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Abstract— A number of image set compression algorithms
have been proposed in the literature. A key component of
these algorithms is a numeric measure used to quantify
how similar two images are to each other from the point
of view of a compression algorithm. Since most of these
image set compression algorithms use wavelet-based image
compression algorithms to compress the prediction error,
we propose a number of related image prediction measures
based on wavelet transforms. We also show some experi-
mental results using the proposed measures. The proposed
measure performs better than previous measures proposed in
the literature.
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1. Introduction
Traditional image compression algorithms for individual

images, such as predictive coding and transform coding,
have been shown to effectively reduce coding, inter-pixel,
and psycho visual redundancy within an image [8]. Image
sets, however, may contain inter-image redundancy, or “set
redundancy” [10], which are not reduced by these algorithms.
A number of algorithms have been proposed to address this
issue [1], [4], [5], [10], [11], [14], [15], [16], [17].

A key component of many of these algorithms is the use
of prediction of one image from another image in the set.
The choice of which image to use for predicting a particular
image is often based on some prediction measure—if two
images are similar enough, then the prediction error should
be small and the error image will be easy to compress by
a conventional image compression algorithm. This idea was
used by a number of image set compression schemes based
on minimum spanning trees, where the prediction measure
is used as the edge weights of a graph. Assuming that the
chosen edge weight accurately reflects how easy it is for
an image compression algorithm to compress the difference
image between two images, these image set compression
schemes obtain an optimal compression scheme for a par-
ticular set of images. Furthermore, the prediction measure is
also a key component in hierarchical image set compression
algorithms [16], in which the prediction measure is used to
cluster subsets of similar images together for more efficient
compression.

In almost all of these image set compression schemes, one
image is used to predict another image with simple pixel-
wise subtraction. The prediction error is simply the difference
image between the two images. This difference image is
then compressed using a conventional image compression
algorithm. In [6], a number of prediction measures in the
spatial domain are studied to see how well they correlate
to the actual performance of the compression algorithm
on the difference images. However, the actual compression
algorithms (such as JPEG 2000 [2]) typically examine an
image in the transform domain. As a result, spatial domain
prediction measures are not necessarily good matches to the
performance of compression algorithms.

In this paper, we examine prediction measures that are
computed from wavelet coefficients after a pyramid decom-
position has been performed on the difference image. The use
of these prediction measures should match the performance
of wavelet-based image compression algorithms such as
JPEG 2000, leading to better overall performance for the
image set compression scheme. Furthermore, the measures
we examine are more efficient than actually performing the
compression itself. Experimental results will be presented.

2. Previous Works
The minimum spanning tree (MST) set mapping strategy,

proposed by Nielsen and Li, is based on a graph data
structure [14]. A complete graph is constructed, using im-
ages as the vertices and the root-mean-square error (RMSE)
between adjacent images as the edge weights. An MST
for the graph is calculated, and one image is chosen as
the root. The root image and difference images represented
by the edges with the lowest total cost are encoded using
lossy JPEG 2000 [2]. The results of these experiments
showed a clear improvement in average distortion (RMSE)
between original and reconstructed images when using the
MST scheme over the “traditional” scheme of compressing
each image individually, especially at lower bitrates. These
experiments focused on sets of similar images, and did not
examine performance on sets containing dissimilar images.
Other authors have applied a similar strategy to specific
applications such as object movies [1], multiview video
coding [13], multispectral images [19], and map images [12].
However, the image sets in these applications are known
to be similar and the image sets are usually small. Further



improvement and variations of this idea include the MSTa

scheme [4], [5] in which the average image is included in the
complete graph, and the hierarchical MSTa (HMSTa) scheme
in which a clustering algorithm is applied to first group very
similar images together before the MSTa scheme is applied to
each cluster. Tashakkori [18] found that correlation between
wavelet coefficients is higher than the correlation between
original pixel values for similar images.

Most of the set image compression scheme uses RMSE
to measure the similarity between two images. However,
the measure does not always accurately reflect compression
performance. In [6], a number of spatial domain predic-
tion measures were studied including the RMSE, entropy,
standard deviation, and an adjusted L1 norm. It was shown
that both the adjusted L1 norm and RMSE measures predict
the actual compression performance somewhat accurately for
high compression ratios in many cases.

3. Approach
Our goal is to obtain a numeric measure computed from a

difference image, such that the measure reflects the compres-
sion performance of the chosen compression algorithm on the
difference image. For lossless compression, one can simply
compress the difference image and measure the size of the
compressed image. For lossy compression, we may measure
the distortion (e.g. RMSE) of the reconstructed image at a
particular compression ratio. Although these statistics can be
obtained from applying the compression algorithm on the
difference image, this can be computationally costly. This
is especially important for image set compression schemes
based on minimum spanning trees, as there are generally
O(n2) pairs of difference images to consider for a set of
n images. Instead, we aim for a measure which is computa-
tionally simpler than full compression but at the same time
accurately predicts the compression performance.

