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Abstract—In this paper we examine the problem of bit
allocation in lossy image set compression. Instead of treating
each image independently, image set compression algorithms
examine the relationships among similar images and remove
inter-image redundancies to improve compression performance.
These algorithms map the original image set into a number of
prediction residual images to be coded. Typically the same bit rate
is used to encode each residual. We show that a rate-distortion
approach based on Lagrangian optimization can lead to further
improvement in image set compression algorithms.

Index Terms—Image set compression, bit allocation.

I. INTRODUCTION

Due to the need to store large volumes of images, a number
of different strategies to reduce inter-image redundancies and
compress sets of similar images have been proposed in the
literature [2], [4], [14], [15], [16], [17], [20], [21], [22], [25],
[26], [27], [28]. Many of these techniques perform well on
image sets with special types of inter-image relationships, but
are less effective on others. It is often not clear a priori which
method will work best for a particular image set.

In the majority of existing image set compression algo-
rithms, some form of prediction or compensation is used to
form a residual image for every image in the set. Each of these
residual images are then compressed. Different algorithms use
various strategies in determining which reference image (or
images) to use as the basis for prediction of each individual
image, as well as in determining how the prediction is per-
formed. Each residual image is typically compressed with the
same compression setting (e.g. quality factor, bit rate, etc.).

In this paper, we examine the bit allocation problem in
image set compression. Intuitively, if a residual image is easy
to compress (e.g. all zero), we do not need to allocate many
bits to it. Instead, these extra bits can be allocated to other
residual images in order to reduce the overall distortion of
the entire decompressed image set. Bit allocation strategies
have been studied extensively in image compression and video
compression [23], but has so far not been examined for image
set compression. We will study the bit allocation for the
Centroid image set compression algorithm [15], [17], the MST
and the MSTa algorithm [8], [9], [10].

The paper is organized as follows. In Section II, we review
the image set compression algorithms studied in this paper.
Section III examines the bit allocation problem in these
algorithms and describes our approach. Section IV shows the
experimental results, and concluding remarks are given in
Section V.

II. IMAGE SET COMPRESSION METHODS

Data compression is achieved by removing redundancy in
the given data. Typical image compression algorithms attempt
to remove three types of redundancy—interpixel, psychovi-
sual, coding redundancy [12]. These redundancies are reduced
by a mapper, a quantizer and an entropy coder. For sets
of similar images, additional redundancy exists among the
images. A set mapper is first applied to reduce this inter-image
redundancy [15], [17]. The output of the set mapper is a set of
images that can be processed by ordinary image compression
algorithms to reduce the remaining interpixel, psychovisual,
and coding redundancy.

A. Set Mapping

The centroid method of Karadimitriou and Tyler [15], [17]
first computes a centroid (average) image in the set. The set
mapper then predicts each image in the set by subtracting the
centroid image. If all images are very similar, the prediction
residual images contain mostly zeros and can be compressed
very efficiently. Although the centroid method was originally
designed for lossless compression, it can be adapted for lossy
compression as well [8], [9], [10].

A different approach to the set mapping problem is based
on minimum spanning trees [8], [9], [10]. In this approach,
each image is represented as a vertex in a graph. Between
every pair of vertices u and v, there is an edge whose weight
represents the cost to encode image v when u is known (or
vice versa). To compress the entire image set, a minimum
spanning tree (MST) is computed from this graph. A special
zero root image is used as the first reference image. The
algorithm repeatedly chooses a target image that is connected
to another reference image that has already been coded in
the MST. To avoid error propagation, the prediction is based
on the decompressed reference image. This is done until all
images have been compressed. Decompression of the image
proceeds from the root, and reconstructs the images in the
same order. For certain image sets, it is beneficial to add the
average image to the image set before the algorithm is applied
(called the MSTA approach). When images in the set are not
all very similar but there is significant similarity between pairs
of images, it has been shown that MST-based set compression
algorithms perform very well [8], [10]. It can also be seen that
the centroid method can be viewed as a type of spanning tree
method.



For specific types of images, special set mapping methods
may be more effective. For example, for satellite images with
large overlap of geographic areas, adjustment for seasonal
variations is needed to obtain effective prediction [25]. For
multi-view images inter-view dependencies can be used to
obtain better predictions [4], [18]. There are also special
techniques for stereo images [6], [24].

B. Distortion Measures

An important aspect in lossy image compression is the
quality of the decompressed images. The quality can be
measured in a number of ways, both objectively and subjec-
tively [29]. We will focus on objective distortion measures in
this paper. These measures compare two input images and give
a numerical value indicating how different the two images are.

We will examine two distortion measures in our study. The
first is the well-known Root-Mean-Square-Error (RMSE) mea-
sure [12]. It is easily computable and often used to evaluate
image quality, but it is well-known that it does not always
correspond to human perception. The Structural Similarity
(SSIM) index is a measure that appears to correspond to
human evaluation better [30]. The SSIM index cannot be used
directly in MST-based algorithms because it is not a metric.
However, there are metrics that can be formulated based on
the SSIM index [3], and this will be used in our study. In
particular, we will use the D2 metric given in [3]. We will
refer to this metric as the “SSIM measure.”

