
On Computing Polynomial GCDs in Alternate Bases

Howard Cheng
Dept. of Mathematics and Computer Science
University of Lethbridge, Lethbridge, Canada

cheng@cs.uleth.ca

George Labahn
Symbolic Computation Group
School of Computer Science

University of Waterloo, Waterloo, Canada

glabahn@uwaterloo.ca

ABSTRACT
In this paper, we examine the problem of computing the
greatest common divisor (GCD) of univariate polynomials
represented in different bases. When the polynomials are
represented in Newton basis or a basis of orthogonal polyno-
mials, we show that the well-known Sylvester matrix can be
generalized. We give fraction-free and modular algorithms
to directly compute the GCD in the alternate basis. These
algorithms are suitable for computation in domains where
growth of coefficients in intermediate computations are a
central concern. In the cases of Newton basis and bases us-
ing certain orthogonal polynomials, we also show that the
standard subresultant algorithm can be applied easily. If the
degrees of the input polynomials is at most n and the degree
of the GCD is at least n/2, our algorithms outperform the
corresponding algorithms using the standard power basis.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

General Terms
Algorithms

Keywords
Krylov Matrices, Euclidean Algorithm, Orthogonal Polyno-
mials, Fraction-free arithmetic, Subresultants.

1. INTRODUCTION

In this paper we consider the problem of computing the
greatest common divisor (GCD) of two polynomials

a(x) = a0ω0(x) + · · ·+ amωm(x) and

b(x) = b0ω0(x) + · · ·+ bnωn(x)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’06, July 9–12, 2006, Genova, Italy.
Copyright 2006 ACM 1-59593-276-3/06/0004 ...$5.00.

represented in non-standard bases {ωi(x)}i=0,1,.... Exam-
ples include polynomials given in terms of Newton bases or
in terms of a basis of orthogonal polynomials. Such polyno-
mials arise naturally in linear control theory [4, Sec 5.3-5.4],
interpolation problems and rational interpolation problems.

Of course one can always convert polynomials in alternate
bases into polynomials in the standard power basis, do com-
putation of the GCD and then convert back to our alternate
bases. We wish to avoid such conversions to both reduce
computational cost and also to describe the intermediate
computations in terms of the original bases.

There has been considerable work on manipulation of poly-
nomials represented in alternate bases. Barnett made use
of companion matrices and their so-called congenial ma-
trix generalizations (colleague, comrade and confederate ma-
trices) in order to give procedures for computing GCDs
[3, 4] and later division [5] and Euclidean remainders [6].
Gemignani [20] used structured matrix techniques to im-
prove on complexity costs associated to Barnett’s algorithms.
Later Diaz-Toca and Gonzalez-Vega [16, 17] made use of
Bezoutian matrices in order to compute GCDs in alternate
bases.

Our goal is to compute GCDs in exact arithmetic environ-
ments, more specifically, in exact arithmetic environments
where coefficient growth is a concern. In the case of poly-
nomials represented in standard power basis effective GCD
algorithms include the well-known subresultant GCD [9, 14,
19, 21, 24] and modular GCD algorithms [10]. It is these
algorithms which we generalize in this paper.

Computation in exact environments gives additional rea-
sons for avoiding conversion to standard power basis. For
example, conversion can convert a polynomial coming from a
simple computational domain (say with coefficients from an
integral domain such as the integers) into one having coef-
ficients from an algebraically more involved domain (for ex-
ample the quotient field of the domain). This has a negative
effect on fraction-free GCD methods such as the subresul-
tant algorithm unless coefficient GCD operations are used
to first remove the contents. In addition, conversion may
introduce unnecessary coefficient growth. For example, in a
Newtonian basis converting the input polynomials will re-
quire multiplying most of the interpolation points together.
In the case of modular computation homomorphisms which
are lucky (i.e. reduce to correct degrees of GCDs) in alter-
nate bases may be unlucky homomorphisms in the standard
power basis.

Our approach is to make use of structured linear systems,
replacing Sylvester matrices by striped Krylov matrices. In

the case of fraction-free arithmetic we do structured fraction-
free elimination as done in the FFFG algorithm of [7]. Our
modular procedures make use of the generalized subresul-
tant procedure to determine unlucky homomorphisms and
to give proper stopping criterion. Although linear algebra
and subresultant algorithms are often less efficient than the
modular counterparts, they often form a basis on which more
efficient algorithms are developed.

The remainder of the paper is organized as follows. In the
next section we introduce our basis along with the diophan-
tine equations that are solved in GCD problems. Section 3
gives a linear algebraic formulation to the GCD problems
with striped Krylov matrices as a matrix of coefficients of
our linear system. Section 4 gives an algorithm for fraction-
free computation which is based on the FFFG algorithm of
[7] while section 5 gives a generalization of subresultants and
the subresultant algorithm. Section 6 looks at modular com-
putation including unlucky homomorphisms, normalization,
and termination. The paper ends with a conclusion and
topics for future research.

2. DIOPHANTINE EQUATIONS

Our approach can be informally described as follows. Let
f1(x) and f2(x) be two polynomials in a specific alternate
basis. We look to compute a sequence of polynomial pairs
ui(z) and vi(z) such that

ui(z) · f1(x) + vi(z) · f2(x) = ri(x) (1)

with ui(z) and vi(z) polynomials in the standard power basis
in a special variable z. Here ri(x) is a polynomial given in an
alternate basis form and has decreasing degree as i increases.
The notion of using polynomials in special elements is taken
from the approach used in [8].

