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Abstract— A hierarchical lossy image set compression al-
gorithm (HMSTa) has recently been proposed for lossy
compression of image sets. It was shown that this algorithm
performs well when an image set contains well separated
clusters of similar images. As a result, if one applies the
HMSTa algorithm after a clustering algorithm has been
applied, the compression performance depends on the qual-
ity of the partition. In this paper, we examine a number
of well-known hierarchical clustering methods and cluster
validity measures, and their relationships to the compression
performance of HMSTa. This relationship can be used as
a component in a fully automated image set compression
algorithm. We also briefly examine the merit of using different
compression schemes depending on the compactness of the
cluster in order to reduce computational complexity.

Keywords: image set compression, clustering, cluster validity,
minimum spanning tree.

1. Introduction
Traditional image compression algorithms for individual

images, such as predictive coding and transform coding,
have been shown to effectively reduce coding, inter-pixel,
and psycho visual redundancy within an image [1]. Image
sets, however, may contain inter-image redundancy, or “set
redundancy” [2], which are not reduced by these algorithms.
A number of algorithms have been proposed to address this
issue [3], [4], [5], [2], [6], [7], [8], [9].

The MSTa scheme [4], [5] computes a global average
image of the entire image set, and forms a complete graph
in which the vertices are the images (including the average)
and the edges have weights being the cost of compressing the
corresponding difference images. A minimum spanning tree
(MST) is computed and the difference images associated to
the edges in the MST are compressed. It was shown that
this scheme works well for images that are very similar
to each other. In cases where images in a set form well
separated clusters of similar images, the global average may
not be representative of any image in the set. The Hierarchical
Minimum Spanning Tree (HMSTa) algorithm [9] partitions a
set of images into clusters of similar images, and applies the
MSTa scheme on each of the clusters. The MSTa scheme is
then applied again to the set containing the average image
of each cluster. The performance of the HMSTa algorithm

depends strongly on the quality of the partition of the images.
Our ultimate goal in this research is to obtain an automatic
lossy image set compression algorithm. The algorithm should
automatically find an appropriate partition of the data and
apply the HMSTa algorithm.

In this paper, we examine a number of well-known hier-
archical clustering algorithms and cluster validity measures,
as well as their relationships to compression performance by
HMSTa. We also briefly examine the merit of using different
compression strategies depending on the compactness of
the cluster. If the difference in compression performance
between different schemes is small for compact clusters,
one may choose a faster non-optimal algorithm without
sacrificing much in compression performance. The results
from this study are key components in an automatic image
set compression algorithm.

2. Previous Works
Karadimitriou and Tyler proposed the Centroid “set map-

ping” scheme to reduce “set redundancy” for lossless com-
pression [2], [6]. The Centroid scheme involves computing
an average image for a set of similar images, calculating
the difference between the average image and each image
in the set, and coding the average image and the difference
images. The corresponding lossy algorithm gave significant
improvement in compression ratios compared to compressing
individual images. However, the images in the set must
be quite similar for the Centroid scheme to perform well,
and image sets that contain dissimilar images were not
considered.

The minimum spanning tree (MST) set mapping strategy,
proposed by Nielsen and Li, is based on a graph data struc-
ture [7]. A complete graph is constructed, using images as
the vertices and the root-mean-square error (RMSE) between
adjacent images as the edge weights. An MST for the graph
is calculated, and one image is chosen as the root. The root
image and difference images represented by the edges with
the lowest total cost are encoded using lossy JPEG2000 [10].
The results of these experiments showed a clear improvement
in average distortion (RMSE) when using the MST scheme
over the “traditional” scheme of compressing each image
individually, especially at lower bitrates. These experiments
focused on sets of similar images, and did not examine



performance on sets containing dissimilar images. Other
authors have applied a similar strategy to specific applications
such as object movies [3], multiview video coding [11],
multispectral images [12], and map images [13]. However,
the image sets in these applications are known to be similar
and the image sets are usually small.