In lossy image compression algorithms, distortion measures
are typically used to evaluate the quality of the decompressed
images when images are compressed at a specific bit rate. In
the spanning tree based set compression algorithms, distortion
measures are also used as the edge weights in the graph—
it estimates the cost to encode one image given the other.
Intuitively, it is easy to compress one image given another
very similar image. When the distortion measure used for
edge weights is a metric (in particular, satisfies the triangle
inequality), the spanning tree based algorithms are near-
optimal over all algorithms based on pairwise prediction [8],
[10]. This result requires that the same distortion measure be
used for both edge weights and quality evaluation. Thus, this
will be the case for the remainder of this paper.

III. BIT ALLOCATION

We wish to minimize the average distortion between each
original image and the decompressed image in the set at a
given bit rate. This can be considered to be the best result
possible when the bit rate is fixed. Equivalently, we may
minimize the sum of the distortions between original images
and the corresponding decompressed images in the set. This
is achieved by varying the bit allocation for coding each
prediction residual image to arrive at the optimal distortion.
Intuitively, if a particular prediction residual is close to zero,
the residual can be compressed at a lower bit rate without
greatly affecting the distortion of that image. Other residuals
can then be coded at a higher bit rate to minimize the sum of
the distortions using the same overall bit rate.

More formally, let S = {I1, . . . , In} be a set of n prediction
residual images to be coded. If image I is compressed using b
bits, the distortion between I and the decompressed image is
denoted D(I, b). The function D(I, b) as b varies is also called
the rate-distortion curve of image I . Let bi be the number of
bits used to compress image Ii. We want to solve the problem:

minimize
n∑

i=1

D(Ii, bi), (1)

subject to
n∑

i=1

bi ≤ b,

for some overall bit budget b. The distortion measure in our
study is either the RMSE or the SSIM measure (Section II).
The common case of equal bit allocation is realized when
bi = b/n. We call the solution to (1) the rate-distortion based
bit allocation. There are a number of methods to obtain the
solution of the optimization problem (1) [23]. A particularly
common method is Lagrangian optimization [5].

We assume that the compression of each prediction residual
is independent of each other, which is in fact false in spanning
tree based image set compression algorithms because each
image is predicted from a previously decompressed image.
However, this assumption is commonly made to reduce com-
putational complexity [23]. Let λ ≥ 0. For each residual image
to be compressed, we minimize the quantity

D(Ii, bi) + λbi. (2)

The bit rate bi that minimizes (2) is the point on the rate-
distortion curve D(Ii, bi) having slope −λ. Finding bi in this
way for each i gives the optimal bit allocation to (1) when the
overall bit budget is b =

∑n
i=1 bi. Unfortunately, the overall

bit budget is not known a priori. To solve (1) for a specific
value of b, one may use binary search on λ to obtain the final
result. For example, if the resulting overall bit budget is too
high, we may consider (2) again with a larger value of λ.

In order to solve this optimization problem, we must
have access to the rate-distortion curve D(Ii, b) for each
residual image to be coded. The rate-distortion curve would
also depend on the choice of distortion measure used. An
approximation of the rate-distortion curve can be computed
by compressing each image at a number of different bit
rates and computing the distortion between the original image
and the decompressed image. These curves are computed
independently of each other, ignoring any dependencies that
may be imposed by the spanning tree based compression
algorithms.

IV. EXPERIMENTAL RESULTS

A. Image Sets

We apply our approach on four image sets that have been
used in previous works to evaluate image set compression
algorithms [8], [10], [21], [22]. Figure 1 shows a typical image
from the four image sets. The Joe set is another webcam image
set taken from a camera directed at a beach in Victoria, British
Columbia [13]. The Pig set is composed of ultrasound images



TABLE I. IMPROVEMENT IN RMSE USING RATE-
DISTORTION BASED BIT ALLOCATION OVER EQUAL
ALLOCATION. JPEG2000 WAS USED TO COMPRESS
PREDICTION RESIDUAL IMAGES.

RMSE
Centroid MST MSTa

Joe avg (%) 1.45 1.90 1.87
best (%) 7.34 4.09 4.31

Pig avg (%) -0.37 0.50 -0.89
best (%) 11.25 2.78 1.43

Galway avg (%) 2.46 1.14 0.34
best (%) 9.18 4.32 7.03

GOES avg (%) 0.83 2.41 2.66
best (%) 3.46 5.39 5.27

of pig rib cages. The Galway set contains webcam images from
a street in Galway City, Ireland [7]. Satellite images from the
GOES project [11] make up the GOES set. All the images
were 8-bit gray scale images.