More formally, let D be an integral domain with F its
quotient field. Let V be an infinite dimensional vector space
over F having a basis (ωi)i=0,1,... with (ci)i=0,1,... its dual
basis (i.e. a set of linear functionals on V satisfying ci(ωj) =
δi,j). Thus every element f of V can be written as

f = f0 · ω0 + f1 · ω1 + f2 · ω2 + · · · (2)

with ci(f) = fi, the i-th coefficient of f in the chosen basis.
We define the V-degree of a nontrivial element f of V in the
obvious way by

degV(f) = n iff cn(f) 6= 0 and ci(f) = 0 for all i > n.

We assume that we have a special element z that acts on
V via a special multiplication rule

ci(z · f) = ci,i−1 · ci−1(f) + ci,i · ci(f) + ci,i+1 · ci+1(f), (3)

with ci,j ∈ D and ci,i+1 6= 0. We also define ci,j = 0 if
j 6∈ {i − 1, i, i + 1}. This special rule can be viewed as a
type of Leibniz chain rule. The special rule allows us to
define a multiplication p(z) · f for any polynomial p ∈ F[z]
and f ∈ V, making V an infinite dimensional module over
F[z]. Note that this special rule is an extension of that used
in [8] (where ci,i+1 = 0). This extension is important since
it allows us to include polynomials represented in terms of
orthogonal polynomial bases.

Example 2.1. Let V be the polynomial ring F[x] with ba-
sis (xi)i=0,1,... and let ci,j = δi−1,j . Then the special multi-
plication rule is simply the standard multiplication by x.

Example 2.2. Let V be the space of all formal Newton
series in x with respect to the given knots x0, x1, ... with ba-
sis elements ωi =

Qi−1
j=0(x− xj). Then ci is the i-th divided

difference [x0, . . . , xi]. It is easy to verify that for these lin-
ear functionals the special multiplication rule (3) holds, with
ci,j = δi,j · xi + δi−1,j , i > 0, and c0,0 = x0.

In all the previous examples we have ci,i+1 = 0 for all i.
In the following we give an important example where this is
not the case.

Example 2.3 (Orthogonal Polynomials). Suppose
we choose the set of Chebyshev polynomials Ti(x) for i =
0, 1, . . . as a basis for V = F[x]. Then z = 2x is a special
element with a rule given by [1]

z · Ti(x) = Ti−1(x) + Ti+1(x). (4)

Similarly, if the basis consists of generalized Laguerre poly-

nomials L
(α)
i (x) then z = x is a special element with the

rule

z·L
(α)
i (x) = −(i+α)L

(α)
i−1(x)+(2i+α+1)L

(α)
i (x)−(i+1)L

(α)
i+1(x).
(5)

In general all the well known orthogonal polynomials {Pi(x)}
have special rules with a special element z = ax+ b for some
constants a, b given by

z ·Pi(x) = ci+1,i ·Pi+1(x)+ ci,i ·Pi(x)+ ci−1,i ·Pi−1(x) (6)

with ci,j ∈ D and with ci+1,i, ci−1,i 6= 0.

We make the following assumptions on V and the basis
(ωu):

1. V = D[x];

2. degx ωi = i, so that the V-degree is simply the stan-
dard degree;

3. z = ax + b for some a, b ∈ F.

These assumptions are satisfied by the previous examples.
To simplify notations, we will use deg to denote either V-
degree or the standard degree. With these assumptions, one
can see that the property deg(z · f) = deg(f) + 1 holds.

Remark 2.4. We summarize a number of common choices
of basis in Table 1, including well known classical orthogonal
polynomials as well as some discrete orthogonal polynomials.
We include the corresponding coefficients ci,j for the three
term recurrences [1]. Other bases include the Moak polyno-
mials and the Kravchouk polynomials. Note that ci,i−1 = 1
in many cases. Although the coefficients for Legendre and
ultraspherical polynomials are fractions if D = Z, we can
still consider them in our framework if D = F[t].

In this paper we will study the following linear diophan-
tine problem.

Definition 2.5 (Linear Diophantine Problem). Let
f1(x), f2(x) ∈ V, τ be a positive integer and (nu, nv) be de-
gree bounds. Determine polynomials u(z) and v(z) in z, with
degz u(z) ≤ nu and degz v(z) ≤ nv, such that

deg(u(z) · f1(x) + v(z) · f2(x)) < τ. (7)

In this case, [u(z), v(z)] will be referred to as a diophantine
solution of type (τ, nu, nv).

Table 1: Common polynomial bases.
Basis ωi(x) z ci,i+1 ci,i ci,i−1

Standard xi x 0 0 1

Newton
Qi−1

j=0(x − xj) x 0 xi 1

Chebyshev Ti(x) 2x 1 0 1
Chebyshev Ui(x) 2x 1 0 1

Shifted Chebyshev T ∗
i (x) 4x − 2 1 0 1

Shifted Chebyshev U∗
i (x) 4x − 2 1 0 1

Hermite Hi(x) 2x 2i + 2 0 1

Generalized Laguerre L
(α)
i (x) x −i − α − 1 2i + α + 1 −i

Legendre Pi(x) x i+1
2i+3

0 i
2i−1

Ultraspherical C
(α)
i (x) 2x i+2α

i+α+1
0 i

i+α−1
Meixner mi(x; a, b) (b − 1)x (i + 1)(i + a) −i − bi − ab b
Charlier ci(x; a) x −i − 1 i + a −a

3. ASSOCIATED LINEAR SYSTEMS

Let us have a closer look at the underlying system of lin-
ear equations that results from a diophantine equation of
the form (7). Notice first that we may rewrite the spe-
cial multiplication rule (3) in terms of linear algebra. Let
Cσ = (ci,j)i,j=σ−1,...,0 (σ ≥ 0). Furthermore, for each f ∈ V
and nonnegative integer σ we associate a vector of coeffi-
cients

Fσ = [cσ−1(f), . . . , c0(f)]T . (8)

Note that we begin our row enumeration with index σ−1 to-
ward 0. Provided that deg f < σ, the special multiplication
rule can be interpreted in matrix form as

Cσ · Fσ = [cσ−1(z · f), . . . , c0(z · f)]T (9)

and more generally

p(Cσ) · Fσ = [cσ−1(p(z) · f), . . . , c0(p(z) · f)]T (10)

for any polynomial p(z) ∈ F[z] and for any nonnegative in-
teger σ ≥ deg f + degz p(z). We now give a generalization
of the Sylvester matrix which allows us to formulate (7) as
a linear system of equations.

