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Abstract

In this paper we give formulas for performing row reduction of a matrix of Ore polynomials in a
fraction-free way. The reductions can be used for finding the rank and left nullspace of such matrices.
When specialized to matrices of skew polynomials our reduction can be used for computing a weak Popov
form of such matrices and for computing a GCRD and an LCLM of skew polynomials or matrices of
skew polynomials. The algorithm is suitable for computation in exact arithmetic domains where the growth
of coefficients in intermediate computations is a concern. This coefficient growth is controlled by using
fraction-free methods. The known factor canbe predicted and removed efficiently.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ore rings provide a general setting for describing linear differential, recurrence, difference
andq-difference operators. Formally these are given byK[Z; σ, δ] with K a field of coefficients,
Z an indeterminate,σ an injective homomorphism,δ a derivation and with the multiplication rule
Za= σ(a)Z+ δ(a) for all a ∈ K. In this paper we are interested in matrices of Ore polynomials
and look at the problem of transforming such matrices into “simpler” ones using only certain
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row operations. Examples of such transformations include conversion to special forms, such as
row-reduced, Popov or weak Popov normal forms. In our case we are primarily interested in
transformations which allow for easy determination of rank and left nullspaces.

For a givenm× s matrix F(Z) ∈ K[Z; σ, δ]m×s we are interested in applying two types of
elementary row operations. The first type includes

(a) interchange two rows;
(b) multiply a row by a nonzero element inK[Z; σ, δ] on the left;
(c) add a polynomial left multiple of one row to another.

In the second type of elementary row operations we include (a), (b) and (c) but require that
the row multiplier in (b) comes fromK. The second set of row operations is useful, for example,
when computing a Greatest Common Right Divisor (GCRD) or a Least Common Left Multiple
(LCLM) of Ore polynomials.

Formally, in the first instance we canview a sequence of elementary row operations as a matrix
U(Z) ∈ K[Z; σ, δ]m×m with the result of theserow operations given byT(Z) = U(Z) F(Z) ∈
K[Z; σ, δ]m×s. In the second case,U(Z) would have the additional property that there exists a
left inverseV(Z) ∈ K[Z; σ, δ]m×m suchthatV(Z) U(Z) = Im. In the commutative case, such a
transformation matrix is called unimodular (Kailath, 1980).

In many cases it is possible to transform via row operations a matrix of Ore polynomials
into one whose rank is completely determined by the rank of its leading or trailing coefficient.
In the commutative case, this can be done via an algorithm ofBeckermann and Labahn(1997)
while in thenoncommutative case of skew polynomials (i.e. whereδ = 0) this can be done using
either the EG-elimination method ofAbramov(1999) or the algorithm ofAbramov andBronstein
(2001). In the commutative case, examples of applications for such transformations include
matrix polynomial division, inversion of matrix polynomials, finding matrix GCDs of two matrix
polynomials and finding all solutions to various rational approximation problems. For the skew
polynomial case, it was shown byAbramov andBronstein(2001) that such transformations can
be used to find polynomial and rational solutions of linear functional systems.

The algorithm given byAbramov andBronstein(2001) improves on theEG-elimination
method ofAbramov(1999) and extends a method ofBeckermann and Labahn(1997) to the
noncommutative case. While these algorithms have good arithmetic complexity, coefficient
growth may occur and can only be controlled through coefficient GCD computations. Without
such GCD computations the coefficient growth can be exponential. Examples of such growth can
be found inSection 8.

In this paper we consider the problem of determining the rank and left nullspace of a matrix of
Orepolynomials for problems where coefficient growth is an issue. Our aim is to give a fraction-
free algorithm for finding these quantities when working over the domainD[Z; σ, δ] with D an
integral domain, andσ(D) ⊂ D, δ(D) ⊂ D. Examples of suchdomains includeD = F[n] for
some fieldF with Z the shift operator andD = F[x] and whereZ is the differential operator.
By fraction-free we mean that we can work entirely in the domainD[Z; σ, δ] but that coefficient
growth is controlled without any need for costlycoefficient GCD computations. In addition we
want to ensure that all intermediate results can be bounded in size which allows for a precise
analysis of the growth of coefficients of our computation.

Our results extend the algorithm ofBeckermann and Labahn(2000) in the commutative case
andBeckermann et al.(2002) in the case of matrices of skew polynomials. This extension has
considerable technical challenges. For example, unlike the skew and commutative polynomial
case, the rank is no longer necessarily determined bythe rank of the leading or trailing coefficient
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matrix. As a result, a different termination criterion is required for matrices of Ore polynomials.
We alsoshow how toobtain a row-reduced basis of the left nullspace of matrices of Ore
polynomials.

In the common special case of matrices of skew polynomials, we can say more. Our methods
can be used to give a fraction-free algorithm to compute a weak Popov form for such matrices
with negligible additional computations, which is an improvement over the row-reduced form ob-
tained in our previous algorithm (Beckermann et al., 2002). In addition, the methods can be used
to compute, in a fraction-free way, a GCRD and an LCLM of skew polynomials or matrices of
skewpolynomials. Finally, we show how the quantities produced during such a GCRD computa-
tion relate to the subresultants of two skew polynomials (Li , 1996, 1998), the classical tools used
for fraction-free GCRD computations. Therefore, we can view our algorithm as a generalization
of the subresultant algorithm. Although previous algorithms (e.g.Abramov andBronstein, 2001)
may be faster in some cases, our algorithms have polynomial time and space complexities in the
worst case. In particular, when coefficient growth is significant our algorithm is faster. As our
methods for skew polynomials require the coefficients be reversed, we restrict our attention to
the case whereσ is an automorphism when dealing with matrices of skew polynomials.

The remainder of this paper is organized as follows. InSection 2we discuss classical concepts
such as rank and left nullspace of matrices of Ore polynomials and extend some well known
facts from matrix polynomial theory to matrix Ore domains. InSection 3we give a brief
overview of ourapproach. InSection 4we defineorder bases, theprincipal tool used for our
reduction while in Section 5we place these bases into a linear algebra setting. A fraction-free
recursion formula for computing order bases is given inSection 6followed by a discussion of
the termination criterion along with the complexity of the algorithm in the following section.
Section 8gives some examples where coefficient growth is an important issue. We also compare
the requirements for our algorithm and that of Abramov and Bronstein in these cases. Matrices
of skew polynomials are handled inSection 9where we show that our algorithm can be used
to find a weak Popov form of such matrices. In this section we also show how the algorithm
can be used to compute a GCRD and LCLM of two skew polynomials and relate order bases to
subresultants in the special case of 2× 1 matrices of skew polynomials. The paper ends with a
conclusion along with a discussion of directionsfor future work. Finally, we include an appendix
which gives a number of technical facts about matrices of Ore polynomials that are necessary for
our results.

Notation. We shall adapt the following conventions for the remainder of this paper. We assume
thatF(Z) ∈ D[Z; σ, δ]m×s. Let N = degF(Z), andwrite

F(Z) =
N∑

j=0

F ( j )Z j , with F ( j ) ∈ Dm×s.

We denote the elements ofF(Z) by F(Z)k,�, and the elements ofF ( j ) by F ( j )
k,� . The j th row

of F(Z) is denotedF(Z) j ,∗. If J ⊂ {1, . . . , m}, the submatrix formed by the rows indexed by
the elements ofJ is denotedF(Z)J,∗. For a scalar polynomial, however, we will writef (Z) as
f (Z) = ∑N

j=0 f j Z j . For any vector of integers (also called multi-index)�ω = (ω1, . . . , ωp),

we denote by| �ω| =∑p
i=1 ωi . We also denote byZ �ω the matrix of Ore polynomials havingZωi

on the diagonal and 0 everywhere else. A matrix of Ore polynomialsF(Z) is said to have row
degree�ν = row-degF(Z) (and column degree�µ = col-degF(Z), respectively) if the i th row
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has degreeνi (and thej th column has degreeµ j ). The vector�ei denotes the vector having 1 in
componenti and 0 elsewhere and�e= (1, . . . , 1).

2. Row-reduced matrices of Ore polynomials

In this section we will generalize some classical notions such as rank, unimodular matrices,
and the transformation to row-reduced matrices (see for instanceKailath (1980)) to the case
of Ore matrix polynomials. For the sake of completeness, generalizations of other well known
classical properties for matrix polynomials such as the invariance of the rank under row
operations, the predictable degree property and minimal indices are included in the appendix.