Gergel et al. built upon this work with the MSTa

scheme [4], [5]. An MST is computed on a complete graph
that includes a zero image and an average image, using
RMSE as edge weight. The MSTa scheme is a unified
framework that adaptively chooses the best scheme among
the traditional, Centroid, MST, and other schemes. The MSTa

scheme is shown to be highly effective, outperforming the
other schemes in many cases. Schmieder et al. applied a
clustering algorithm and applied the MSTa algorithm first to
each cluster and then to the cluster averages [9]. The HMSTa

algorithm was effective when the image set contains a
number of clusters of very similar images, and the clustering
algorithm accurately identifies the partition.

3. Approach
Our general approach is to apply a hierarchical clustering

algorithm to produce a sequence of partitions and to select the
best partition from this sequence. Of course, one can simply
apply the HMSTa algorithm to each partition, observe the
result, and choose the partition that gave the best compression
performance. However, the computational cost of the HMSTa

algorithm (including the compression of difference images)
is high, and it is preferable to minimize the number of times
it is invoked. Intuitively, the performance of the HMSTa

algorithm improves as the partition gets “better.” There are a
number of cluster validity measures that have been used to
measure the quality of a partition. Therefore, we will examine
the use of these validity measures to see how well they relate
to the actual compression performance. Since these validity
measures are much easier to compute, they can be used to
choose the best partition provided that the validity measure
has a strong correlation to the compression performance.

For images that are very similar, the Centroid scheme [2],
[6] may compress an image set very well, with the addi-
tional advantage that it is significantly faster than the MSTa

algorithm. One may be interested in applying the Centroid
scheme instead when an image cluster is “compact enough.”
We will also examine the effectiveness of a number of com-
pression schemes for compact clusters in our experiments.

3.1 Cluster Analysis
For the purpose of cluster analysis, we represent each M×

N image Ii in the image set S as an MN -dimensional vector
whose components are the intensity values at each pixel. Each
of these vectors is considered a pattern. Given two images Ii

and Ij , we also define the root-mean-square error (RMSE)

as

RMSE(Ii, Ij) =

√√√√ 1
MN

M−1∑
x=0

N−1∑
y=0

(Ii(x, y)− Ij(x, y))2

(1)
The RMSE is used as a dissimilarity measure [14] in the
clustering algorithms. For the remainder of this paper, the
notation d(i, j) = RMSE(Ii, Ij) will denote the dissimilar-
ity between Ii and Ij .

3.2 Cluster Validity Measures
Cluster validity measures can be used to evaluate how well

a partition “fit” the given data. Since we are interested in an
automatic image set compression algorithm, we only consider
“internal” validity measures [14] which do not require a priori
knowledge on the image set. In this study, we consider the
Variance Ratio Criterion (VRC) [15], the C-index [16], and
the Silhouette index [17]. The VRC and C-index were listed
among the best-performing measures in a study of 30 internal
validity measures as stopping rules of clustering algorithms
by Milligan and Cooper [18].

We assume that S = {I1, . . . , In} is an image set of n
images, and it has been partitioned into a set of clusters C =
{C1, . . . , Cm}. It is assumed that the partition is not trivial;
that is, 1 < m < n.

3.2.1 Variance Ratio Criterion (VRC)

The Variance Ratio Criterion (VRC) is based on notions
used in analysis of variance in statistics [15]. This measure
is based on the idea that an ideal partition will have patterns
in the same cluster being less dissimilar than patterns in
different clusters.

First, the within group sums of squares (WGSS) is defined
as

WGSS =
m∑

g=1

 1
|Cg|

∑
Ii,Ij∈Cg,i<j

d(i, j)2

 , (2)

and the between group sum of squares (BGSS) is defined as

BGSS =
1
n

∑
1≤i<j≤n

d(i, j)2 − WGSS. (3)

Then, the VRC is defined as

VRC =
BGSS
m− 1

/
WGSS
n−m

. (4)

Intuitively, the WGSS measures the dissimilarity within
clusters while the BGSS measures the dissimilarity between
different clusters. Thus, a higher value of VRC indicates a
better partition.