Definition 3.1. Let ni = deg fi(x), i = 1, 2. The striped
Krylov matrix of f1(x) and f2(x) is the matrix

K(f1(x), f2(x))

= [Cn2−1
σ · F1,σ, · · · ,F1,σ,Cn1−1

σ · F2,σ, · · · ,F2,σ],
(11)

where σ = n1 + n2. When the context is clear, we write
K = K(f1(x), f2(x)). We also define the matrix Km,n to be
the matrix

Km,n = [Cm
σ · F1,σ, · · · ,F1,σ, Cn

σ · F2,σ, · · · ,F2,σ], (12)

Kτ
m,n to be the matrix consisting of the rows indexed by σ−

1, . . . , τ in Km,n, and Km,n,τ to be the matrix consisting of
rows τ − 1, . . . , 0.

When the matrix Cσ is defined as in Example 2.1, the striped
Krylov matrix is simply the well-known Sylvester matrix.

The linear diophantine problem (7) can now be stated as
a linear algebra problem:

K
τ
nu,nv

· [unu , · · · , u0, vnv , · · · v0]
T = 0. (13)

Finally, we extend the definition of the determinant poly-
nomial of a matrix to our framework.

Definition 3.2. Let M be an ℓ × k matrix with k ≤ ℓ.
The determinant polynomial of M is

detpol(M) = det(M(ℓ−k)) · ωℓ−k + · · ·+ det(M(0)) · ω0,

where M(j) is the submatrix of M consisting of the first k−1
rows and row j (indexed from ℓ− 1 to 0).

Let fi(x) ∈ V (1 ≤ i ≤ m). We also define the determi-
nant polynomial

detpol(f1(x), . . . , fm(x)) = detpol([F1,σ, · · · ,Fm,σ])

where σ = 1 + max1≤i≤m deg fi(x).

When ωi = xi, this definition is identical to the usual def-
inition of determinant polynomial [24]. The determinant
polynomial represents the coefficients in the last nonzero
column if one performs fraction-free Gaussian elimination
on the matrix. The determinant polynomial of Km,n gives
the polynomial u(z) · f1(x) + v(z) · f2(z) associated with a
diophantine solution [u(z), v(z)] of type (τ, m, n) for some
bound τ .

4. FRACTION-FREE COMPUTATION

From the assumptions made in the previous section, it is
possible to treat the polynomials in the diophantine solu-
tion as polynomials in the indeterminate x (since the set
{zi}i=0,1,... is a polynomial basis of F[x]). This in turn al-
lows a number of well-known facts on the Sylvester matrix
(and its submatrices) to be easily extended to striped Krylov
matrices. In particular, the following fact is used to develop
a fraction-free algorithm in this section (see, for example,
[3, 17, 19]).

Theorem 4.1. Let n1 = deg f1(x), n2 = deg f2(x) with
n1 ≥ n2. If d = deg gcd(f1(x), f2(x)), then rank K = n1 +
n2 − d. The coefficients of a GCD of f1(x) and f2(x) can
be obtained by performing Gaussian elimination on K and
selecting the coefficients of the last nonzero column.

Our goal is to perform fraction-free Gaussian elimina-
tion [2] on K without explicitly constructing the matrix.
A similar technique was used in [8] to perform fraction-free
computation of the so-called order basis, which represents
elimination on low-order coefficients. By taking the recip-
rocal of polynomials in the standard power basis, the co-
efficients are reversed and a fraction-free algorithm for the
polynomial GCD is obtained. However, the same technique

cannot be used here because one cannot easily reverse the
coefficients in alternate bases.

In our case, we perform operations to eliminate the lead-
ing coefficients of the polynomials fi(x), so that the opera-
tions correspond to those performed by fraction-free Gaus-
sian elimination on Km,n,τ for increasing values of m and
n. Starting with (m, n, τ) = (0, n1−n2, n1 +1), we perform
fraction-free Gaussian elimination on the columns of Km,n,τ

by keeping only the last column of each stripe. We denote
these two intermediate results as r1(x) and r2(x).

We start by setting r1(x) = f1(x) and r2(x) = zn1−n2 ·
f2(x). We also keep track of pi(z), qi(z) such that

pi(z) · f1(x) + qi(z) · f2(x) = ri(x). (14)

Thus, p1(z) = 1, q2(z) = zn1−n2 , and p2(z) = q1(z) = 0. At
each step, we choose one of the polynomials, say rπ(x), as
a pivot to eliminate the leading coefficient of the other. If
the non-pivot polynomial becomes identically zero after this
step, then rπ(x) is a GCD of f1(x) and f2(x). Otherwise, we
must consider the next column in stripe π of the underlying
striped Krylov matrix. Assuming that z divides pπ(z) and
qπ(z), this column can be obtained from z−1 ·rπ(x) followed
by appropriate adjustment to obtain the appropriate scalar
multiple. On the other hand, if either pπ(z) or qπ(z) has a
nonzero constant coefficient, the underlying striped Krylov
matrix must be expanded implicitly by multiplying all in-
termediate results by z and adjusting both r1(x) and r2(x)
appropriately to ensure that their coefficients are the same
as those obtained by fraction-free Gaussian elimination on
the expanded striped Krylov matrix. The problem is then
reduced to the previous case.