With �ν = row-degF(Z) andN = maxj ν j = degF(Z), we maywrite

ZN�e−�ν F(Z) = L ZN + lower degree terms,

where the matrixL(F(Z)) := L ∈ Km×s is called theleading coefficient matrixof F(Z). In
analogy with the case of ordinary matrix polynomialsF(Z) is row-reducedif rank L = m.

Definition 2.1 (Rank, Unimodular).

(a) ForF(Z) ∈ K[Z; σ, δ]m×s, thequantity rankF(Z) is defined to be the maximum number of
K[Z; σ, δ]-linearly independent rows ofF(Z).

(b) A matrix U(Z) ∈ K[Z; σ, δ]m×m is unimodularif there exists aV(Z) ∈ K[Z; σ, δ]m×m such
thatV(Z) U(Z) = U(Z) V(Z) = Im. �

Weremark that our definition of rank is different from (and perhaps simpler than) that ofCohn
(1971) or Abramov andBronstein(2001) who consider the rank of the module of rows ofF(Z)

(or the rank of the matrix over the skew-fieldK(Z; σ, δ) of left fractions). This definition is more
convenient for our purposes. We show in the appendix that these quantities are in fact the same.

For the main result of this section we will show that any matrix of Ore polynomials can be
transformed toone whose nonzero rows form a row-reduced matrix by means of elementary row
operations of the second type given in the introduction.

Theorem 2.2. For any F(Z) ∈ K[Z; σ, δ]m×s there exists a unimodular matrixU(Z) ∈
K[Z; σ, δ]m×m, with T(Z) = U(Z) F(Z) having r ≤ min{m, s} nonzero rows,row-degT(Z) ≤
row-degF(Z), and where the submatrix consisting of the r nonzero rows ofT(Z) are row-
reduced.

Moreover, the unimodular multiplier satisfies the degree bound

row-degU(Z) ≤ �ν +
(
| �µ| − |�ν| −min

j
{µ j }

)
�e,

where�µ := max(�0, row-degF(Z)) and�ν := max(�0, row-degT(Z)).

Proof. We will give a constructive proof of this theorem. Starting withU(Z) = Im and
T(Z) = F(Z), we construct a sequence of unimodular matricesU(Z) andT(Z) = U(Z) F(Z),
with row-degU(Z) ≤ �ν − �µ + (| �µ| − |�ν|)�e, �ν = max(�0, row-degT(Z)), and the final T(Z)

having the desired additional properties. In one step of this procedure, we will update one row
of the previously computedU(Z), T(Z) (and hence one component of�ν), and obtain the new
quantitiesU(Z)new, T(Z)new with �νnew= max(�0, row-degT(Z)new).

Denote byJ the set of indices of zero rows ofT(Z), andL = L(T(Z)). If the matrix formed
by the nontrivial rows ofT(Z) is not yet row-reduced, then we can find a�v ∈ K1×m with �v �= �0,
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�vL = 0, andv j = 0 for j ∈ J. Choose an indexk with vk �= 0 (the index of the updated row)
and

νk = max{ν j : v j �= 0},
and defineQ(Z) ∈ K[Z; σ, δ]1×m by Q(Z)1, j = σνk−t (v j )Zνk−ν j if v j �= 0, andQ(Z)1, j = 0
otherwise, wheret = degT(Z). Then

T(Z)new
k,∗ := Q(Z) T(Z)

=
∑
v j �=0

σνk−t (v j )Zνk−ν j T
(ν j )

j ,∗ Zν j + lower degree terms

=
m∑

j=1

σνk−t (v j )σ
νk−ν j (T

(ν j )

j ,∗ )Zνk + lower degree terms

= σνk−t (vL)Zνk + lower degree terms.

Hence degT(Z)new
k,∗ ≤ νk − 1, showing that row-degT(Z)new ≤ row-degT(Z). Notice that

U(Z)new = V(Z) U(Z), whereV(Z) is obtained fromIm by replacing itskth row by Q(Z).
Since Q(Z)1,k ∈ K \ {0} by construction, we may considerW(Z) obtained fromIm by
replacing its(k, j ) entry by−(Q(Z)1,k)

−1Q(Z)1, j for j �= k, andby (Q(Z)1,k)
−1 for j = k.

The reader may easily verify thatW(Z) V(Z) = V(Z) W(Z) = Im. Thus, as withU(Z),
U(Z)new is also unimodular. Making use of the degree bounds forU(Z), we also get that
deg(Q(Z) U(Z)) ≤ νk − µk + |�µ| − |�ν|. Hence the degree bounds forU(Z)new are obtained
by observing that

row-degU(Z)new≤ �ν − �µ+ (| �µ| − |�ν|)�e≤ �νnew− �µ+ (| �µ| − |�νnew|)�e.
Finally, we notice that, in each step of the algorithm, we either produce a new zero row inT(Z),
or else decrease|�ν|, the sum of the row degrees of nontrivial rows ofT(Z), by at least one. Hence
the procedure terminates, which implies that the nonzero rows ofT(Z) are row-reduced. �

Remark 2.3. The algorithm given in the proof ofTheorem 2.2closely follows the one in
Beckermann and Labahn(1997), Eqn. (12), for ordinary matrix polynomials, and is similar to
that of Abramov andBronstein(2001) in the case of skew polynomials. However, we prefer
to perform our computations with skew polynomials instead of Laurent skew polynomials
(e.g. whenZ is the dif ferentiation operator). The degree bounds given inTheorem 2.2for the
multiplier matrix U(Z) appear to be new.�

Remark 2.4. In the case of commutative polynomials there is an example inBeckermann et al.
(in press, Example5.6) of aF(Z) which is unimodular (and henceT(Z) = I), has row degree
N�e and where its multiplier satisfies row-degU(Z) = (m−1)N�e. Hence the worst case estimate
of Theorem 2.2for the degree ofU(Z) is sharp. �

In Theorem A.2of Appendix Awe will prove that the quantityr of Theorem 2.2in fact equals
the rank ofF(Z). In addition, this theorem will also show that the matrixU(Z) of Theorem 2.2
gives some important properties about a basis for the left nullspace ofF(Z) given by

NF(Z) = {Q(Z) ∈ K[Z; σ, δ]1×m : Q(Z) F(Z) = 0}.
Furthermore, various other properties are included inAppendix A. In particular we prove in
Lemma A.3that the rank does not change after performing elementary row operations of the first
or second kind.
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3. Overview

Theorem 2.2shows thatone way to compute a row-reduced form is to repeatedly eliminate
unwanted high-order coefficients, until the leading coefficient matrix has the appropriate rank.
Instead of eliminating high-order coefficients, ourapproach is to eliminate low-order coefficients.
In the case of skew polynomials a suitable substitution (seeSection 9) can be made to reverse
the coefficients to eliminate high-order coefficients. By performing elimination until the trailing
coefficient has a certain rank (or in triangular form), we can reverse the coefficients to obtain a
row-reduced form (or a weak Popov form).

We introduce the notion of order and order basis for the elimination of low-order coefficients.
Roughly, the order of an Ore polynomial is the smallest power ofZ with a nonzero coefficient;
an order basis is a basis of the module of all left polynomial combinations of the rows of
F(Z) such that the combinations have a certain number of low-order coefficients being zero.
One can, in fact, view an order basis as a rank-preserving transformation which results in
an Ore matrix with a particular order. If the basis element corresponds to a left polynomial
combination which is identically zero, thenit is also an element in the left nullspace ofF(Z).
If we obtain the appropriate number of left polynomial combinations which are identically zero,
we get abasis for the left nullspace ofF(Z) because the elements in an order basis are linearly
independent.

From degree bounds on the elements in the order basis, we obtain linear systems of equations
for the unknown coefficients in an order basis. By studying the linear systems we obtain results
on uniqueness as well as a bound on the sizes of the coefficients in the solutions. The coefficient
matrices (called striped Krylov matrices) of these linear systems have a striped structure, so that
each stripe consists of the coefficients ofZk multiplied by a row ofF(Z) for somek. One may
apply any technique for solving systems of linear equations to obtain an order basis. However,
the structure inherent in striped Krylov matrices of the linear systems are not exploited.