Our general approach is to apply a wavelet transform to
obtain a pyramid decomposition of the difference image [8],
and then examine the resulting wavelet coefficients. To sim-
plify the discussion, please refer to Figure 1 for how the
different subbands are labelled. Note that the pyramid levels
in different orientations at the same spatial resolution are
assigned the same label.

3.1 Choice of Wavelet
In this study, we examine two different wavelets for the

pyramid decomposition. The first wavelet we choose is the
simple Haar wavelet [8]. In this case, the lowpass filter co-
efficients are 1/

√
2, 1/

√
2 and the highpass filter coefficients

are 1/
√

2,−1/
√

2. This wavelet is chosen because of its
computational simplicity. For many of the measures, the scale
of the coefficients is in fact not important. In this case, we
can simplify the filter coefficients further to 1, 1 and 1,−1.
As a result, the pyramid decomposition can be performed
with simple addition and subtraction.
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Fig. 1: Labels for subbands and levels in a 3-level pyramid
decomposition.

The second wavelet we choose is the CDF 9/7 wavelet.
The lowpass filter coefficients are 0.026749, −0.016864,
−0.078223, 0.266864, 0.602949, 0.266864, −0.078223,
−0.016864, 0.026749, and the highpass filter coefficients are
0.091272, −0.057544, −0.591272, 1.115087, −0.591272,
−0.057544, 0.091272. While the CDF 9/7 wavelet transform
is more computational intensive to perform, it is the same
transform used in JPEG 2000 [2] and should match the
performance of JPEG 2000 better.

The number of levels in the pyramid decomposition de-
pends on the subset of wavelet coefficients required to
compute the measure. For example, if only the coefficients
of level 0 are needed, then only one level of pyramid
decomposition is needed.

3.2 Wavelet-based Measures
3.2.1 Entropy

Since wavelet-based image compression algorithms per-
form compression on the wavelet coefficients, the entropy of
the wavelet coefficients may be a good prediction measure
for the compression performance. In this study, we examine
first-order entropy, second-order entropy (1× 2 blocks), and
fourth-order entropy (2×2 blocks). Coefficients from a subset
of levels in the decomposition are used in the computations.
The entropy is computed by taking blocks of coefficients (of
the appropriate size) and treating each block as a symbol
when computing the histogram.

We should note that each coefficient in a level represents
a square region in the image in the spatial domain. For
example, a wavelet coefficient in level 1 is computed from
a 16 × 16 block in the spatial domain, so the fourth-order
entropy computed in this level in fact represents a 64 × 64
block in the spatial domain. Blocks from different levels in
the pyramid decomposition represent blocks of different sizes
in the spatial domain. As a result, we will only compute
entropy of wavelet coefficients from one level only.



(a) Galway (b) GOES

(c) Joe (d) Pig

Fig. 2: Sample images from each set.

3.2.2 RMSE
The RMSE of the wavelet coefficients can be computed

to obtain a numeric measure. Although the correlation be-
tween wavelet coefficients have been found to be higher
than the correlation between original pixel values in sim-
ilar images [18], we note that the wavelet transform is a
linear transform on the images, so that the effectiveness of
any linear prediction scheme of images (e.g. simple image
subtraction) is the same whether it is done in the wavelet
coefficient domain or the spatial domain. Furthermore, if the
chosen wavelet is orthonormal (e.g. the Haar wavelet), the
RMSE in the spatial domain and transform domain are in
fact identical. This is a result of the fact that orthonormal
wavelet transforms are distance-preserving.

However, if only coefficients from certain levels are used,
the result in linear prediction may be different. Therefore, we
will examine the RMSE measure only on subsets of levels
of wavelet coefficients.

3.2.3 Other Measures
One may apply other spatial domain prediction measures

studied in [6] on the wavelet coefficients as well (e.g.
standard deviation, adjusted L1 norm). Since the performance
of these measures were similar to that of RMSE, they are
excluded from this study.

4. Experimental Results
We use the same five test image sets used in previous

image set compression studies (e.g. [4], [5]): Galway [3],
GOES [7], Joe [9], Pig, and Combination. Sample images
appear in Figure 2. The Galway set contains 28 webcam im-
ages of a street in Galway City, Ireland that were taken within
a few hours under similar weather and lighting conditions.

The GOES set contains 128 satellite images of the Earth. The
Joe set contains 162 webcam images of an outdoor scene that
were taken under varying weather and lighting conditions.
The Pig set contains 300 ultrasound images of pig rib cages.