Let us first state and prove some key results required to
give our fraction-free algorithm. A key step in the new
fraction-free algorithm described above is the expansion of
the striped Krylov matrix. Since the intermediate results
r1(x) and r2(x) are obtained from fraction-free Gaussian
elimination, it follows that they can be represented as de-
terminant polynomials of submatrices of Km,n, at least up
to sign. For convenience, we define

Cj
i =

j
Y

t=i

ct,t−1 (15)

which are quantities occurring frequently in our expressions.
The following theorem describes the relationship needed to
adjust the coefficients after multiplying the results by z.

Theorem 4.2. Let ni = deg fi(x), i = 1, . . . , m, and n =
1 + max1≤i≤m ni. If m < n, then

detpol(z · f1(x), . . . , z · fm(x))

= Cn
n−m+2 · z · detpol(f1(x), . . . , fm(x)). (16)

Proof. For arbitrary σ ∈ N, let Mσ = [F1,σ, . . . , Fm,σ].
Then detpol(Mn) = detpol(f1(x), . . . , fm(x)), and

detpol(z · f1(x), . . . , z · fm(x)) = detpol(Cn+1 ·Mn+1).

Let C be Cn+1 with the first column removed. Since the first
row of Mn+1 is zero, it follows that detpol(Cn+1 ·Mn+1) =
detpol(C ·Mn). We have

detpol(C ·Mn) =

n+1−m
X

i=0

det((C ·Mn)(i)) · ωi, (17)

and

z · detpol(Mn) = z ·
n−m
X

i=0

det(M(i)
n) · ωi

=
n+1−m
X

i=0

i+1
X

t=i−1

ci,t det(M(t)
n)

!

· ωi. (18)

Since determinants are multi-linear,
Pi+1

t=i−1 ci,t det(M
(t)
n)

can be written as the determinant of a single matrix M′

whose last row coincides with the last row of (C ·Mn)(i)

while the remaining rows are the same as those of Mn. Let
C′ be the matrix obtained by taking rows n, . . . , n−m+2 of
C and adding the row [0, . . . , 1]. Then C′ ·M′ = (C ·Mn)(i),
and hence

det((C ·Mn)(i)) = det(C′) · det(M′)

= Cn
n−m+2 ·

i+1
X

t=i−1

ci,t det(M(t)
n). (19)

The last equality follows from the fact that C is lower trian-
gular with diagonal entries ct,t−1 (t = n, . . . , 0) as ci,j = 0
if j < i− 1. The equality (16) now follows from (17), (18),
and (19).

Next, we give a result related to the correctness of our
termination criteria.

Theorem 4.3. Let k be the largest value such that

rank Kn2−1−k,n1−1−k < n1 + n2 − 2k (0 ≤ k ≤ n2 − 1).

Then the last nonzero column resulting from applying Gaus-
sian elimination on Kn2−1−k,n1−1−k gives a GCD of f1(x)
and f2(x). If no such k exists, then gcd(f1(x), f2(x)) = 1.

Proof. If k = 0, the result is immediate from Theo-
rem 4.1. On the other hand, if k > 0, consider the ma-
trix Kn2−1−k,n1−1−k(zk · f1(x), zk · f2(x)). Since the re-
sults of performing fraction-free Gaussian elimination on a
matrix can be represented as determinant polynomials of
its submatrices, Theorem 4.2 implies that the results ob-
tained from Kn2−1−k,n1−1−k(zk · f1(x), zk · f2(x)) are the
same as those obtained from Kn2−1−k,n1−1−k(f1(x), f2(x))
up to a nonzero multiplicative constant. In particular, a col-
umn is zero in the reduced Kn2−1−k,n1−1−k(zk · f1(x), zk ·
f2(x)) if and only if the corresponding column is zero in the
reduced Kn2−1−k,n1−1−k(f1(x), f2(x)). Now, the striped
Krylov matrix K(f1(x), f2(x)) can be constructed by com-
bining Kn2−1−k,n1−1−k(zk · f1(x), zk · f2(x)) and
Kn2−1−k,n1−1−k(f1(x), f2(x)) (and removing duplicated
columns). Therefore, the last nonzero column in the reduced
K(f1(x), f2(x)) is the same as the last nonzero column in
the reduced Kn2−1−k,n1−1−k(f1(x), f2(x)) up to a nonzero
multiplicative constant. The result now follows from Theo-
rem 4.1.

If no such k exists, then K(f1(x), f2(x)) must have full
rank. It follows from Theorem 4.1 that deg gcd(f1(x), f2(x)) =
0.

The last ingredient relates to the choice of pivot. We keep
track of a vector µ = (µ1, µ2) such that µi is the number
of times ri(x) has been chosen as a pivot. If deg r1(x) 6=
deg r2(x), there is only one choice of π such that deg rπ(x) ≥

deg ri(x) for i = 1, 2. Otherwise, the choice of π should
satisfy

π =

(

1 −µ1 ≥ n1 − n2 − µ2,

2 otherwise.
(20)

This choice of pivots ensures that the underlying striped
Krylov matrix is of the form Kn2−1−k,n1−1−k if possible, so
that Theorem 4.3 can be applied. This is in fact identical
to the concept of following the “closest normal path” in the
Padé table [7, 8]. The well-known structure of the Padé
table also ensures that if deg gcd(f1(x), f2(x)) > 0, there
exists a k ≥ 0 satisfying the hypothesis of Theorem 4.3.