Our algorithm exploits the structure by performing elimination on only one row for each
stripe. The recursion formulas given in Section 6are equivalent to performing fraction-free
Gaussian elimination (Bareiss, 1968) on the striped Krylov matrix to incrementally eliminate
the columns. By performing elimination on the matrix of Ore polynomials directly, our
algorithm controls coefficient growth without having to perform elimination on the much
larger Krylov matrix. The relationship with fraction-free Gaussian elimination is also used to
show thatour algorithm can be considered a generalization of the subresultant algorithm (cf.
Section 9.4).

4. Order basis

In this section we introduce the notion oforder andorder basesfor a given matrix of Ore
polynomialsF(Z). These are the primary tools which will be used for our algorithm. Informally,
we are interested in taking left linear combinations of rows of our input matrixF(Z) in order to
eliminate low-order terms, with the elimination differing for various columns. Formally such an
elimination is captured using the concept of order.

Definition 4.1 (Order). Let P(Z) ∈ K[Z; σ, δ]1×m be a vector of Ore polynomials and�ω a
multi-index. ThenP(Z) is said to haveorder �ω if

P(Z) F(Z) = R(Z) Z �ω (1)

with R(Z) ∈ K[Z; σ, δ]1×s. The matrix R(Z) in (1) is called aresidual. �
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We are interested inall possible row operations which eliminate lower order terms ofF(Z).
Using our formalism, this corresponds to finding all left linear combinations (overK[Z; σ, δ]) of
elements of a given order. This in turn is captured in the definition of an order basis, which gives
a basis of the module of all vectors of Ore polynomials having a particular order.

Definition 4.2 (Orderbasis). Let F(Z) ∈ K[Z; σ, δ]m×s, and �ω bea multi-index. A matrix of
Ore polynomialsM(Z) ∈ K[Z; σ, δ]m×m is said to be anorder basisof order �ω and column
degree�µ if there exists a multi-index�µ = (µ1, . . . , µm) suchthat

(a) every row ofM(Z) has order�ω,
(b) for everyP(Z) ∈ K[Z; σ, δ]1×m of order �ω there exists aQ(Z) ∈ K[Z; σ, δ]1×m suchthat

P(Z) = Q(Z) M(Z),

(c) there exists a nonzerod ∈ K suchthat

M(Z) = d Z �µ + L(Z)

where degL(Z)k,� ≤ µ� − 1.

If in additionM(Z) is row-reduced, with row-degM(Z) = �µ, then we refer toM(Z) as areduced
order basis. �

Part(a) of Definition 4.2states that every row of an order basis eliminates rows ofF(Z) up
to a certain order while part (b) implies that the rows describe all eliminates of the order. The
intuition of part (c) is thatµi gives the number of times rowi has been used as a pivot row in
a row elimination process. A reduced order basishas added degree constraints, which can be
thought of as fixing the pivots.

By the Predictable Degree Property for matrices of Ore polynomials shown inLemma A.1(a)
of the Appendix A we can show that an order basis will be a reduced order basis if and
only if row-degM(Z) ≤ �µ, and wehave the added degree constraint in part (b) that, for all
j = 1, . . . , m,

degQ(Z)1, j ≤ degP(Z)− µ j . (2)

Example 4.3. Let D = Z[x], σ(a(x)) = a(x), andδ(a(x)) = d
dx a(x) for all a(x) ∈ D and

F(Z) =
[

2Z2+ 2x Z+ x2 Z2− Z + 2

x Z+ 2 3x Z+ 1

]
. (3)

Then an order basis forF(Z) of order(1, 1) and degree(1, 1) is given by

M(Z) =
[
(x2− 4)Z − 2x 4x

0 (x2− 4)Z

]
.

Note thatM(Z) is a reduced order basis. �

We remark that the definition of order basis given inBeckermann et al.(2002) is slightly
more restrictive than our definition of reduced order basis given here. We use the more general
definition in order to gain more flexibility with our pivoting.

A key theorem for proving the correctness of the fraction-free algorithm deals with the
uniqueness of order basis. The proof inBeckermann et al.(2002) is not applicable for the new
definition of order basis and so we give a new proof here for this result.
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Theorem 4.4. Let M(Z) be an order basis of order�ω and degree�µ.

(a) There exists only the trivial row vectorP(Z) = �0 with column degree≤ �µ − �e and order
≥ �ω.

(b) For any k, a row vector with column degree≤ �µ − �e+ �ek and order≥ �ω is unique up to
multiplication with an element fromK.

(c) An order basis of a particular order and degree is unique up to multiplication by constants
fromK.

Proof. Weonly need to show part (a) as (b) and (c) follow directly from (a). Suppose thatP(Z) �=
�0 has order �ω and column degree�µ−�e. By Definition 4.2(b), there existsQ(Z) ∈ K[Z; σ, δ]1×m

suchthat P(Z) = Q(Z) M(Z). Let j be an index such that degQ(Z)1, j is maximum. Since

P(Z) �= �0, it follows that degQ(Z)1, j ≥ 0. Now,

degP(Z)1, j = deg

(
m∑

k=1

Q(Z)1,k M(Z)k, j

)
.

Note that ifk �= j , then

degQ(Z)1,k M(Z)k, j = degQ(Z)1,k + degM(Z)k, j

≤ degQ(Z)1, j + degM(Z)k, j

≤ degQ(Z)1, j + µ j − 1.

Also,

degQ(Z)1, j M(Z) j , j = degQ(Z)1, j + µ j ,

so that

degP(Z)1, j = degQ(Z)1, j + µ j ≥ µ j .

This contradicts the assumption that degP(Z)1, j ≤ µ j − 1. �

In the commutative case there are a number of characterizations of order bases. For example
in Beckermann and Labahn(1997) order bases are characterized by properties on its determinant.

Example 4.5. Let a(Z), b(Z) ∈ D[Z; σ, 0] with degreesda, db, respectively, withda ≥ db. Set
t = da − db, γ :=∏t

i=0 σ i (b0) and solve

γ a(Z) = q(Z) b(Z)+ r (Z) Zt+1 (4)

with degq(Z) = t and degr (Z) < db. Eq. (4) corresponds to solving the linear system of
equations

γ [a0, . . . , at ] = [q0, . . . , qt ]


b0 σ(b1) · · · σ t (bt )

σ (b0)
...

. . .
...

σ t (b0)

 , (5)
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an equation similar to that encountered in performing right pseudo-division of skew polynomials.
Setting

M(Z) =
[
γ −q(Z)

0 γ Zt+1

]
we see that

M(Z)

[
a(Z)

b(Z)

]
=
[

r (Z)

w(Z)

]
Zt+1

wherew(Z) = γ σ t+1(b(Z)) = γ
∑db

i=0 σ t+1(bi )Zi . Properties (a) and (c) ofDefinition 4.2
are trivially satisfied byM(Z). Property (b) follows from the linear equations given in the next
section. �

5. Determinantal representations

Assume now that the entries ofF(Z) come fromD[Z; σ, δ]. We are interested in constructing
an algorithm for recursively computing order basesM(Z) ∈ Km×m[Z; σ, δ] for increasing
orders, whereK = QD, the quotient field ofD. In order topredict the size of these objects
and predict common factors, we derive in this section a determinantal representation together
with a particular choice of the constantd arising inDefinition 4.2(c).

Because the order condition inDefinition 4.1is on the right, we observe that if

F(Z) =
∑

j

F ( j )Z j , P(Z) =
∑

k

P(k) Zk,

then we have

P(Z) F(Z) =
∑

j

S( j )Z j (6)

with the unknownsP(k) obtained by constructing a system of linear equations by setting the
undesired coefficients ofS( j ) equal to zero.

Let us examine the underlying system of linear equations. Notice first that for anyA(Z) ∈
K[Z; σ, δ] we may write

ck(Z A(Z)) = σ(ck−1(A(Z)))+ δ(ck(A(Z))) (7)

whereck denotes thekth coefficient of a polynomial (withc−1 = 0). We maywrite (7) in terms
of linear algebra. Denote byC = (cu,v)u,v=0,1,... the lower triangular infinite matrix of operators
defined bycu,u = δ, cu+1,u = σ and 0 otherwise, and byCµ (µ ≥ 0) its principal submatrix
of orderµ. Furthermore, for eachA(Z) ∈ K[Z; σ, δ] and nonnegative integerµ we associate
vectors of coefficients

A(µ) = [c0(A(Z)), . . . , cµ−1(A(Z))]T = [A(0), . . . , A(µ−1)]T, (8)

A = [c0(A(Z)), c1(A(Z)), . . .]T = [A(0), A(1), . . .]T. (9)

Note that we begin our row and column enumeration at 0. We can interpret (7) in terms of
matrices by

Cµ A(µ) = [c0(Z A(Z)), . . . , cµ−1(Z A(Z))]T.
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Comparing with (6), we know thatP(Z) has order�ω if and only if for each� = 1, . . . , s, j =
0, . . . , ω� − 1 we have

m∑
k=1

cj (P(Z)1,k F(Z)k,�) = 0.