3.2.2 C-index
The C-index is defined as

C =
dw −min(dw)

max(dw)−min(dw)
, (5)

where

dw =
m∑

g=1

∑
Ii,Ij∈Cg

d(i, j), (6)

and min(dw) (max(dw)) is the sum of the smallest (largest) k
values of d(i, j) (1 ≤ i < j ≤ n) with k being the number of
terms in the sum (6) [16]. Intuitively, a better partition would
minimize within cluster “scatter” and result in a smaller value
for the C-index.

3.2.3 Silhouette Index
The Silhouette index was intended to be used as a graphical

aid to cluster validation, but its value can also be used as a
validity measure [17].

The silhouette index for a single pattern Ii in cluster Ck

is defined as:

s(Ii) =
b(Ii)− a(Ii)

max(a(Ii), b(Ii))
, (7)

where a(Ii) is the average dissimilarity of Ii in its cluster,
and b(Ii) is the minimum average distance from Ii to patterns
in other clusters:

a(Ii) =
1

|Ck| − 1

∑
Ij∈Ck

d(i, j), (8)

b(Ii) = min
1≤g≤m,g 6=k

 1
|Cg|

∑
Ij∈Cg

d(i, j)

 . (9)

If Ii is in a singleton cluster then s(Ii) = 0. The global
silhouette index is simply the average of the silhouette index
for the entire pattern set. Intuitively, the silhouette index
measures how well a pattern “fits” in its assigned cluster
by comparing its dissimilarity to patterns within and outside
its own cluster. A higher value of global silhouette index
indicates a better partition.

3.3 Hierarchical Clustering Algorithms
A hierarchical clustering is a sequence of partitions of the

image set into clusters, such that the first partition of the
sequence contains only singleton clusters (disjoint partition),
and the last partition contains a single cluster of all images
(cojoint partition) [14]. Each partition in the sequence is
nested into the next partition. That is, each cluster in the
partition is a subset of some cluster in the next partition.
For this study, we examine agglomerative hierarchical clus-
tering algorithms which begins with the disjoint partition and
ends with the cojoint partition. We examine the same four
clustering algorithms in Milligan’s study of cluster validity
measures [19].

3.3.1 Single Link Method
At each step of the single link method [14], two images

Ii and Ij from different clusters are chosen so that d(i, j)
is minimum among all such image pairs. The two clusters
are then merged into one cluster. Note that this is equivalent
to Kruskal’s algorithm for constructing a minimum spanning
tree for a graph.

3.3.2 Complete Link Method
In the complete link method [14], a graph is initially

formed so that the images are the vertices and there are no
edges between any vertices. The dissimilarities d(i, j) are
examined in increasing order, and the corresponding edges
(Ii, Ij) are added to the graph incrementally. Whenever a
new clique in the graph is formed from the vertices in two
existing clusters, the clusters are merged into one.

3.3.3 UPGMA
In the Pair Group Method using Unweighted Averages

(UPGMA), the dissimilarity between two clusters is the
average dissimilarity between pairs of images with one image
in each cluster. At each step, the two remaining clusters with
the smallest dissimilarity are merged into one.

3.3.4 Ward’s Method
At each step of Ward’s method, two clusters are chosen so

that if the clusters were merged, the increase in error sum of
squares (sum of squares of dissimilarity between each image
and its cluster average) is minimum.

3.4 Cluster Compactness
In this study, we consider the diameter and radius of a

cluster as measures of its compactness. Let Ia = In+1 be
the average image of the set S = {I1, . . . , In}. We define
the diameter and radius as:

D(S) = max
1≤i<j≤n

d(i, j) (10)

R(S) = max
1≤i≤n

d(i, n + 1). (11)

A smaller value for diameter or radius indicates that the
cluster is more compact.