Algorithm 1 Fraction-free algorithm to compute GCD in
alternate basis.

Input: f1(x), f2(x) ∈ D[x].

Output: g(x) = gcd(f1(x), f2(x)) ∈ D[x].

[r1, p1, q1]← [f1, 1, 0]
[r2, p2, q2]← [zn1−n2 · f2, 0, zn1−n2]
[µ, s, d]← [(0, 0), 0, 1]

while r1 6= 0 and r2 6= 0 do

choose π according to (20)

if pπ(z) or qπ(z) has a nonzero constant coefficient
then

[ri, pi, qi]← Cn1+s+1
s+n1−µ1−µ2+2 · z · [ri, pi, qi], i = 1, 2

[d, s]←
ˆ

Cn1+s+1
s+n1−µ1−µ2+2 · d, s + 1

˜

end if

λi ← lcoeff(ri(x))
ρ← 3− π

γ =

(

coeff(q1(z), zn1−n2+s+1−µ2) π = 1,

coeff(p2(z), zs+1−µ1) π = 2.

[rρ, pρ, qρ]← (λπ · [rρ, pρ, qρ]− λρ · [rπ, pπ, qπ]) /d
[rπ, pπ, qπ]←

`

λπz−1 · [rπ, pπ, qπ]− γ · [rρ, pρ, qρ]
´

/d
[d, µπ]← [λπ, µπ + 1]

end while

g(x) = r1 if r1 6= 0, or r2 otherwise.

The complete algorithm is given in Algorithm 1. We note
that the division of z cannot introduce fractions (as the co-
factors pi(z), qi(z) have coefficients in D), and that it can be
performed in O(deg rπ(x)) operations because of (3). Also,
this algorithm can be easily modified to return the cofactors
u(z) and v(z) with

g(x) = u(z) · f1(x) + v(z) · f2(x).

As in Bareiss’s fraction-free Gaussian elimination algorithm,
the known divisor is simply the leading coefficient of the
pivot polynomial in the last step, except that adjustments
have to be made according to Theorem 4.2 when the un-
derlying matrix is expanded. The fact that no fractions are
introduced during the algorithm can be proved in the same
way as in the FFFG elimination algorithm. We refer the
reader to [7] for more details.

5. SUBRESULTANT ALGORITHM FOR
SPECIAL CASES

In this section, we derive an analogue of subresultants,
polynomial remainder sequences (PRS), and the fundamen-
tal theorem of PRS. Our development closely follows the
previous works [9, 14, 18, 19, 21, 24, 25].

Let R1(x), . . . , Rk(x) be a pseudo-remainder sequence de-
fined by

αiRi−1(x) = Qi(z) · Ri(x) + βiRi+1(x), 1 < i ≤ k,

αkRk−1(x) = Qk(z) · Rk(x).

Let ni = deg Ri(x), δi = ni−1 − ni, γi = δi + δi+1, and
ri = lcoeff(Ri(x)). In order to perform pseudo-division so
that each Qi(z) and Ri+1(x) have coefficients in D, we need
to set

αi =

δi
Y

m=1

Cni+m
ni+1

!

rδi+1
i =

 ni−1
Y

t=ni+1

c
ni−1+1−t

t,t−1

!

rδi+1
i .

(21)
As in classical subresultant theory, the pseudo-remainder
can be represented as a determinant polynomial:

prem(Ri−1(x), Ri(x))

= (−1)δi+1detpol(Ri−1(x), zδi ·Ri(x), · · · , Ri(x)). (22)

Given two polynomials A(x) and B(x) of degrees na and nb,
we also define the j-th subresultant in an analogous manner:

S(j, A(x),B(x))

=detpol(znb−j−1A(x), . . . , A(x), zna−j−1B(x), . . . , B(x)).
(23)

In the generalization of the subresultant theory to Ore
polynomials, Li [23] noted that a key fact needed in the
subresultant theory is that

prem(xk ·A(x), xk ·B(x)) = xk · prem(A(x),B(x)).

While this is not true in the Ore polynomial case, Li showed
that the difference between the two quantities can be ex-
pressed as a linear combination of other columns used in
defining the subresultant. In our case, the difference be-
tween the quantities is simply a multiplicative constant.

Corollary 5.1. Suppose that A(x) and B(x) are poly-
nomials of degrees na and nb, respectively, with na ≥ nb.
Then

prem(zk ·A(x), zk · B(x))

=

k
Y

m=1

Cna+m
nb+m

!

zk · prem(A(x),B(x)). (24)

Proof. The result follows immediately from the deter-
minant polynomial representation of the pseudo-remainders
and Theorem 4.2 by induction on k.

With this result, we are able to express the relationship
between subresultants and the elements of a PRS. We now
state a number of results that are analogous to those for
the classical subresultant theory. The proofs are omitted as
they are similar but tedious. See, for example, [19, Section
7.3].

Lemma 5.2. Suppose that A(x) = Q(z) · B(x) + R(x)
where deg R(x) = k (na ≥ nb > k). Let b = lcoeff(B(x))
and r = lcoeff(R(x)). Then

S(j, A(x), B(x)) = (−1)(na−j)(nb−j)

0

@

nb−j−1
Y

ℓ=1

ℓ
Y

m=1

C
na+m
nb+m

1

A ·

8

>

>

>

<

>

>

>

:

Ck−j,na−j−1,nb
· bna−kS(j, B(x), R(x)) 0 ≤ j < k

C1,na−k−1,nb
· C1,nb−k−1,k · bna−krnb−k−1R(x) j = k

C1,na−nb,nb
· bna−nb+1R(x) j = nb − 1

0 otherwise.