If we wish to find solutionsP(Z) such that degP(Z)1,k ≤ νk for some multi-index �ν, then we
obtain a system of linear equations of the form

(P(0)
1,1, . . . , P(ν1)

1,1 , . . . , P(0)
1,m, . . . , P(νm)

1,m ) K (�ν + �e, �ω) = 0, (10)

where the coefficientmatrix has the form

K (�ν + �e, �ω) = (Kk,�(νk + 1, ω�))
�=1,...,s
k=1,...,m,

andKk,�(νk + 1, ω�)
T may be written as[

F(ω�)
k,� Cω� F(ω�)

k,� · · · Cνk
ω� F(ω�)

k,�

]
. (11)

Thus, the matrixK (�ν + �e, �ω)T is in the form of a striped Krylov matrix (Beckermann and
Labahn, 2000), except that by stepping from one column to the next we not only multiply with
a lower shift matrix butalso apply the functionsσ andδ. Thus, in contrast toBeckermann and
Labahn(2000), here we obtain a striped Krylov matrix with a matrixC having operator-valued
elements.

Example 5.1. Let F(Z) be as inExample 4.3with Z a differential operator. Then we have

K ((3, 3), (3, 3)) =



x2 2x 2 2 −1 1

2x x2+ 2 2x 0 2 −1

2 4x x2+ 4 0 0 2
2 x 0 1 3x 0

0 3 x 0 4 3x

0 0 4 0 0 7


.

�

Example 5.2. In the case of matrices of skew polynomials, theν × ω submatrix Kk,�(ν, ω) is
simply

σ 0(F (0)
k,� ) σ 0(F (1)

k,� ) σ 0(F (2)
k,� ) · · · · · · σ 0(F (ω−1)

k,� )

0 σ 1(F (0)
k,� ) σ 1(F (1)

k,� ) · · · · · · σ 1(F (ω−2)
k,� )

...
. . .

. . .
. . .

...

0 · · · 0 σν−1(F (0)
k,� ) · · · σν−1(F (ω−ν)

k,� )

 .

Thus withF(Z) as in (3) butwith σ(a(x)) = a(x + 1) andδ = 0 we have
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K ((3, 3), (3, 3)) =



x2 2x 2 2 −1 1

0 (x + 1)2 2(x + 1) 0 2 −1

0 0 (x + 2)2 0 0 2
2 x 0 1 3x 0

0 2 x + 1 0 1 3(x + 1)

0 0 2 0 0 1


.

�
According to (10), it follows from Theorem 4.4that if there exists an order basisM(Z) of

order �ω and degree�µ thenK (�µ, �ω) has full row rank, and more precisely

k = 1, . . . , m : rank K (�µ, �ω) = rank K (�µ+ �ek, �ω) = |�µ|. (12)

Suppose more generally that�µ and�ω are multi-indices verifying (12). We call amultigradient
d = d(�µ, �ω) any constant±1 times the determinant ofa regular submatrixK∗(�µ, �ω) of maximal
order of K (�µ, �ω), and aMahler systemcorresponding to(�µ, �ω) a matrix of Ore polynomial
M(Z) with rows having order�ω and degree structure

M(z) = d · Z �µ + lower order column degrees.

In order to show that such a system exists, we state explicitly the linear system of equations
needed to compute the unknown coefficients of thekth row of M(Z): denote bybk(�µ, �ω) the
row added while passing fromK (�µ, �ω) to K (�µ+�ek, �ω). Then, by (10), the vector of coefficients
is a solution of the (overdetermined) system

x · K (�µ, �ω) = d · bk(�µ, �ω)

which by (12) is equivalent tothe system

x · K∗(�µ, �ω) = d · bk∗(�µ, �ω), (13)

where inbk∗(�µ, �ω) and inK∗(�µ+�ek, �ω) we keep the same columns as inK∗(�µ, �ω). Notice that by
Cramer’s rule, (13) leads to a solution with coefficients inD. Moreover, we may formally write
down a determinantal representation of the elements of a determinantal order basis, namely

M(Z)k,� = ± det
[
K∗(�µ+ �ek, �ω) E�,µ�−1+δ�,k(Z)

]
(14)

with

E�,ν(Z) = [0, . . . , 0|1, Z, . . . , Zν |0, . . . , 0]T, (15)

thenonzero entries inE�,ν(Z) occurringin the�th stripe. In addition, wehave that

R(Z)k,� Z �ω =
∑

j

M(Z)k, j F(Z) j ,� = ± det
[
K∗(�µ+ �ek, �ω) E�, �µ+�ek(Z)

]
, (16)

where

E�ν(Z) = [F(Z)1,�, . . . , Zν1−1F(Z)1,�| . . . . . . |F(Z)m,�, . . . , Zνm−1F(Z)m,�]T.

In both (14) and (16) the matrices have commutative entries in all but the last column. It is
understood that the determinant in both cases is expanded along this column.

Finally we mention that, bytheuniqueness result ofTheorem 4.4, any order basis of degree
�µ and order�ω coincides up to multiplication with some element inK with a Mahler system
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associated to(�µ, �ω), which therefore itself is an order basis of the same degree and order. By a
particular pivoting technique we get a reduced order basis by computing Mahler systems.

6. Fraction-free recursion formulas for order bases

In this section we show how to recursively compute order bases in a fraction-free way. This
can also be thought of as constructing a sequence of eliminations of lower order terms ofF(Z).
In terms of linear algebra, the recursion can be viewed as a type of fraction-free Gaussian
elimination which takes into consideration the special structure of the coefficient matrix of the
linear system associated to the “elimination of lower order terms” problem.

For an order basisM(Z) of order �ω and degree�µ having a Mahler system normalization, we
look at the first terms of the residuals. If they are all equal to zero then we have an order basis of
a higher order. Otherwise, we give a recursive formula for building an order basis of higher order
and degree. However, a priori this new order basis has coefficients fromK = QD, thequotient
field of D, since we divide through some factors. In our case, however, the new system will be a
Mahler system according to the existence and uniqueness results established by the determinantal
representations, and hence we will keep objects with coefficients inD.

In the following theorem we give a recurrence relation whichclosely follows the case of skew
polynomials (Beckermann et al., 2002) and the commutative case (Beckermann and Labahn,
2000, Theorem 6.1(c)). The resulting order bases have properties similar to those cited by
Beckermann and Labahn(2000, Theorems 7.2 and 7.3).

Theorem 6.1. Let M(Z) be an order basis of order�ω and degree�µ, andλ ∈ {1, . . . , s}. Denote
by rj = cωλ((M(Z) F(Z)) j ,λ), the( j , λ) entry of the first term of the residual ofM(Z). Finally,

set �̃ω := �ω + �eλ.

(a) If r 1 = · · · = rm = 0 thenM̃(Z) :=M(Z) is anorder basis of degree�ν := �µ and order̃�ω.
(b) Otherwise, letπ be an index such that rπ �= 0. Then an order basis M̃(Z) of degree
�ν := �µ+ �eπ and order̃�ω with coefficients inD is obtained via the formulas

pπ M̃(Z)�,k = rπ M(Z)�,k − r� M(Z)π,k (17)

for �, k = 1, 2, . . . , m,� �= π , and

σ(pπ) M̃(Z)π,k = (rπ Z − δ(rπ )) M(Z)π,k −
∑
� �=π

σ(p�) M̃(Z)�,k (18)

for k = 1, 2, . . . , m, where pj = cµ j+δπ, j−1(M(Z)π, j ).

(c) If in additionM(z) is a Mahler system with respect to(�µ, �ω), thenM̃(Z) is also a Mahler
system with respect to(�ν, �̃ω). In particular, M̃(Z) has coefficients inD.

