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Abstract. An event-based looming objects detection algorithm for asyn-
chronous event-based cameras is presented. The algorithm is fast and
accurate both in the detecting the correct number of objects as well as
whether the objects are looming.

1 Introduction

In perception, looming is an optical phenomenon in which the size of a given
object rapidly expands [18]. Looming often occurs when an object moves closer
to the viewer. Fast and accurate looming detection is essential both in nature
and robotics.

There are many looming object detection algorithms developed for conven-
tional frame-based cameras (for example, [4,5,7,14,15,20]). However, conven-
tional cameras are limited by their frame rates and also produce redundant data
for parts of the scene that remain static. The Dynamic Vision Sensor (DVS)
is designed based on the human retina [12]. The DVS is an event-based cam-
era which asynchronously transmits events only when significant changes in the
log-luminance of individual pixels are detected. There is no “frame” to collect
events over a time interval, and no data is transmitted when there is no signifi-
cant change. These cameras can react to events faster while their electrical and
computational power requirement is lower.

The goal of this paper is to provide a real-time and automatic solution for
the problem of detecting multiple looming objects. Optical flow is first computed
using an event-based algorithm [17]. Clustering techniques are adapted for asyn-
chronous optical flow events to identify potential objects, and the optical events
for each objects are analyzed to determine if the object is looming. Our cluster-
ing algorithm does not require a priori assumptions on the shapes and number
of objects and can adapt to changing number of moving objects in the scene. In
addition, our algorithm can run on modest hardware without parallel processing.

2 Preliminaries

2.1 Event-based Cameras

The Dynamic Vision Sensor (DVS) is a neuromorphic camera which behaves
similar to the human visual system by modeling the human retina [12]. Unlike



frame-based cameras which collect frames and transmit them synchronously at a
fixed frame rate, the DVS asynchronously transmits events as soon as each event
occurs. When there are no changes in the log-luminance in the scene, the DVS
produces no output. When there is a significant change in the log-luminance of
any pixel, the DVS asynchronously reports an event which is described by the
coordinates,the timestamp, and the polarity (+/−) of the change. The magni-
tude of the change is not reported. In the DVS, each pixel can adapt to its own
intensity because they are independent from the other pixel sensors. As a re-
sult, the DVS has a very high dynamic range. A good survey on the event-based
cameras and their applications can be found in [6].

2.2 Event-based Optical Flow

Ridwan and Cheng [17] presented an event-based optical flow algorithm that
detect movements by identifying correlations among events. When objects move
in a scene, the log-luminance changes occur mostly at the object boundaries. The
pixels of a boundary edge will produce the same polarity along the direction of
the motion over a period of time. Therefore, finding events of the same polarity
in close proximity in time and space might be an indication of the motion.

The output of this algorithm is a stream of events containing the time, lo-
cation and direction in eight compass directions (~v0, . . . , ~v7). For each DVS
event that arrives, the algorithm searches the eight neighbours of the location
for a matching recent event with the same polarity. Experimental results showed
that each event can be processed in around two microseconds with very modest
hardware. More details of the algorithm can be found in [17].

2.3 Event-based Object Clustering and Tracking

Barranco et al. presented a method [1] based on mean shift clustering and
adapted this algorithm to process asynchronous events. To reduce the required
computation time, this method processes events in parallel and in small packets
of a few hundred events at a time. Using Kalman filters, this method can track
multiple targets [11]. High temporal resolution results in accurate velocity mea-
surements. Despite the advantages of using this method, it does require parallel
processing to be feasible for real-time applications.

3 Single Object Looming Detection

In this section, we assume that there is only a single moving object in the scene.
We describe an algorithm to detect if this object is looming, and present experi-
mental results demonstrating its effectiveness. The input to our algorithm is the
optical flow event stream from the event-based optical flow algorithm [17].

Object boundaries are identified by grouping similar optical flow events—
if their angles differ by 45 degrees or less.. The boundary obtained consists
mostly of the leading and trailing edge of the moving object. Object movement



is classified into three types: moving towards the viewer (looming); moving away
from the viewer; or moving sideways. The boundary of a looming object moves
away from the center of the object. When an object moves away from the viewer,
its boundary moves towards the center. When an object moves sideways, the
leading edge of the object moves away from the center while the trailing edge
moves towards the center. The arithmetic mean of the locations of all boundary
optical flow events is computed to obtain an interior point. Let #»v be the vector
associated with the direction in the reported optical flow event, and #»u be the
vector from the interior point to the event on the boundary. If #»u · #»v > 0, we
conclude that #»v is pointing away from the interior (Figure 1).

Fig. 1: Determining if an optical flow event is pointing away from the interior
point or vise versa using dot product.