(25)

with Ci,j,k =
Qj

m=i Ck+m
k+1 .

Lemma 5.3.

S(j, Ri−1(x), Ri(x)) · α
ni−j
i =

(−1)(ni−1−j)(ni−j)
·

0

@

ni−j−1
Y

ℓ=1

ℓ
Y

m=1

C
ni−1+m

ni+m

1

A ·

8

>

>

>

<

>

>

>

:

Cni+1−j,ni−1−j−1,ni
· r

γi
i β

ni−j
i S(j, Ri(x), Ri+1(x)) 0 ≤ j ≤ ni+1

C1,γi−1,ni
· C1,δi+1−1,ni+1

· r
γi
i r

δi+1−1
i+1 β

δi+1

i Ri+1(x) j = ni+1

C1,δi,ni
· r

δi+1
i βiRi+1(x) j = ni − 1

0 otherwise.

(26)

Theorem 5.4 (Fundamental Theorem of PRS).

S(j,R1(x), R2(x)) =

8

>

<

>

:

ηiRi(x) j = ni−1 − 1 for some i ≤ k

τiRi(x) j = ni for some i ≤ k

0 otherwise

,

(27)
where

ηi = (−1)φir
1−δi
i−1

i−1
Y

p=1

2

4

0

@

np−ni−1
Y

ℓ=1

ℓ
Y

m=1

C
np−1+m

np+m

1

A ·

0

@

np−1−ni−1
Y

m=np+1−ni−1+1

C
np+m

np+1

1

A r
γp
p

„

βp

αp

«np−ni−1+1
3

5

τi = (−1)σir
δi−1
i

0

@

i−2
Y

p=1

np−ni−1
Y

ℓ=1

ℓ
Y

m=1

C
np−1+m

np+m+1

1

A

0

@

δi−1
Y

m=1

C
ni+m
ni+1

1

A ·

i−1
Y

p=1

2

4

0

@

np−1−ni−1
Y

m=np+1−ni

C
np+m

np+1

1

A

„

βp

αp

«np−ni

r
γp
p

3

5

φi =

i−1
X

p=1

(np − ni−1 + 1)(np−1 − ni−1 + 1)

σi =

i−1
X

p=1

(np − ni)(np−1 − ni).

The Fundamental Theorem of PRS shows how the elements
in a PRS are related to the subresultants, and is usually used
to show that a certain choice of αi and βi lead to polynomial
remainder sequences whose elements have coefficients in D.
However, the introduction of the factors of ct,t−1 makes it
difficult to choose αi and βi in such a way to make ηi = 1,
even when ct,t−1 = κ for some constant κ.

In the special case where ct,t−1 = 1 for all t > 0, how-
ever, the products of ct,t−1 can be ignored and we obtain

a Fundamental Theorem of PRS that is identical to that in
the classical subresultant theory. In this case, the choice of
αi and βi in the reduced and subresultant PRS [9, 14] can
be used without modification, except that pseudo-division
is performed in the alternate basis. This important special
case is applicable to a number of choices of polynomial basis
as shown in Remark 2.4.

Example 5.5. Let

f1(x) = T8(x) + T7(x) + 2 T6(x) − 2 T4(x) − T3(x) − 2 T2(x)

+ 2 T1(x) + T0(x),

f2(x) = 3 T6(x) + T5(x) + 2 T4(x) − T2(x) + 2 T1(x) + T0(x),

where Ti(x) are the Chebyshev polynomials. Applying the
subresultant algorithm directly in the given basis yields the
following PRS (for compactness, we simply give a list of
coefficients):

R1(x) = f1(x), R2(x) = f2(x)

R3(x) = [40, 98, 60, 92,−10,−14]

R4(x) = [596,−280, 584,−260,−28]

R5(x) = [−7920,−3064,−1224,−1984]

R6(x) = [16496,−125424, 1376]

R7(x) = [−2052544,−246944]

R8(x) = [6927616].

If we first convert f1(x) and f2(x) into the standard power
basis and apply the subresultant algorithm, we get the PRS:

R1(x) = [128, 64,−192,−112, 48, 52, 16,−2, 0]

R2(x) = [96, 16,−128,−20, 36, 7, 1]

R3(x) = [20971520, 25690112,−18350080, −19660800, 327680,

− 262144]

R4(x) = [− 39996882944, −9395240960, −30198988800,

4865392640, −134217728]

R5(x) = [17008070492160, 3289944948736, −12098928872832,

− 579820584960]

R6(x) = [283399122059264, −1077383956267008, −129879811031040]

R7(x) = [70524874828808192, 8484931231547392]

R8(x) = [238031073273970688].

In this case, we see clearly that performing the subresultant
directly in the alternate basis reduced unwanted coefficient
growth.

6. MODULAR ALGORITHMS

In this section, we describe a modular algorithm that is
an analogue to the standard power basis case [10]. In or-
der to obtain a modular algorithm, we must resolve three
issues: the detection of unlucky primes, normalization, and
termination.

We first examine the issue of the detection of unlucky
primes. Let φp be the modular reduction that maps polyno-
mials in Z[x] to Zp[x]. By Theorem 4.1, the greatest common
divisor of f1(x) and f2(x) can be obtained by performing
Gaussian elimination on K(f1(x), f2(x)). As long as

φp(K(f1(x), f2(x))) = K(φp(f1(x)), φp(f2(x))), (28)

then rank K(φp(f1(x)), φp(f2(x))) ≤ rank K(f1(x), f2(x)),
so that the degree of the GCD computed in Zp[x] may be
too large. In the case of the standard power basis, the prop-
erty (28) is guaranteed by ensuring that the leading coef-
ficients of f1(x) and f2(x) do not vanish under φp. In our
case, there is a possibility that φp(ct,t−1) = 0 for some t,
so that even if the leading coefficients of f1(x) and f2(x) do
not vanish, K(φp(f1(x)), φp(f2(x)) computed in Zp may not
have the correct structure. Thus, we further require that
φp

`

Cn1+n2−1
n2+1

´

6= 0. We summarize this below.