Proof. Part(a) is clear from the fact that the rows ofM(Z) have order̃�ω whenr1 = · · · = rm =
0.

For part (b)notice first that rows̃M(Z)�,∗ for � �= π have order̃�ω by construction, as
required inDefinition 4.2(a). In addition row(rπ Z − δ(rπ )) M(Z)π,∗ also has order̃�ω since
(rπ Z − δ(rπ))(rπ ) = rπσ(rπ )Z. By construction therefore row̃M(Z)π,∗ has order̃�ω.

The verification of the new degree constraints ofDefinition 4.2(c) (with �µ being replaced by�ν)
for thematrix M̃(Z) is straightforward and is the same as in the commutative case (Beckermann
and Labahn, 2000, Theorem 7.2). In addition, notice thatpπ is the leading coefficient ofM(Z)�,�,
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so the leading coefficient ofM̃(Z)�,� equalsrπ for all � by construction. However it still remains
to show that we obtain a new order basis with coefficients inD.

We now focus on the properties ofDefinition 4.2(b). If P(Z) ∈ K[Z; σ, δ]1×m has order̃�ω
then it has order�ω and so there exists aQ(Z) ∈ K[Z; σ, δ]1×m suchthat

P(Z) =
m∑

j=1

Q(Z)1, j M(Z) j ,∗.

Applying the first set of row operations in (17) to rows� �= π results in

P(Z) =
∑
j �=π

Q̂(Z)1, j M̃(Z) j ,∗ + Q̂(Z)1,π M(Z)π,∗ (19)

where

Q̂(Z)1, j = Q(Z)1, j
pπ

rπ

for all j �= π andQ̂(Z)1,π =
m∑

i=1

Q(Z)1,i
r i

rπ

. (20)

Since P(Z) and all the M̃(Z) j ,∗ terms have order �̃ω, this must also be the case for

Q̂(Z)1,π M(Z)π,∗. Let ρ be the degree of Q̂(Z) and write Q̂(Z)1,π =
∑ρ

k=0 Q̂(k)
1,π (rπ Z −

δ(rπ ))k. Since (rπ Z − δ(rπ))rπ = rπσ(rπ )Z, we seethat Q̂(0)
1,π rπ = 0. Therefore, by

assumption onπ we have thatQ̂(0)
1,π = 0. Writing Q̂(Z)1,π = Q̄(Z)1,π (rπ Z − δ(rπ )) gives

P(Z) =
∑
j �=π

Q̂(Z)1, j M̃(Z) j ,∗ + Q̄(Z)1,π (rπ Z − δ(rπ )) M(Z)π,∗. (21)

Completing the rowoperations which normalize the degrees ofM̃(Z) in (18) gives aQ̃(Z) with
P(Z) = Q̃(Z) M̃(Z). Consequently, the property ofDefinition 4.2(b) holds.

Finally, in order to establish part (c) we know already fromSection 5and the existence of
order bases of a specified degree and order that both(�µ, �ω) and (�ν, �̃ω) satisfy (12). By the

uniqueness result ofTheorem 4.4we only need to show that the “leading coefficient”d̃ of M̃(Z)

in Definition 4.2(c) is amultigradient of(�ν, �̃ω), the latter implying thatM̃(Z) is a Mahler system
and in particular has coefficients fromD.

Denote byd the corresponding “leading coefficient” ofM(Z). In thecase discussed in part
(a), we do not increase the rank by going fromK (�µ, �ω) to K (�ν, �̃ω) since we just add one column
and keep full row rank. Henced = d̃ being a multigradient with respect to(�µ, �ω) is also a
multigradient with respect to(�ν, �̃ω). In the finalcase described in part (b) we havẽd = rπ .
Using formula (16) for the residual of theπ th row of M(Z) we learn thatrπ coincides (up to a
sign) with the determinant of a submatrix of order|�ν| of K (�ν, �̃ω). Sincerπ �= 0 by construction,
it follows thatd̃ = rπ is a new multigradient, as required for the conclusion.�

Corollary 6.2. If M(Z) is a reduced order basis then the order basis̃M(Z) computed by(17)
and (18) in Theorem6.1 is also a reduced order basis of degree�ν, provided that the pivotπ is
chosen such that

µπ = min
j
{µ j : r j �= 0}. (22)
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Proof. It is straightforward to check that row-deg̃M(Z) = �ν. Hence, byLemma A.1(a), it is
sufficient to show that col-deg̃Q(Z) ≤ deg(P(Z))�e− �ν, with P(Z) = Q̃(Z) M̃(Z) as in the
proof ofTheorem 6.1.

We see in (20) that degQ̂(Z)1, j ≤ degP(Z) − µ j = degP(Z) − ν j for all j �= π while

degQ̂(Z)1,π ≤ degP(Z) − µπ because of the minimality ofµπ . In (21), degQ̄(Z)1,π ≤
degP(Z) − (µπ + 1) = degP(Z) − νπ . Completing the row operations which normalize the
degrees of̃M(Z) in (18) gives aQ̃(Z) with P(Z) = Q̃(Z) M̃(Z) having the correct degree
bounds. �

Example 6.3. Let F(Z) be defined as inExample 5.1. Starting from M(Z) = Im as an order
basis of order(0, 0) and degree(0, 0), wecan compute an order basisM1(Z) of order(1, 0) and
degree(1, 0) by choosingπ = 1. Thenr1 = x2 andr2 = 2, so that

M1(Z) =
[

x2Z − 2x 0

−2 x2

]
by (17) and (18).

In the next step, we note thatr1 = −4x andr2 = x2 − 4. Choosingπ = 2 allows us to
compute an order basis of order(1, 1) and degree(1, 1). Noting that the previous pivotx2 is a
common factor, (17) and (18) gives the order basisM(Z) found inExample 4.3. �

7. The FFreduce algorithm

Theorem 6.1gives a computational procedure that results in the FFreduce algorithm given in
Table 1, where the superscript[k] denotes the value of a variable at iterationk. In this section we
consider the termination criterion for this algorithm and discuss its complexity.

Theorem 7.1 (Termination of Algorithm FFreduce). Let r = rankF(Z). The final residual
R(Z) has rank r and m− r zero rows. Moreover, if J ⊂ {1, . . . , m} is the set ofrow indices
corresponding to the zero rows ofR(Z), then the rowsM(Z) j ,∗ for j ∈ J form a row-reduced
basis of the left nullspaceNF(Z) of F(Z).

Proof. Recall that the last computed Mahler systemM(Z) results fromiteration k = sκ ,
κ = mN+ 1, and has orderκ�e and degree�µ.

The statement rankF(Z) = rankR(Z) follows from Lemma A.3sinceR(Z)Zκ is obtained
from F(Z) by applying row operations of the first type.

In order to show thatR(Z) hasm − r zero rows, letW(Z) be as inTheorem A.2, with
�α = row-degW(Z). Recall from Theorem A.2that W(Z) is row-reduced, and that�α ≤
(m− 1) · N�e. Sincethe rows ofW(Z) have orderκ�e, thereexists Q(Z) ∈ K[Z; σ, δ](m−r )×m

suchthatW(Z) = Q(Z) M(Z). By construction,M(Z) is a reduced order basis, and therefore
row-reduced, with row degree�µ. Lemma A.1(c) then implies that there is some permutation
p : {1, . . . , m − r } 	→ {1, . . . , m}, with α j ≥ µp( j ) for j = 1, . . . , m − r . Hence, for
j = 1, . . . , m− r ,

degR(Z)p( j ),∗ = −κ + deg(R(Z)p( j ),∗Zκ�e) = −κ + deg(M(Z)p( j ),∗F(Z))

≤ −κ + N + deg(M(Z)p( j ),∗) = −κ + N + µp( j )

≤ −κ + N + α j ≤ −κ +mN= −1,

showing that thesem− r rowsR(Z)p( j ),∗ are indeed zero rows.
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Table 1
TheFFreduce algorithm

ALGORITHM FFreduce

INPUT: Matrix of Ore polynomialsF ∈ D[Z; σ, δ]m×s.

OUTPUT: Mahler systemM ∈ D[Z; σ, δ]m×m,

ResidualR ∈ D[Z;σ, δ]m×s with rankF nonzero rows,

Degree�µ, order �ω.