4. Experiments
We use the same five test image sets used in previ-

ous image set compression studies [4], [5]: Galway [20],
GOES [21], Joe [22], Pig, and Combination. Sample images
appear in Figure 4. The Galway set contains 28 webcam im-
ages of a street in Galway City, Ireland that were taken within
a few hours under similar weather and lighting conditions.
The GOES set contains 128 satellite images of the Earth. The
Joe set contains 162 webcam images of an outdoor scene that
were taken under varying weather and lighting conditions.
The Pig set contains 304 ultrasound images of pig rib cages.



(a) Galway (b) GOES

(c) Joe (d) Pig

Fig. 1: Sample images from each set.

Finally, the Combination set contains 57 images: 28 from the
Galway set, and 29 from the Pig set.

4.1 Cluster Validity Measures
We are interested in evaluating how well various cluster

validity measures predict the compression performance of
a particular partition. Different hierarchical clustering algo-
rithms are applied to each image set. The HMSTa algorithm
and various validity measures are applied to the members
of the sequence of partitions produced by the clustering
algorithms. To measure compression performance for the
lossy HMSTa algorithm, we perform compression at a fixed
compression ratio (1:10, 1:30, 1:50, 1:70, and 1:90) and
measure the average distortion (RMSE) between the original
images and the decompressed images. A lower average
distortion indicates better compression performance. The
Pearson correlation coefficient (r) is computed to determine
how well each validity measure can predict the compression
performance. For the VRC and Silhouette measures (larger
value indicates better partition), an r value close to −1
indicates the measure correlates well with the compression
performance. For the C-index measure, an r value close to 1
indicates strong correlation.

Tables 1 through 5 show the correlation coefficients in
our experiments. In all of our experiments, the UPGMA and
Ward’s methods for clustering produce the same partitions.
These two methods generally produce poor partitions on the
image sets—each partition consists only of one large cluster
and the remaining images in singleton clusters. The validity
measures are generally not well-suited for partitions with
many singleton clusters, so none of the validity measures
work well in these cases.

We see that the Silhouette index generally has a higher cor-

relation with the compression performance of HMSTa than
VRC or C-index, especially at higher compression ratios. In
many cases, the correlation of C-index (and sometimes VRC)
to the compression performance has the wrong sign. This
happens mainly because the difference in the compression
performance among different partitions is relatively small,
and a few outliers may affect the correlation significantly.
Sometimes the correlation has the wrong sign even if the
most “valid” partition indeeds yield the best compression
performance. Nevertheless, there are a few instances where
using these measures to predict compression performance
may give the opposite effect. The correlation of the Silhouette
measure with compression performance has the correct sign
and is fairly close to −1 in most cases, except for the
Galway image set. For this image set, the correlation is still
reasonable when the complete link clustering method is used.
For the Galway image set, the bad correlation values are
generally caused by a few outliers. Choosing a partition based
on the Silhouette measure will generally give one of the best
partitions even in the single link case.

From the experimental results, we may conclude that the
Silhouette index is the best among the three validity measures
studied in its ability to predict the compression performance
of the HMSTa algorithm. In addition, the Silhouette index
performs better in conjunction with the complete link method
than other clustering methods.

4.2 Performance on Compact Clusters
We now evaluate the effectiveness of various set image

compression schemes on compact clusters. We examine the
traditional scheme (each image is compressed separately), the
Centroid scheme [2], [6], the MST scheme [7], and the MSTa

scheme [4], [5]. We examine the average distortion between
the original and decompressed images at various compression
ratio for each scheme. Although the Centroid scheme is com-
putationally simpler, our experiments show that the MSTa

scheme still provides a significant improvement to the com-
pression performance even for relatively compact clusters. A
sample plot of the experimental results is shown in Figure 2.
Even for a very compact image set, the Centroid scheme
can be far from optimal. For example, Figure 3 shows a set
with images Ii and Ij (other images omitted) and centroid
In+1 = Ia where d(i, j) < d(n+1, j). The Centroid scheme
would select the edge (Ia, Ij) instead of (Ii, Ij). Of course,
if R(S) is very small, then d(In+1, Ij) < R(S) implies
that the penalty in compression performance may be small
while the computational complexity for the Centroid scheme
is much lower. However, we have not encountered any non-
artificial image set in which the MSTa algorithm does not
outperform the Centroid scheme significantly even for com-
pact clusters. Thus, we can conclude from our experimental
results that the MSTa algorithm should be used regardless of
the compactness of clusters unless computational complexity
is a significant concern.