Theorem 6.1. Suppose that p does not divide any one of
lcoeff(f1(x)), lcoeff(f2(x)), or Cn1+n2−1

n2+1 . If g(x) =
gcd(f1(x), f2(x)) ∈ Z[x] and gp(x) = gcd(φp(f1(x)), φp(f2(x)))
∈ Zp[x], then deg gp(x) ≥ deg g(x).

We say that p is unlucky if it divides lcoeff(f1(x)), lcoeff(f2(x)),
or Cn1+n2−1

n2+1 , or if deg gp(x) > deg g(x). Notice that a prime
p can be lucky by our definition, yet unlucky if the GCD is
computed by first converting the polynomials to the stan-
dard power basis. For example, the leading coefficients of
Hermite polynomials are powers of 2, so that 2 is unlucky
if the polynomials are first converted to the standard power
basis. However, the same prime p may be lucky if we com-
pute a GCD without converting to the standard power basis
because of our choice of the special element z = 2x. In prac-
tice, unlucky primes occur infrequently.

For the issue of normalization of the images, let g(x) =
gcd(f1(x), f2(x)) in Z[x] with degree d. If we assume that
f1(x) and f2(x) are primitive, then Cn1

d+1 · lcoeff(g(x)) |
lcoeff(f1(x)) and Cn2

d+1 · lcoeff(g(x)) | lcoeff(f2(x)). Thus,
Cn1

d+1 · lcoeff(g(x)) is a common divisor of lcoeff(f1(x)) and
Cn1

n2+1 · lcoeff(f2(x)). Thus, once an image is computed in
Zp, we normalize its leading coefficient to be

gcd
`

lcoeff(f1(x)), Cn1

n2+1 · lcoeff(f2(x))
´

·
`

Cn1

d+1

´−1
mod p.

(29)
Note that this requires φp

`

Cn1

d+1

´

6= 0. Combined with the
conditions needed in Theorem 6.1, it follows that p must not
divide Cn1+n2−1

1 .
Finally, termination is straightforward since the GCD must

be a solution to the linear system of equations specified by
the striped Krylov matrix K, so the standard technique of
applying Hadamard’s inequality lead to a bound on the num-
ber of lucky primes needed. One may also use trial division
because the degree of the computed GCD cannot be too
small. It is therefore clear how to obtain a modular algo-
rithm that is analogous to that of Brown [10].

We also note that since our fraction-free algorithm is based
on the FFFG elimination algorithm, we can obtain another
modular algorithm that computes the cofactors as well, us-
ing techniques similar to those used in [12, 13]. In addition,
this algorithm is output-sensitive, so that the number of im-
ages needed depends on the size of the output and not on
the a priori Hadamard’s inequality. Output sensitivity is ob-
tained by examining the associated linear system [11]. We
refer the reader to the references for more details.

6.1 Conversion Cost

It is of interest to see whether it is better to perform the
Euclidean algorithm with polynomial division in alternate
basis or in the standard power basis with the added cost
of converting the input and the output between the two

bases. For simplicity, we assume that n = n1 = n2. We
also assume that the standard Euclidean algorithm is used
in both cases for a fair comparison, because our algorithms
are direct generalizations of the standard ones. We will limit
our attention to the case of bases consisting of orthogonal
polynomials, but the other cases are similar.

If we perform the modular algorithm in alternate basis,
there is no conversion cost. Thus, we concentrate on the di-
vision steps and count the number of operations in addition
to those needed in a standard polynomial division algorithm.
Each division step requires the computation of zj ·Ri(x) for
some j = 1, . . . , ni−1 − ni when dividing by Ri(x). If Rk(x)
is the last element of the PRS, then deg Rk(x) = nk = d. It
follows that during the Euclidean algorithm we would need
to compute z · Fi(x) for some Fi(x) with deg Fi(x) = i,
i = d, . . . , n−1. Now, the computation of zj ·Fi(x) requires
3i+2 multiplications and 2(i−1) additions in Zp. Summing
over i = d . . . , n− 1 gives a total of

n(3n + 1)/2− d(3d + 1)/2 multiplications

n(n− 3)− d(d− 3) additions.

Note that if ct,t−1 = 1, then the number of multiplications
becomes n2 − d2.

On the other hand, if we first convert the input polyno-
mials to standard power basis, it takes (n + 1)(n + 2) mul-
tiplications and n(n + 1) additions in Zp. The conversion
of the result back to alternate basis requires d + 1 divisions,
(d + 1)(d + 4)/2 multiplications, and (d + 1)(d + 2)/2 − 1
additions in Zp. Thus, the total conversion cost is

d + 1 divisions

(n + 1)(n + 2) + (d + 1)(d + 4)/2 multiplications

n(n + 1) + (d + 1)(d + 2)/2− 1 additions.

The effect of division is more difficult to analyze, but from
the above we see that if ct,t−1 = 1 then performing the
Euclidean algorithm directly without conversion is certainly
more effective with respect to all operations. This is ap-
plicable to a number of choices of polynomial basis (see Re-
mark 2.4). In the general case, the number of multiplications
in the two approaches depend on the relative size of n and
d. Generally if d is large then it is better to perform the
Euclidean algorithm in the alternate basis, while it is better
to perform the conversion if d is small. The crossover point
is at d ≈ n/2. Intuitively, if d is large then the number of
steps in the divisions is small, so the number of times one
has to compute z · Fi(x) is also small. Finally, we note that
in the case of Newton basis the number of multiplications
needed in the computation of z · Fi(x) is only i, so the to-
tal number of additional multiplications required to perform
the Euclidean algorithm without conversion is

n(n− 1)/2− d(d− 1)/2,

leading to a more significant improvement.

