image.

Root mean square error (RMSE):

rmse =

√√√√ 1
MN

M−1

∑
x=0

N−1

∑
y=0

[d(x,y)]2. (1)

Standard deviation:

σ =

√√√√ 1
MN

M−1

∑
x=0

N−1

∑
y=0

[d(x,y)− d̄]2. (2)

Standard deviation is the same as RMSE except
that the mean d̄ is removed.

Adjusted L1-norm:

A =
1

MN

M−1

∑
x=0

N−1

∑
y=0

|d(x,y)− d̄|. (3)

The adjusted L1-norm is the usual L1-norm with
the mean d̄ removed. Although computing RMSE
and standard deviation was quicker than comput-
ing the actual byte costs of a compressed differ-
ence image, the adjusted L1-norm is even easier to
compute because there is no need to square and
take square roots. This measure is similar to the
weighted distance of [7].

Entropy: let P(a1), . . . ,P(aJ) be probabilities of the
symbols a1, . . . ,aJ occurring in an image. The en-
tropy is defined as

H =−
J

∑
j=1

P(a j)log2P(a j). (4)

When a j’s are the gray level of individual pixels,
H is the first-order entropy and shows how much
coding redundancy can be reduced from an image.
More generally, blocks of k pixels can be used to
obtain a k-th order entropy. When k > 1, inter-
pixel redundancies can be detected as well. While
the first-order entropy is easy to compute, higher-
order entropies are somewhat more difficult. In our
experiments, we use fourth-order entropy with 2×
2 pixel blocks. This provides a balance between
performance and computational complexity.

3. Experimental Results

Five image sets were used in the experiments. Each
test set was composed of twelve randomly chosen im-
ages from each of the larger sets used by Gergel et



(a) Galway (b) Pig

(c) Joe (d) GOES

Figure 1. Typical images from each set.

al. [9, 11] and Nielsen et al. [22, 23]. The smaller sub-
sets were chosen to speed up testing. Figure 1 shows a
typical image from the first four image sets. The Gal-
way set contains webcam images from a street in Gal-
way City, Ireland [8]. The Pig set is composed of ultra-
sound images of pig rib cages. The Joe set is another
webcam image set taken from a camera directed at a
beach in Victoria, British Columbia [14]. Satellite im-
ages from the GOES project [12] make up the GOES
set. The final set is the Combination set and it was com-
posed of 6 images from the Galway set and 6 images
from the Pig set. All the images were 8-bit gray scale
images.

One method to evaluate the performance of a mea-
sure is to calculate the correlation coefficient between
the value given by the measure and the actual compres-
sion performance. Since we are performing lossy com-
pression, it is not sufficient to measure the performance
simply by examining the resulting file size. Instead, a
compression ratio is fixed and the RMSE between the
original and decompressed images is used. An image
is easy to compress if this error is small, and hard to
compress if this error is large.

The correlation coefficient is defined as

r = ∑
n
i=1(Xi− X̄)(Yi− Ȳ )√

∑
n
i=1(Xi− X̄)2 ∑

n
i=1(Yi− Ȳ )2

. (5)

Two values are computed for each of the n difference
images. The value of Xi is the computed measure of the
difference image. The value of Yi is the RMSE between
the original difference image and the decompressed dif-
ference image using a compression algorithm such as
JPEG2000 at a fixed compression ratio. If r≈ 0 then the

chosen measure is not good at predicting the compres-
sion performance. Conversely, if r ≈ 1 then the chosen
measure predicts the compression performance well.

The experiments computed the correlation coeffi-
cients for the five image sets using two different com-
pression algorithms; Jasper [1], which is an imple-
mentation of the JPEG2000 specification [5], and the
wavelet packet tools from Meyer et al. [19]. Each mea-
sure was tested at six compression ratios {3 : 1,10 :
1,20 : 1,40 : 1,60 : 1,100 : 1}. The resulting correla-
tion coefficients are shown in Table 1 through Table 5.

3.1. RMSE Results

The first measure evaluated was RMSE, and this
served as the base case for comparison of the other
tested measures. As the compression ratio increased,
the correlation coefficient for each image set increases.
Also, the wavelet packet algorithm outperformed the
JPEG2000 algorithm. These results agree with the pre-
vious works [9, 11]. The GOES set was difficult to pre-
dict by RMSE as indicated by the low correlation coef-
ficients for both compression algorithms.

3.2. Standard Deviation Results

Overall, standard deviation slightly outperformed
RMSE. It was better at higher compression ratios, but
standard deviation also performed poorly at lower com-
pression ratios. Although standard deviation nearly
doubled the performance of RMSE on the GOES set,
the correlation coefficients were still very low.

3.3. Adjusted L1-norm Results

The results were very similar to the RMSE results.
Therefore, the adjusted L1-norm could be used as a sub-
stitute for RMSE, which would reduce the time required
to compute the edge weights.

3.4. Entropy Results

The correlation coefficients showed that fourth-
order entropy performed better at lower compression
ratios. As the compression ratio increased, the other
measures tested performed better than entropy. This is
because the compression is close to lossless at the lower
compression ratios. At higher compression ratio it is not
sufficient to consider entropy alone. The performance
of entropy on the GOES set was better than the other
measure, but again, the overall performance is poor for
this image set.