(a) Joe (162 images) (b) Pig (304 images)

(c) Galway (28 images) (d) GOES (128 images)

Figure 1. Typical images from each set.

B. Results

As in the previous studies, we use both JPEG2000 [1] and
wavelet packet compression [19] to compress the prediction
residual images. The experimental results are summarized in
Tables I, II, III, and IV. The tables show the improvement
in distortion using rate-distortion based bit allocation over
equal allocation, when the overall bit budget are the same
in both cases. The image sets are compressed using a number
of different overall bit rates, and the average and the best
improvement are shown. The bit rates tested were 0.08, 0.12,
0.16, . . . , 0.96 bpp.

Overall, we see important improvements using the our
rate-distortion bit allocation method with most image sets
across different combinations of distortion measures and image
compression algorithms. There is less improvement in the Pig
set than the other sets. That is due to the fact that most
images in the Pig set are very similar to each other. As a

TABLE II. IMPROVEMENT IN SSIM USING RATE-
DISTORTION BASED BIT ALLOCATION OVER EQUAL
ALLOCATION. JPEG2000 WAS USED TO COMPRESS
PREDICTION RESIDUAL IMAGES.

SSIM
Centroid MST MSTa

Joe avg (%) -0.97 0.59 0.53
best (%) 4.84 4.83 4.80

Pig avg (%) 0.73 1.18 1.04
best (%) 5.02 3.84 2.93

Galway avg (%) 1.86 0.75 0.83
best (%) 7.00 3.50 4.74

GOES avg (%) 0.22 1.75 1.73
best (%) 4.38 4.69 4.60

TABLE III. IMPROVEMENT IN RMSE USING RATE-
DISTORTION BASED BIT ALLOCATION OVER EQUAL ALLO-
CATION. WAVELET PACKET COMPRESSION WAS USED TO
COMPRESS PREDICTION RESIDUAL IMAGES.

RMSE
Centroid MST MSTa

Joe avg (%) -0.79 0.45 0.23
best (%) 3.08 1.84 2.16

Pig avg (%) -1.69 -0.31 -1.72
best (%) 1.96 1.68 0.90

Galway avg (%) 1.97 2.03 2.51
best (%) 9.27 6.85 11.57

GOES avg (%) 2.26 4.28 4.98
best (%) 13.11 8.36 8.15

result, the prediction residual images all have similar rate-
distortion curves, so that equal bit allocation already achieves
very good results. In the other image sets, the images actually
form clusters so some residual images will be easier to code
than others (e.g. webcam pictures taken at similar time of the
day). It is also often the case that the centroid method benefits
the most from our rate-distortion bit allocation method. This is
expected since it is important to represent the centroid image
more accurately as all other images are predicted from it.
Finally, in most cases the improvement is more significant
when the overall bit rate is lower—the allocation of each
bit will influence the overall distortion more heavily when
fewer bits are available. While the average improvement given
in these results are not very significant, our rate-distortion
bit allocation method is useful at improving performances of

TABLE IV. IMPROVEMENT IN SSIM USING RATE-
DISTORTION BASED BIT ALLOCATION OVER EQUAL
ALLOCATION. WAVELET PACKET COMPRESSION WAS USED
TO COMPRESS PREDICTION RESIDUAL IMAGES.

SSIM
Centroid MST MSTa

Joe avg (%) -0.54 -0.10 -0.07
best (%) 3.67 1.92 1.97

Pig avg (%) -1.06 -0.12 -0.15
best (%) 1.72 0.62 1.24

Galway avg (%) 1.36 0.84 0.62
best (%) 6.66 3.89 6.16

GOES avg (%) 1.23 0.58 0.89
best (%) 11.91 2.33 2.10



image set compression algorithms at low bit rates.
Occasionally the rate-distortion bit allocation method pro-

duces results worse than equal bit allocation. This is mainly
due to the fact that our rate-distortion curves are approximated
by the values at a relatively small number of fixed bit rates.
Increasing the number of bit rates used in the approximation
reduces the problem, but increases the run time of the opti-
mization process.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have seen that a rate-distortion bit allo-
cation method can be used to decrease overall distortion in
a lossy image set compression algorithm at fixed bit rates. In
fact, the same bit allocation method can be used for other types
of image set compression algorithms such as those in [4], [25].

Unfortunately, the computational costs to find the optimal
solution to (1) can be high, because one needs to perform
a number of compression-decompression steps at various bit
rates to obtain estimates of rate-distortion curves. If we were
to obtain the full rate-distortion curve for every prediction
residual image in the set, it may take up to an hour to perform
the optimization for relatively small image sets. In practice,
however, the full rate-distortion curve is not needed. If we
simply obtain the curve segments around the target overall bit
rate, the final result by Lagrange optimization is a very good
approximation to the optimal solution using the full curves.
We have also done some preliminary work in modelling these
curves so that they can be estimated more efficiently using
only the edge weights. The results are promising and will be
shown in a forthcoming manuscript.
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