INITIALIZATION : M[0] ← Im, R[0] ← F, d[0] ← 1, �µ[0] ← �0, �ω[0] ← �0,

N ← deg(F(Z)), ρ ← 0, k← 0

While k < (mN+ 1)s do

ρ[k] ← ρ, ρ← 0

For λ = 1, .., s do

Calculate for� = 1, .., m: first term of residualsr� ← R[k](0)�,λ

Define setΛ = {� ∈ {1, .., m} : r� �= 0}.
If Λ = {} then M[k+1] ← M[k], R[k+1] ← R[k], d[k+1] ← d[k] , �µ[k+1] ← �µ[k]

else

Choose pivotπ [k] ← min{� ∈ Λ : µ[k]� = min j {µ[k]j : j ∈ Λ}}.
Calculate for� = 1, .., m, � �= π [k]: p� ← c

µ
[k]
�
−1

(M[k]
π [k],�).

Increase order for� = 1, .., m, � �= π [k]:

M[k+1]
�,∗ ← 1

d[k] [rπ [k] M[k]
�,∗ − r� M[k]

π [k],∗]
R[k+1]

�,∗ ← 1
d[k] [rπ [k] R[k]

�,∗ − r� R[k]
π [k],∗ ]

Increase order and adjust degree constraints for rowπ [k]:

M[k+1]
π [k],∗ ←

1
σ(d[k]) [(rπ [k] Z − δ(rπ [k] )) M[k]

π [k],∗ −
∑

��=π [k] σ(p�) M[k+1]
�,∗ ]

R[k+1]
π [k],∗ ←

1
σ(d[k]) [(rπ [k] Z − δ(rπ [k] )) R[k]

π [k],∗ −
∑

��=π [k] σ(p�) R[k+1]
�,∗ ]

Update multigradient, degree andρ:

d[k+1] ← rπ [k] , �µ[k+1] ← �µ[k] + �eπ [k] , ρ← ρ + 1

end if

Adjust residual in columnλ: for � = 1, . . . , m

R[k+1]
�,λ

← R[k+1]
�,λ

/Z (formally)

�ω[k+1] ← �ω[k] + �eλ, k← k+ 1

end for

end while

M← M[k], R← R[k], �µ← �µ[k], �ω← �ω[k]



528 B. Beckermann et al. / Journal of Symbolic Computation 41 (2006) 513–543

It remains to show the part on the rowsM(Z) j ,∗ for j ∈ J. Clearly, with M(Z), also
the submatrix M(Z)J,∗ is row-reduced. AnyP(Z) ∈ NF(Z) has orderκ�e, so thereexists
Q(Z) ∈ K[Z; σ, δ]1×m suchthatP(Z) = Q(Z) M(Z). Thus,

Q(Z) R(Z)Zκ = Q(Z) M(Z) F(Z) = P(Z) F(Z) = 0.

The relationr = rankR(Z) implies that thenonzero rows ofR(Z) are QD[Z; σ, δ]-linearly
independent, and henceQ(Z)1, j = 0 for j �∈ J. Consequently, the rows ofM(Z)J,∗ form a basis
of NF(Z), as claimed inTheorem 7.1. �

In what follows we denote by cycle the set of iterationsk = κs, κs+ 1, . . . , (κ + 1)s− 1 in
algorithm FFreduce for some integerκ (that is, the execution of the inner loop).

Let us comment on possible improvements of our termination criterion. In all examples given
in the remainder of this section, we choose asD the set of polynomials inx with rational
coefficients, withZ = d

dx , andthusσ(a(x)) = a(x), δ(a(x)) = d
dx a(x).

Remark 7.2. The above proof was based on the estimateα j ≤ (m− 1)N for the left minimal
indices of the left nullspaceNF(Z), which for general matrix polynomials is quite pessimistic,
but can be attained, as shown inBeckermann et al.(in press, Example5.6) for ordinary
matrix polynomials. For applications where a lower boundγ is available for|�ν|, the sum
of the row degrees of the nontrivial rows of the row-reduced counterpart ofF(Z) (compare
with Theorem 2.2), it would be sufficient to compute Mahler systems up to the final order
(mN+ 1− γ )�e, sincethen we get from Theorem 2.2andTheorem A.2the improved estimate
α j ≤ (m− 1)N − γ . �

Remark 7.3. In contrast to the special case of skew polynomials (compare withBeckermann
et al., 2002, Lemma 5.2), the pivotsπ [k] in one cycle are not necessarily distinct. In cases > m,
there mightbe even up tos nontrivial steps in one cycle of the algorithm. Thus| �µ[k]| may be as
large ask (all iterations are nontrivial). As an example, consider

F(Z) = [1, x + Z],
leading toπ [0] = π [1] = 1. �

Remark 7.4. In the special case of skew polynomials (δ = 0), the rank of any matrix polynomial
F(Z) (overQ[Z; σ, δ]) isbounded below by the rank of its trailing coefficientF(0) (overQ). This
property is no longer true for general Ore domains, as becomes clear from the example

F(Z) =
[

1 x

Z 1+ x Z

]
.

Here the rank ofF(0) is 2, whereas the second row ofF(Z) equalsZ times the first row ofF(Z),
and hence rankF(Z) = 1. �

Remark 7.5. If in the cycle starting atk = κs there are only distinct pivots, following
Beckermann et al.(2002, Lemma 5.1) we may still prove that the rank ofR[κs](0) coincides
with the number of pivots used in this cycle. However, in contrast toBeckermann et al.(2002,
Lemma 5.2), it is no longer true in general that the number of pivots (or distinct pivots) in a cycle
is increasing. Indeed, for the example

F(Z) =
[

1− x Z 0

0 1− εx Z

]
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we have in the first cycleπ [0] = 1, π [1] = 2, giving rise to

R[2](Z)Z =
[−x Z2 0

0 (1− ε)x Z− εx Z2

]
.

Thenk = 2 is a trivial iteration, and there is either one (forε �= 1) or no pivot (forε = 1) in
the second cycle. Moreover, ifε is a positive integer, then we have 2 pivots in all further cycles
up to the εth one. Thus, the trailing coefficients of the residuals after a cycle do not remain
nonsingular. �

For the above reasons, we believethat it is quite unlikely that there exists an early termination
criterion for FFreduce in Ore domains such as (26) below based on thenumber of pivots in one
cycle which insures that one has found rankF(Z). The situation is different for the special case
of skew polynomials discussed inBeckermann et al.(2002) which will be further studied in the
next section.

Let us now examine bounds on the sizes of the intermediate results in the FFreduce algorithm,
leading to a bound on the complexity of the algorithm. For our analysis, we assume that the
coefficient domainD satisfies

size(a+ b) = O(max(size(a), size(b)))

size(a b) = O(size(a)+ size(b))

cost(a+ b) = O(max(size(a), size(b)))

cost(a b) = O(size(a) size(b)),

where the function “size” measures the total storage required for its arguments and the function
“cost” estimates the number of bit operations required to perform the indicated arithmetic. These
assumptions are justified for large operands where, for example, the cost of addition is negligible
in comparison to the cost of multiplication.

In a first step, let us examine the size of the coefficients and the complexity of one iteration of
algorithm FFreduce.

Lemma 7.6. Let N = degF(Z), and let K be a bound on the size of the coefficients appearing
in F(Z) j ,∗, Z F(Z) j ,∗, . . . , Zµ j F(Z) j ,∗ for j = 1, . . . , m, where�µ = �µ[k]. Then the size of the
coefficients inM[k] andR[k] is bounded byO(| �µ|K ). Moreover, the cost at iteration k is bounded
byO((msN| �µ|2+ (m+ s)| �µ|3)K 2).

Proof. Eqs. (14) and (16) show that both the Mahler system and the residual can be represented
as determinants of a square matrix of order| �µ|. The coefficients in this matrix are coefficients
of F(Z)k,∗, Z F(Z)k,∗, . . . , Zµk F(Z)k,∗. Hence the well-known Hadamard inequality gives the
above bound for the size of the coefficients.

In order to obtain the cost, we have to take into account essentially only the multiplication
of each row of(M[k], R[k]) by two scalars and the multiplication of the pivot row by at most
m+ 1 scalars. It remains to count the number of coefficients, and to take into account that each
multiplication with a coefficient has a cost bounded byO(| �µ|2K 2). �

By slightly generalizingBeckermann and Labahn(2000, Theorem 6.2), we deduce the
following complexity bound (compare also withBeckermann et al.(2002, Theorem 5.5)).