Table 1. The correlation coefficients for the Galway image set.

Ratio JPEG2000 Wavelet Packets
RMSE σ Adj. L1 Entropy RMSE σ Adj. L1 Entropy

3:1 0.157 0.120 0.149 0.799 0.093 0.058 0.085 0.865
10:1 0.074 0.039 0.067 0.868 0.197 0.231 0.204 0.959
20:1 0.103 0.137 0.109 0.930 0.424 0.455 0.430 0.973
40:1 0.421 0.452 0.425 0.957 0.731 0.753 0.733 0.874
60:1 0.673 0.697 0.675 0.902 0.864 0.880 0.865 0.762
100:1 0.854 0.870 0.855 0.773 0.944 0.954 0.945 0.640

Table 2. The correlation coefficients for the Pig image set.

Ratio JPEG2000 Wavelet Packets
RMSE σ Adj. L1 Entropy RMSE σ Adj. L1 Entropy

3:1 0.180 0.141 0.181 0.797 0.388 0.424 0.344 0.703
10:1 0.479 0.533 0.448 0.629 0.786 0.774 0.764 0.039
20:1 0.611 0.656 0.586 0.481 0.762 0.791 0.719 0.278
40:1 0.591 0.639 0.569 0.464 0.734 0.769 0.693 0.314
60:1 0.590 0.639 0.563 0.453 0.750 0.785 0.708 0.284
100:1 0.682 0.723 0.640 0.358 0.729 0.765 0.676 0.268

Table 3. The correlation coefficients for the Joe image set.

Ratio JPEG2000 Wavelet Packets
RMSE σ Adj. L1 Entropy RMSE σ Adj. L1 Entropy

3:1 0.251 0.266 0.249 0.792 0.261 0.332 0.288 0.911
10:1 0.486 0.552 0.506 0.814 0.596 0.668 0.622 0.731
20:1 0.706 0.751 0.715 0.610 0.785 0.822 0.793 0.498
40:1 0.889 0.883 0.876 0.289 0.882 0.888 0.877 0.282
60:1 0.911 0.889 0.890 0.161 0.905 0.894 0.890 0.199
100:1 0.924 0.893 0.900 0.107 0.901 0.873 0.876 0.115

Table 4. The correlation coefficients for the GOES image set.

Ratio JPEG2000 Wavelet Packets
RMSE σ Adj. L1 Entropy RMSE σ Adj. L1 Entropy

3:1 0.060 0.331 0.139 0.629 0.106 0.257 0.017 0.791
10:1 0.124 0.192 0.043 0.740 0.052 0.241 0.029 0.699
20:1 0.079 0.201 0.002 0.677 0.003 0.258 0.078 0.632
40:1 0.008 0.222 0.062 0.574 0.087 0.288 0.154 0.530
60:1 0.043 0.240 0.108 0.508 0.116 0.298 0.180 0.486
100:1 0.121 0.269 0.179 0.426 0.187 0.324 0.243 0.412



Table 5. The correlation coefficients for the Combination image set.

Ratio JPEG2000 Wavelet Packets
RMSE σ Adj. L1 Entropy RMSE σ Adj. L1 Entropy

3:1 0.694 0.771 0.758 0.857 0.720 0.778 0.776 0.916
10:1 0.750 0.806 0.802 0.930 0.796 0.849 0.845 0.919
20:1 0.804 0.869 0.860 0.899 0.843 0.901 0.892 0.883
40:1 0.843 0.912 0.898 0.841 0.881 0.939 0.928 0.818
60:1 0.865 0.932 0.917 0.806 0.901 0.953 0.942 0.785
100:1 0.895 0.954 0.940 0.781 0.921 0.965 0.955 0.742

4. Conclusion

The automatic strategy of Gergel et al. is an ef-
fective lossy compression scheme to improve the stor-
age requirements for collections of images. RMSE is a
common measure used to predict compression perfor-
mance, but their results indicated that RMSE did not
perform well at low compression. In this paper, the per-
formance of four measures was compared. A number
of observations can be made regarding the results of the
experiments.

The performance of RMSE at high compression ra-
tios presented by Gergel et al. was validated by corre-
lation results given in this paper. At higher compres-
sion ratios, RMSE performed well, but it did poorly at
lower ratios. The standard deviation measure slightly
outperformed RMSE at high compression ratios. On the
other hand, the adjusted L1-norm performed very close
to RMSE and it is easier to compute. Therefore, the
adjusted L1-norm makes a good candidate for imple-
mentation where high compression ratios are required
to compress an image set.

The results for the fourth-order entropy indicate
that it performs much better than RMSE at lower com-
pression ratios. Thus, a modified version of the com-
pression strategy may pick the appropriate measure
based upon the compression ratio.

The performance of all the measures on the GOES
set was poor. This set is known to have images that are
not very similar to one another, and its qualities need
to be studied further to improve the understanding of
difference images and how to compress image sets.
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