For each image set, we apply each of Haar wavelet and
CDF 9/7 wavelet transform to obtain a pyramid decompo-
sition. The RMSE, as well as first-order, second-order, and
fourth-order entropy of the wavelet coefficients of selected
levels are computed. These measures are used as edge
weights in the computation of a minimum spanning tree in the
MSTa image set compression scheme [4], [5], using JPEG
2000 to compress the difference images. The image set is
compressed at a fixed compression ratio, and the average
distortion between the original images and the reconstructed
images are recorded. For a fixed compression ratio, a lower
average distortion indicates better compression performance.
Equivalently, a lower average distortion implies that storage
requirement is lower when the acceptable distortion is fixed.

As we have mentioned in Section 3.2.2, the RMSE
measure on all wavelet coefficients gave exactly the same
results as the RMSE measure in spatial domain, as expected.
Furthermore, we observed that the RMSE measure applied on
different subsets of levels did not give significantly different
results from those obtained from the spatial domain RMSE
measure. As a result, we conclude that there is no advantage
in using the RMSE measure on the wavelet coefficients
instead of in the spatial domain.

For the wavelet-based entropy measures, we tested 24
different combinations of wavelet choice, level in the pyramid
decomposition, and order of entropy in the computation
of the measure. We also performed the same compression
using spatial domain prediction measures studied in [6] for
comparison. We tested compression ratios 3:1, 5:1, 7:1, 10:1,
12:1, 15:1, 20:1, 50:1, and 100:1. Instead of presenting the
average distortion obtained for the image set using each
measure in the MSTa compression scheme, we will only
present the results concerning the best few measures out
of the measures tested for each image set and groups of
compression ratios.

For the entropy measures, we found that the results depend
on both the compression ratio and the image sets, which is
consistent with what was discovered in previous works [6].
The ranking of each measure fluctuates but the best measures
tend to perform reasonably well for each type of image sets
(as one of the top few measures).

We first present the results at lower compression ratios,
from 3:1 up to 15:1 (Table 1). In all cases, many of the
wavelet measures tested perform at least as well, and in many
cases at least 10% better than all the spatial domain measures.
The wavelet measures that are consistently some of the best
measures all examine the entropy of wavelet coefficients in
level 0 and ignore the other levels. Since coefficients in
level 0 encode the finer details of the images, their encoding
contributes to a significant amount of the compressed output



Table 1: Summary of best results at low compression ratios (3:1 to 15:1).
Image Set Best Wavelet Best Level Entropy Order Average Distortion Average Distortion from spatial RMSE

Galway CDF 9/7 0 1 0.9124 0.9265
GOES Haar 0 4 0.6144 0.7176

Joe Haar 0 1 0.5372 0.5943
Pig CDF 9/7 0 2 0.3924 0.4188

at the lower compression ratios. The Galway image set is the
only one in which only a small improvement is observed. It
is interesting to note that the images in the set are so similar
to each other that most of the measures give very similar
minimum spanning trees.

For higher compression ratios, the results are somewhat
less significant (Table 2). At higher compression ratios, the
coefficients at the lower levels are not as important because
they may be “quantized” away. We should also point out
that while the relative (percentage) improvement is smaller
at higher compression ratios, the absolute improvement is in
fact reasonable.

In summary, the entropy measures on wavelet coefficients
perform better than spatial domain measures in most cases.
While the best choice of parameters depends on many factors,
entropy measures based on wavelet coefficients in level 0
consistently outperform spatial domain measures. Since we
are interested only in level 0 wavelet coefficients, we only
have to apply the highpass filter in the wavelet transform
only once, significantly reducing the amount of computation
required for these measures.

5. Conclusion
In this paper, we introduced a family of wavelet-based

prediction measures to determine how effectively a difference
image can be compressed. By examining the entropy of only
the wavelet coefficients in level 0, we obtain a measure
that outperforms previous spatial domains when applied to
the MSTa image set compression scheme. Furthermore, the
wavelet transform only has to be applied once to obtain the
coefficients in level 0, so that the computational cost of these
measures is not high.

We have not examined the effect of quantization on
the calculation of these measures, especially at the higher
compression ratios. We may wish to quantize the wavelet
coefficients first before computing the entropy. Since quan-
tization is changed implicitly by varying compression ratio,
the amount of quantization would depend on the compression
ratio. This may lead to more accurate prediction measures,
at the expense of slightly higher computational costs.
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Table 2: Summary of best results at high compression ratios (20:1 to 100:1).
Image Set Best Wavelet Best Level Entropy Order Average Distortion Average Distortion from spatial RMSE

Galway CDF 9/7 0 1 4.223 4.230
GOES Haar 0 1 3.258 3.314

Joe CDF 9/7 0 1 4.159 4.261
Pig CDF 9/7 0 2 1.066 1.124