Corollary 7.7. Let N= degF(Z), and let K be a bound on the size of the coefficients appearing
in F(Z) j ,∗, Z F(Z) j ,∗, . . . , Zµ j F(Z) j ,∗ for j = 1, . . . , m, where�µ = �µ[k] of iteration k of
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FFreduce. Then the total cost for computingM[k] andR[k] by algorithm FFreduce is bounded by
O((msN| �µ|3+ (m+ s)| �µ|4)K 2).

In the general Ore case, we obtain for FFreduce a worst case bit complexity ofO((m +
s)m4s4N4K 2), whereas in the case of skew polynomials we may obtain the slightly sharper
worst case boundO((m+ s)m4 min(m, s)4N4K 2).

Proof. The first part of the corollary is an immediate consequence ofLemma 7.6and of the fact
that the number of iterations in the FFreduce algorithm in which any reduction is done equals
| �µ|. In order to show the second part, we use the bound| �µ| ≤ | �ω| with the final order vector
�ω = (mN+ 1)�e, and| �ω| = s(mN+ 1). In the case of skew polynomials, pivots are distinct, and
hence their number in a cycle is bounded by min(m, s) (in fact by the rank ofF(Z)), leading to
thebound| �µ| ≤ min(m, s)(mN+ 1). �

Remark 7.8. The complexity model proposed beforeLemma 7.6is reasonable not only for
D = Z, but also forD = K[x] as long as we measure the size of elements only in terms of
x-degrees and ignore the growth of coefficients. However, the latter simplification is no longer
acceptable for domains such asD = Z[x], and wehave to adapt our complexity analysis.

For a ∈ Z[x], let degx(a) denote the degree ofa with respect tox, and‖a‖ be the maximal
absolute value of the integer coefficients ofa. A good measure for size for a nonzeroa ∈ Z[x]
seems to be

size(a) = O((1+ degx(a))(1+ log‖a‖)),
since it reflects worst case memory requirements. In addition the two rules

cost(a+ b) = O(max(size(a), size(b)))

cost(a b) = O(size(a) size(b))

continue to hold. However, it is easy to construct polynomials where the rules for size(a+b) and
size(ab) given beforeLemma 7.6are no longer true because of cross products between degrees
and the bit lengths of the coefficients. The essential ingredient in the proof ofLemma 7.6(and
thus ofCorollary 7.7) was to predict the size of a coefficientc[k] ∈ Z[x] in M[k] or in R[k], by
means of its determinant representation in terms of a matrix of order| �µ[k]| containing suitable
coefficients ofZ j F(Z) for suitable j . Here we propose to estimate separately thex-degree and
the norm of c[k]. In our three examples below the applicationsσ, δ : Z[x] 	→ Z[x] will not
increase the degree, and thus one easily checks that

degx c[k] ≤ | �µ[k]| Kdeg,

with Kdeg being the maximal degree of a coefficient occurring inF(Z). Definealso Kbit to be
the logarithm of the largestnorm of a coefficient occurring inF(Z). We will show below that
the logarithm of the norm of an entry of the above-mentioned matrix is bounded for our three
examples by

Kbit + (max
�

µ
[k]
� ) f (Kdeg) (23)

for a suitable function f depending only onσ, δ, andhence

size(c[k]) = O((1+ |�µ[k]| Kdeg)(1+ |�µ[k]| Kbit + |�µ[k]| (max
�

µ
[k]
� ) f (Kdeg)))
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or

size(c[k]) = O(KdegKbit| �µ[k]|2+ Kdegf (Kdeg)| �µ[k]|3),
in contrast to size(c[k]) = O(K | �µ[k]|) derived inLemma 7.6. As a consequence, we may directly
generalize bothLemma 7.6andCorollary 7.7, but now higher powers willbe involved. Notice
that a tighter estimate could be obtained if we specify the size and cost of the sums and products
in two components (degx(a) and‖a‖) separately (Li , 2003).

Let us first consider the skew-symmetric caseσ(a(x)) = a(αx), δ(a) = 0, for an integer
α �= 0. Since for the norm of the coefficients ofZkx j we get log(‖σ k(x j )‖) = j k log(|α|), we
observe that (23) holds with f (Kdeg) = Kdeg log(|α|).

More generally, for the skew-symmetric caseσ(a(x)) = a(αx + β), δ(a) = 0 with integers
α �= 0 andβ, we have log(‖σ k(x j )‖) ≤ j k log(2 max(|α|, |β|)). Thus here (23) holds with
f (Kdeg) = Kdeg log(2 max(|α|, |β|)).

We finally consider the differential case in whichσ is the identity andδ(a) = d
dx a for all

a ∈ Z[x]. Thenσ does not increase the norm, and‖δ(a)‖ ≤ degx(a) ‖a‖, implying that (23)
holds with f (Kdeg) = log(Kdeg). �

8. Comparisons and examples

In this section we give some examples which allow us to make some simple comparisons with
the algorithm inAbramov andBronstein(2001). We make no claims that our algorithm performs
better than theirs in general. Indeed for examples where coefficient growth does not enter into the
problem, the algorithm of Abramov and Bronstein is typically faster than the one presented in this
paper. However, there are instances where the growth of coefficients does become a significant
factor and in such cases the near linear growth of our algorithm does allow us to solve larger
problems.

The Abramov–Bronstein algorithm uses the constructive approach outlined inTheorem 2.2.
It also incorporates a number of additional improvements, for example making use of a basis
of elements from the nullspace of the leading or trailing coefficients (rather than just a single
element) in order to reduce the number of iterations (Abramov andBronstein, 2002). We also
note that since the row-reduced form is not unique, the results computed by the Abramov–
Bronstein algorithm are typically different from the ones obtained by FFreduce.

It is possible, as suggested inAbramov andBronstein(2001), to compute the basis for the
nullspace by using fraction-free Gaussian elimination on the leading or trailing coefficient matrix,
seeBareiss(1968). This also results in a fraction-free algorithm for row-reducing a matrix
of skew polynomials. However it is not the case that this guarantees a reasonable growth of
coefficient size. For example, one step of such a method could result in an increased size of
coefficients by a factor ofr + 1 wherer is the rank of the actual trailing or leading coefficient
matrix. This occurs because the nullspace obtained by Bareiss’s method could be as large asr
times the original input size. Even removing the contents of the nullspace elements afterwards
will not guarantee good coefficient growth as our examples below illustrate.

The implementation of the Abramov–Bronstein algorithm used for our comparisons is that
programmed in Maple given in the routineLinearFunctionalSystems[MatrixTriangularization].
This implementation finds a basis for the nullspace by working over a field and then clearing
denominators. Notice that this approach is mathematically equivalent to using fraction-free
Gaussian elimination and then removing the contents from individual basis elements. Note that
the contents are only removed from the basis elements used to perform the elimination. The
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contents in the intermediate results are not removed, so that exponential growth may still occur.
This implementation performs additional optimizations when the trailing coefficient has a zero
row or a zero column. This reduces the number of iterations required to obtain the final result.
Our fraction-free algorithm can be adopted to perform such shifts as well. In our comparison,
such optimizations are performed in the Abramov–Bronstein algorithm but not in the fraction-
free one. Finally, we have done a slight modification to ensure that it works in the case when the
rank is not full.

We have run several examples, including those ofAbramov andBronstein(2002), in which
the dimensions of the matrices, as well as the degree, are varied. For the measure of size we have
used the sum of Maple’s length of all the coefficients overQ[n], namely the coefficients of the
residuals for the AB algorithm and the coefficients of both the Mahler system and the residuals
for FFreduce.

For examples in which coefficient growth is not significant, the Abramov–Bronstein algorithm
is in general faster, sometimes by more than a factor of 1000. For these examples, the cost of GCD
computations required for removing the content (or for clearing fractions) was negligible.

In contrast, consider the matrix

F(Z) =
[ ∑N

i=0 pi Zi ∑N−1
i=0 pi Zi∑N

i=0 pi+N+1Zi ∑N−1
i=0 pi+N+1Zi

]
(24)

where pi is the(i + 1)th prime and where we are working over the commutative polynomial
domainZ[Z]. The storage and running time requirements for this matrix using the two algorithms
is given inFig. 1. In particular we see that the growth in the Abramov–Bronstein algorithm is
exponential (varying between 48 forN = 5 and58 685 030 forN = 300) while that of FFreduce
is essentially linear for this case (varying between 97 and 880 154). This of course impacts the
timings of the two algorithms for this example.