Optical flow events are collected into “pseudo-frames” of a certain length,
and if the number of events pointing away from the interior is more than twice
the number of events pointing towards the interior, our algorithm reports that
a looming object is detected in the scene. To reduce the effect of noise, looming
should only be reported if there is a significant number of vectors pointing away
from the interior compared to the number of pixels in the scene. In our experi-
ments, looming is reported only if the number of vectors pointing away from the
interior is at least 0.5% of the total number of pixels in the scene.

The single object looming detection algorithm is shown in Algorithm 1. The
algorithm produces an output event only if there is a looming object detected.
Otherwise no output is produced. A queue Q(x,y) is used at each pixel to store
recent optical flow events. The thresholds required are the length of the pseudo-
frame L, and time thresholds Tlow and T such that only those events between
Tlow and T seconds before the current event are considered recent. A set S is
used to collect optical flow events into a pseudo-frame and a global variable
last is used to record the timestamp of the last pseudo-frame. On average the
complexity is constant for each event.

3.1 Experimental Results

We have performed experiments on our looming object detection algorithm on
various scenarios. We have used simple objects with the DVS for these exper-
iments. For visualization, an optical flow event is shown as a blue line moving
towards a red dot. A data set was created to test the effectiveness of the algo-
rithm by using thd DVS to capture motion in a scene. A brief of the description
of the data set used is given below.

Round looming object: a round object is moving towards the viewer (Figure
2 (a)).



Algorithm 1 Looming detection algorithm.

procedure Looming(x, y, t, ~v)
Remove all events (x′, y′, t′, ~v′) such that t− t′ > T from the front of Q(x,y).
Add (t, ~v) to the back of Q(x,y)

boundary ← false
for each (x′, y′) an 8-neighbour of (x, y) do

Search in Q(x′,y′) for an event e′ = (x′, y′, t′, ~v′) such that Tlow < t − t′ ≤ T

AND ~v and ~v′ are similar
if NOT found then

boundary ← true
end if

end for
if NOT boundary then

return
end if
S ← S ∪ {(x, y, ~v)}
if t− last > L then

(cx, cy)← centroid of all events in S
pos, neg ← 0, 0
for each (x, y, ~v) ∈ S do

d← ((x, y)− (cx, cy)) · ~v
if d > 0 then

pos← pos+ 1
else if d < 0 then

neg ← neg + 1
end if

end for
if pos > 2× neg AND pos > 0.005× total pixels then

Report LOOMING at time t
end if
S ← {}
last← t

end if
end procedure

Round object moving sideways: a round object is moving from right to left
(Figure 2 (b)).

Square looming object: a square object is moving towards the viewer (Fig-
ure 2 (c)).

Square object moving sideways: a square object is moving from left to right
(Figure 2 (d)).

For these experiments, the constants and the thresholds we have chosen ex-
perimentally are shown in Table 1. The results of our experiments are shown in
Table 2.



Fig. 2: (a) A round looming object. (b) A round object is moving sideways. (c)
A square looming object. (d) A square object is moving sideways.

Table 1: Values of all thresholds and constants for all experiments.
Name Value Unit

COLS 180 pixels
ROWS 190 pixels
Timestamp Threshold (T ) 25,000 µs
Low Timestamp Threshold (Tlow) 100 µs
Length of Pseudo-frame (L) 25,000 µs

4 Multiple Object Looming Detection

When there are multiple objects in the same scene, our looming detection algo-
rithm (Section 3) fails to detect the looming objects. Our goal in this section is to
separate the events in the scene into multiple objects using clustering, and then
apply our single object looming detection algorithm to each segmented object.

Clustering algorithms generally require a set of data points to group them
into different clusters. However, the optical flow event stream is asynchronous.
New events can arrive at any time and old events also need to be removed.
Some algorithms solve this problem by using pseudo-frames. Although there are
some real-time clustering algorithms adopted for event-based data points [1,13],
they required parallel processors or special FPGA hardware for real-time perfor-
mance. Only the coordinates of the optical flow events are used for clustering.
The label of each point along with the centroid of each cluster is reported by the
clustering algorithm. We also use L as a parameter for the algorithm to adjust
the length of pseudo-frame.