7. CONCLUSIONS

In this paper we have considered the computation of GCDs
of polynomials represented in non-standard power bases.
The computations are to be done without conversion into
the standard power basis and are meant for exact arithmetic
domains where coefficient growth is an issue. We have given

both fraction-free and modular algorithms for GCD compu-
tations.

There are a number of additional extensions for exact
computation of polynomials in non-standard bases which
we plan to pursue in the future. These include effective
computation of GCDs of more than two polynomials and
more generally matrix GCDs of matrices of polynomials. In
the latter computation the resulting answers are typically
required to be in matrix normal form. As such we plan
to investigate computation of normal forms for matrices of
polynomials in non-standard forms.

The alternate bases that we have given results for do not,
unfortunately include polynomials represented in terms of
Lagrange basis polynomials. Such a representation would in
effect allow for two polynomials to be represented in terms
of their values at certain interpolation points with the re-
sult being the values of the polynomial GCD at these same
values. Such a procedure does not follow from our approach
since we make use of the elimination of higher order coeffi-
cients. In the Lagrange basis case such elimination does not
result in a remainder sequence of reduced degrees. Indeed
elimination of higher order terms does not tell us anything
about the degree of the polynomial, a difficulty for our ap-
proach.

We currently do not take advantage of cases when a poly-
nomial has a sparse representation in a specific basis. It
would be interesting to see if our results can be applied to
“black box polynomials” as well [15, 22].

8. REFERENCES
[1] M. Abramowitz and I. Stegun. Handbook of

Mathematical Functions. Dover, 1974.

[2] E. Bareiss. Sylvester’s identity and multistep
integer-preserving Gaussian elimination. Math. Comp.,
22(103):565–578, 1968.

[3] S. Barnett. Greatest common divisors of several
polynomials. Proc. Cambridge Phil. Soc., 70:263–468,
1971.

[4] S. Barnett. Polynomial and Linear Control Systems.
Marcel-Dekker, 1983.

[5] S. Barnett. Division of generalized polynomials using
the comrade matrix. Linear Algebra and its
Applications, 60:159–175, 1984.

[6] S. Barnett. Euclidean remainders for generalized
polynomials. Linear Algebra and its Applications,
99:111–122, 1988.

[7] B. Beckermann and G. Labahn. Effective computation
of rational approximants and interpolants. Reliable
Computing, 6:365–390, 2000.

[8] B. Beckermann and G. Labahn. Fraction-free
computation of matrix rational interpolants and
matrix GCDs. SIAM J. Matrix Anal. Appl.,
22(1):114–144, 2000.

[9] W. Brown and J. Traub. On Euclid’s algorithm and
the theory of subresultants. J. ACM, 18(4):505–514,
1971.

[10] W. S. Brown. On Euclid’s algorithm and the
computation of polynomial greatest common divisors.
J. ACM, 18(4):478–504, 1971.

[11] S. Cabay. Exact solution of linear equations. In
Proceedings of the Second Symposium on Symbolic and
Algebraic Manipulation, pages 392–398, 1971.

[12] H. Cheng. Algorithms for Normal Forms for Matrices
of Polynomials and Ore Polynomials. PhD thesis,
University of Waterloo, 2003.

[13] H. Cheng and G. Labahn. Output-sensitive modular
algorithms for polynomial matrix normal forms.
Submitted to J. Symbolic Computation, 2004.

[14] G. E. Collins. Subresultants and reduced polynomial
remainder sequences. J. ACM, 14(1):128–142, 1967.

[15] A. Dı́az and E. Kaltofen. On computing greatest
common divisors with polynomials given by black
boxes for their evaluation. In Proc. 1995 Internat.
Symp. Symbolic Algebraic Comput. (ISSAC’95), pages
232–239, 1995.

[16] G.M. Diaz-Toca and L. Gonzalez-Vega. Square-free
decompositioon of univariate polynomials depending
on a parameter. application to the inteergration of
parametric rational functions. J. Symbolic
Computation, 32(3):191–209, 2001.

[17] G.M. Diaz-Toca and L. Gonzalez-Vega. Barnett’s
theorems about the greatest common divisor of several
univariate polynomials through bezout-like matrices.
J. Symbolic Computation, 34(1):59–81, 2002.

[18] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 1999.

[19] K. O. Geddes, S. R. Czapor, and G. Labahn.
Algorithms for computer algebra. Kluwer Academic
Publishers, 1992.

[20] L. Gemignani. Manipulating polynomials in
generalized form. 1996.

[21] W. Habicht. Eine Verallgemeinerung des Sturmschen
Wurzelzählverfahrens. Commentarii Mathematici
Helvetici, 21:99–116, 1948.

[22] E. Kaltofen and B. Trager. Computing with
polynomials given by black boxes for their evaluations:
Greatest common divisors, factorization, separation of
numerators and denominators. J. Symbolic
Computation, 9(3):301–320, 1990.

[23] Z. Li. A Subresultant Theory for Linear Differential,
Linear Difference and Ore Polynomials, with
Applications. PhD thesis, Johannes Kepler University,
1996.

[24] R. Loos. Generalized polynomial remainder sequences.
In Computer Algebra: Symbolic and Algebraic
Computation, pages 115–137. Springer-Verlag, 1982.

[25] B. Mishra. Algorithmic Algebra. Springer-Verlag, 1993.