Table 1: Galway image set.
VRC C-index Silhouette

Ratio C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards
1:10 -0.6536 -0.3810 0.0752 -0.8427 -0.3534 -0.6899 -0.7917 -0.6567 -0.9325
1:30 0.0926 0.3102 0.0825 0.1346 0.1310 0.4895 -0.1561 0.4958 0.9100
1:50 0.2112 0.4236 0.0944 0.2475 0.1072 0.5061 -0.1748 0.5397 0.9124
1:70 0.0137 0.4109 0.5643 -0.0103 -0.0719 0.0763 -0.4350 0.3130 0.7911
1:90 -0.2864 0.0480 0.6444 -0.4122 -0.3477 -0.7992 -0.7701 -0.3596 -0.4773

Table 2: GOES image set.
VRC C-index Silhouette

Ratio C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards
1:10 -0.0675 -0.0444 -0.1911 -0.1851 0.6444 0.2949 -0.2052 0.3922 0.1977
1:30 0.0882 0.1194 0.7085 -0.9077 -0.7868 -0.8146 -0.9329 -0.8695 -0.6762
1:50 -0.0202 -0.0284 0.6802 -0.9081 -0.7277 -0.7796 -0.9310 -0.9516 -0.6142
1:70 -0.0921 -0.1244 0.6898 -0.8698 -0.6653 -0.7781 -0.8940 -0.9167 -0.6173
1:90 -0.1032 -0.1408 0.6807 -0.8324 -0.6199 -0.7656 -0.8495 -0.8757 -0.6007

Table 3: Joe image set.
VRC C-index Silhouette

Ratio C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards
1:10 -0.5062 -0.1116 0.0082 -0.5766 -0.3437 -0.4125 -0.5035 -0.0951 -0.4233
1:30 -0.0134 0.8011 0.4579 -0.5312 -0.2539 -0.8102 -0.9352 -0.4948 -0.7743
1:50 -0.2245 0.8221 0.2778 -0.6541 -0.3958 -0.7366 -0.9413 -0.6739 -0.6405
1:70 -0.2284 0.8743 0.4072 -0.6610 -0.4151 -0.7189 -0.9307 -0.6754 -0.7473
1:90 -0.1766 0.8869 0.4284 -0.6222 -0.4100 -0.6983 -0.9048 -0.6779 -0.7700

Table 4: Pig image set.
VRC C-index Silhouette

Ratio C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards C. Link S. Link UPGMA/ Wards
1:10 0.5320 0.4608 0.4742 0.0378 -0.2395 0.36567 0.4167 -0.2623 0.4030
1:30 -0.7571 -0.4566 -0.7811 -0.5643 -0.5316 -0.3666 -0.7407 -0.8732 -0.5023
1:50 -0.7196 -0.3484 -0.8187 -0.5752 -0.6594 -0.3153 -0.7823 -0.8917 -0.5249
1:70 -0.6178 -0.3121 -0.8066 -0.6769 -0.6935 -0.2858 -0.8009 -0.8612 -0.4930
1:90 -0.5579 -0.2716 -0.8097 -0.7020 -0.7168 -0.2887 -0.8338 -0.8172 -0.4956

5. Conclusion

In this paper, we showed that the Silhouette index when
combined with hierarchical clustering methods perform quite
well in predicting the compression performance of the
HMSTa algorithm. We plan to incorporate this measure into
an image set compression algorithm to automatically choose
the best partition of the image set. We also showed that even
for compact clusters, the MSTa algorithm may still perform
significantly better than the computationally simpler Centroid
scheme. Thus, it is not advisable for an automatic image set
compression algorithm to incorporate the Centroid scheme
unless computational complexity is a significant concern.
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