Table 2: Results of single looming object detection.
Round looming

object
Round object

moving sideways
Square looming

object
Square object

moving sideways

Total number of events 668530 672201 850175 792649

Length of video (s) 3.92 2.81 5.10 10.07

Run Time per event (µs) 1.69 2.82 2.27 2.59

Decision Looming Not looming Looming Not looming



4.1 K-Means Event Clustering

The K-means algorithm [9] is a well-known clustering algorithm. As the number
of clusters is not known in advance, the K-means algorithm is executed with
different values of K = 1, . . . ,M , where M is the maximum number of clusters
to consider. A “compactness” measure C is used to compare different outputs
produced by clustering algorithms with different values of K:

C =

n∑
i=1

‖xi − cl(xi)‖
2, (1)

where l(xi) is the label assigned to event xi, ‖xi− cl(xi)‖ is the distance between
each data point xi and each cluster’s centroid cl(xi). By plotting the compactness
as a function of K, we can find the “elbow point” where the rate of reduction
changes drastically [8,10,21]. The elbow point is a good candidate for the number
of clusters. Figure 3 shows the elbow point and the change in the compactness

Fig. 3: The elbow point method.

measure as the number of clusters increases. There is no consensus on a mathe-
matically rigorous definition of the elbow point [10]. The Kneedle algorithm [19]
had been proposed for finding the elbow point, but experiments show that it
was not well-suited for the data arising in our application.

4.2 The elbow method

Heuristically, the elbow point is the point at which the angle of the curve is the
greatest (Figure 3). Only those points in which the decrease in compactness is
greater than the average decrease over all values of K are considered, and the
point with the largest angle is reported as the number of clusters (Algorithm 2).
In the algorithm, M is the maximum number of clusters to consider, and Ci is
the compactness measure when the K-means algorithm is used to cluster the
events into i clusters.

4.3 Sequential K-means Clustering

Sequential K-means clustering is a variation of the standard K-means cluster-
ing algorithm that processes one data point at a time and update the clusters’
centroids at each step [3]. centroids at a particular time. When a new data point



Algorithm 2 The elbow method

procedure Elbow(M,C1, . . . , CM )
avg = C1−CM

M−1

βmax = 0
for i = 1, . . . ,M − 1 do

∆i = Ci+1 − Ci . Note: ∆i < 0
end for
for i = 1, . . . ,M − 2 do

if ∆i ≤ ∆i+1 AND −∆i ≥ avg then

β = arccos
(

(1,∆i)·(1,∆i+1)

‖(1,∆i)‖·‖(1,∆i+1)‖

)
if β > βmax then

βmax = β
K = i+ 1

end if
end if

end for
return K

end procedure

x is received, the algorithm chooses the centroid ci closest to x and adds x to
the corresponding cluster. The centroid ci is updated by

ci+1 = ci +
1

n
(x− ci) , (2)

where n is the total number of data points assigned to that cluster, including x.
For each data point, the number of operations required is proportional to

K because of the search for the nearest centroid. As a result, the update can
be done very quickly for each point, and it is even feasible to perform K-means
clustering for multiple values of K simultaneously. The compactness measure for
each value of K can be used by the elbow method to determine the appropriate
number of clusters.

4.4 Cluster Merging

When objects are too large, the clustering algorithms may fail to detect the
correct number of clusters by dividing them into separate clusters. This is be-
cause these algorithms try to minimize the average squared distance between
each data point and the centroid of the clusters. As a solution to this problem,
we can merge these clusters to form a single cluster. Clusters that are connected
as 8-neighbours are merged into one connected component as a new cluster.

5 Experiments and Results

Tje different proposed clustering algorithms described in Section 4 are evaluated.
The algorithms are tested with event streams generated from both captured and
simulated scenarios. The algorithms are tested with data sets shown in Table 3.
The captured event streams were obtained with the DVS specified in Table 4.



Table 3: Captured data sets.

Data
set

Description
Number

of polarity
events

Number of
optical flow

events

Number
of

pseudo-frames

1 A single ball is falling 14900 9074 18

2 Two round objects are moving sideways 113240 81214 291

3 A round object is looming 79850 52786 73

4 Two balls are rolling sideways 22026 14831 18

5 Four round objects are looming 40900 26302 35

Table 4: The DVS specifications used for experiments.

Name Value

Model DVS 240 B
I/O USB2.0
Power consumption Low/high activity: 30/60 mA @ 5 VDC
Number of columns (COLS) 180 pixels
Number of rows (ROWS) 190 pixels

All algorithms were implemented in C++ and the OpenCV library [2]. To
evaluate the correctness of the cluster detection algorithms we reported the num-
ber of pseudo-frames in which the correct number of clusters was detected. To
evaluate the quality of each detected cluster, we manually checked the labelling
in each pseudo-frame. We manually labelled the looming results of each pseudo-
frame and we compared them with the results generated by the algorithms. A
looming object detected correctly is a true positive, while a true negative occurs
when the algorithm produce no output when there are no-looming objects. The
commonly used Recall and Precision measures [16] are computed.

The figures show the detected clusters in different colours and depict the
centroid of each cluster by a dot surrounded by a circle with the same colour
of its cluster. The detected looming clusters are shown as yellow circles on their
centroids (Figure 4).

Fig. 4: (a) five detected clusters. (b) Five detected looming clusters

In Data Set 1, a ball is falling in front of the camera. The goal of this experi-
ment is to determine whether the clustering algorithms is capable of detecting a
single cluster. Figure 5 shows the optical flow events and output of clustering for
one of the pseudo-frames of this data set. All of the results of experiments on cap-
tured data sets are reported in Table 5. Both sequential and OpenCV’s K-means



Fig. 5: A single ball is falling.

algorithms failed to detect the correct number of clusters in all pseudo-frames.
Overall applying the merge algorithm enhanced the results drastically. Using
the elbow method and sequential K-means algorithm, only five pseudo-frames
have an the incorrect number of detected clusters. In this data set the sequential
K-means is at least 54 times faster than OpenCV’s K-means and 10 times faster
than the mean shift algorithm without parallel processing (Section 2.3).

In Data Set 2, two round objects are moving sideways. The goal of this
experiment is to compare the accuracy of algorithms when objects move straight
versus when objects are rolling (Data set 6) in front of the camera. Figure 6
shows the optical flow events and clustering output for a pseudo-frame of this

Fig. 6: Two round objects are moving sideways.

data set. All algorithms were able to detect the correct number of clusters in all
pseudo-frames. The fastest algorithm is sequential K-means which on average
took about 0.6 milliseconds to process each pseudo-frame.

In Data Set 3, a ball is approaching the camera. We moved the ball very close
to the camera to see how the algorithms can perform when the dimensions of the
objects are large or when they are close to the camera. None of the algorithm
was able to detect the correct number of clusters. The reason is that when the
object is so close to the camera, the algorithms separate it to multiple clusters to
decrease the average squared distance from each event to the computed centroid.
Figure 7 shows a pseudo-frame in this situation. Applying the merge algorithm
enhanced the results. Figure 8 shows a pseudo-frame in which the merge algo-
rithm was able to merge multiple clusters to a single cluster. However, due to
both noises and lack of events in some parts of the object, the clustering algo-
rithms were not able to detect a single cluster even by using the merge algorithm.
The sequential K-means algorithm is again the fastest method and processed
each pseudo-frame about 60 times faster than OpenCV’s K-means algorithm.

For Data Set 4, two balls are rolling sideways. Figure 9 shows a pseudo-frame
of the optical flow and clustering output of this data set. The algorithms were



Fig. 7: A single looming ball which is incorrectly detected as two clusters. The
merge algorithm was not applied.

Fig. 8: Single ball is looming and detected as a single cluster by applying the
merge algorithm.

able to detect the correct number of clusters in most pseudo-frames. Applying
our merge algorithm enhances the results further.

For Data Set 5, the camera is moving toward four round objects in a solid
white background. Figure 10 shows the optical flow events and clustering output
for a single pseudo-frame of this case. Our algorithm was able to detect the
correct number of clusters, though the recall rate is low because the camera is
approaching the objects from an angle and it classifies the motion as sideways
instead of looming.

The results of the experiments indicate the advantages of using sequential
K-means algorithm compared to other methods. This is a real-time algorithm,
and does not require any parameter adjustment. It can automatically adapt
itself in all experiments cases to changing number of objects and movement
types. Compared to other clustering algorithms, it is much faster and can process
each pseudo-frame in less than 0.8 milliseconds depending on the size of the
input. This is at least 30 times faster than OpenCV’s K-means algorithm. In
addition, the sequential K-means algorithm achieved the highest accuracy in
cluster detection compared to other algorithms in most data sets.

Fig. 9: Two balls are rolling sideways.



Fig. 10: Four round objects are looming.

Table 5: The results of experiments on captured data sets.

Dataset
Clustering
Methods

Correct number
of clusters (%)

Looming Correctness (%) Processing time /
Pseudo-frame (ms)Precision Recall

1
K-means 88.88 72.22 100.00 28.125

Seq. K-means 72.22 66.66 100.00 0.543

2
K-means 100.00 97.93 100.00 26.944

Seq. K-means 100.00 96.90 100.00 0.693

3
K-means 56.16 95.71 91.17 41.596

Seq. K-means 41.09 98.59 95.89 0.799

4
K-means 100.00 88.88 100.00 34.514

Seq. K-means 100.00 80.55 100.00 0.632

5
K-means 25.71 100.00 7.14 36.391

Seq. K-means 100.00 100.00 5.71 0.667

6 Conclusion

We presented a real-time looming object detection algorithm using event-based
camera. It does not require any a priori knowledge of the number of objects in the
scene and can adapt to changing number of objects. The proposed algorithm is
significantly faster than the conventional K-means algorithm, and the accuracy
for looming object detection is similar.

While our algorithm performs very well when objects are looming directly
towards the camera, recall rate is low when the objects are looming towards the
camera at an angle. Future works will address this limitation.
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