Similarly such growth is also possible in the noncommutative case of skew polynomials. For
example, one can construct matrices similar to that of (24) but using a noncommutativeZ and
get comparable behaviour. This is the case with

F(Z) =
 q0,N(Z) q0,N−1(Z) q0,N−2(Z)

q2N+2,N(Z) q2N+2,N−1(Z) q4N+4,N−2(Z)

q4N+4,N(Z) q4N+4,N−1(Z) q2N+2,N−2(Z)

 (25)

whereqj ,k(Z) =∑k
i=0(p2i+ j+1n+ p2i+ j+2)Zi andZ is the forward shift operator acting onn.

The experimental results are shown inTable 2.
Finally, in Table 3we show experimental results on larger matrices, in this case of skew

polynomials which are generated by applying random transformations to the final result in
reverse.

9. Applications for skew polynomials

In this section we show how the FFreduce algorithmcan be used to solve a number of different
problems in the special case when the input is a matrix of skew polynomials. Of course whenσ

is the identity then this also gives fraction-free algorithms for ordinary matrix polynomials. We
note again thatσ is assumed to be an automorphism onQD.
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Fig. 1. Plots for timings and size for FFreduce and the AB algorithm on the matrices defined in (24).

In the case of skew polynomials (Beckermann et al., 2002), the termination criterion

ρ[κs] + thenumber of zero rows inR[κs](Z) = m (26)

allows us to prove (Beckermann et al., 2002, Theorem 5.3) that

rankR[κs](0) = rankR[κs](Z)) = rankF(Z), (27)

the rank of the trailing coefficient matrixR[κs](0) being defined over the quotient fieldQD.
Moreover (Beckermann et al., 2002, Lemma 5.2),

the pivotsπ [k] for κs− s ≤ k < κs are distinct, (28)

and hence (Beckermann et al., 2002, Lemma 5.1 and Lemma 5.2)

ρ[κs] = rankR[κs](0) = rankR[κs−s](0). (29)



534 B. Beckermann et al. / Journal of Symbolic Computation 41 (2006) 513–543

Table 2
Timings and storage for the AB algorithm and FFreduce on input matrices (25)

d AB FFreduce
Time (s) Size Time (s) Size

2 0.123 654 0.101 1 488
3 0.125 2606 0.239 4 589
4 0.287 7920 0.455 8 621
5 0.691 27 972 0.900 17 267
6 1.582 84 523 1.867 27 208
7 4.656 265 003 2.717 44 369
8 19.342 714 330 6.334 62 900
9 331.509 1948 947 20.334 92 194

10 1943.193 4770 766 148.652 122 964
11 5821.765 12 177 824 516.682 169 323
12 10 144.400 27 971 967 631.781 213 626
13 ? ? 1528.602 280 124
14 ? ? 1660.289 340 995
15 ? ? 2403.154 432 665

An entry of ? means that no result was obtained within the time limit of 3 h.

Table 3
Timings and storage for the AB algorithm and FFreduce on input matrices generated by random transformations

m, s AB FFreduce
Time (s) Size Time (s) Size

2 32.609 365 188 1.600 26 295
3 542.440 2 004 249 145.799 430 330
4 1996.640 1 343 010 546.931 950 614
5 ? ? 1480.871 1830 960
6 ? ? 2837.691 1959 785
7 8955.809 25 525 731 3851.930 2353 846
8 ? ? 5132.750 2732 281

An entry of ? means that no result was obtained within the time limit of 4 h.

It is also shown implicitly in the proof ofBeckermann et al.(2002, Theorem 5.4) thatκ ≤
m(N + 1) which has to be compared with the number of cycles,mN+ 1, required by FFreduce.
Thus the new termination property (26) essentially does not increase the complexity of algorithm
FFreduce, but for many examples may improve the run time.

9.1. Full rank decomposition and solutions of linear functional systems

When F(Z) represents a system of linear recurrence equations, one can show that an
equivalent system with a leading (or trailing) coefficient with full row rank allows one to obtain
bounds on the degrees of the numerator and the denominator of all rational solutions. This has
been used byAbramov andBronstein(2001) to compute rational solutions of linear functional
systems.

In Beckermann et al.(2002) it is shown thatthe output of FFreduce applied toF(Z) ∈
D[Z; σ, 0]m×s can be used to constructT(Z−1) ∈ D[Z−1; σ−1, 0]m×m and implicitly S(Z) ∈
QD[Z; σ, 0]m×m suchthat

T(Z−1) F(Z) =W(Z) ∈ D[Z; σ, 0]m×s, S(Z)T(Z−1) = Im,



B. Beckermann et al. / Journal of Symbolic Computation 41 (2006) 513–543 535

with the number of nonzero rows ofW(Z) coinciding with the rank of the trailing coefficient
W(0), andhence with the rank ofW(Z). The existence of a left inverseS(Z) shows that the
reduction process is invertible in the algebra of Laurent skew polynomials, moreover, we obtain
a full rank decompositionF(Z) = S(Z)W(Z) in QD[Z; σ, 0].

In this context we should mention that an exact arithmetic method involving coefficient GCD
computations for the computation ofT(Z−1) F(Z) = W(Z) with W(Z) as above has already
been given inAbramov andBronstein(2001).

9.2. Row-reduced form and weak Popov form

The FFreduce algorithm as described above has been used to eliminate low-order coefficients,
such that the rank of the trailing coefficient matrix is the same as the rank of the original matrix
of skew polynomials. In the case of matrices of commutative polynomials, we can reverse the
coefficients so that the high-order coefficients are eliminated (Beckermann and Labahn, 2000).
This allows us to obtain a row-reduced form of the input matrix polynomial.

In this section we show that a similar technique can be used to obtain a row-reduced form
for a matrix of skew polynomials. Furthermore, we note that the FFreduce algorithm essentially
performs fraction-free Gaussian elimination on the striped Krylov matrix. If we collect the rows
used as pivots during the last cycle, we obtain a trailing coefficient that is triangular up to row
permutations. As a result, reversing the coefficients gives a weak Popov form. One may reverse
the coefficients in the input, invoke the FFreduce algorithm, and reverse the coefficients in the
output to obtain the final results. Instead, we will modify the recursion formulas to directly
eliminate the high-order coefficients.

Given F(Z) ∈ D[Z; σ, 0]m×s we can computeU(Z) andT(Z) such that the nonzero rows
of T(Z) = U(Z) F(Z) form a row-reduced matrix. Since wewish to eliminate high-order
coefficients, we perform the substitution̂Z = Z−1, σ̂ = σ−1 and perform the reduction over
D[Ẑ; σ̂ , 0]. We furtherassume thatσ−1 does not introduce fractions, so thatσ−1(a) ∈ D for
all a ∈ D. We write F̂(Ẑ) := F(Ẑ−1) ẐN , and letM̂[k](Ẑ), R̂[k](Ẑ), �µ[k], and �ω[k] be the
intermediate results obtained from the FFreduce algorithm with the inputF̂(Ẑ). If we define

U[k](Z) = Zµk M̂[k](Ẑ), T[k](Z) = Zµk R̂[k](Ẑ) Ẑωk−N �e, (30)

thenU[k](Z) F(Z) = T[k](Z). In thiscase simple algebra shows that the recursion formulas for
U[k](Z) obtained from (17) and (18) become

σµ
[k]
� (pπ [k])U

[k+1](Z)�,∗ = σµ
[k]
� (rπ [k] )U

[k](Z)�,∗ − σµ
[k]
� (r�)Z

µ
[k]
� −µ

[k]
π [k]U[k](Z)π [k],∗ (31)

for � �= π [k] and

σ
µ
[k]
π [k]+2

(pπ [k]) U[k+1](Z)π [k],∗

= σ
µ
[k]
π [k]+1

(rπ [k] ) U[k](Z)π [k],∗ −
∑

� �=π [k]
σ

µ
[k]
π [k]+2

(p�) Z
µ
[k]
π [k]−µ

[k]
� +1 U[k+1](Z)�,∗, (32)

where

r� = σ−µ
[k]
� (cN+µ

[k]
� −k/s�(T

[k](Z)�,(k modm)+1)),

p� = σ
−µ
[k]
π [k] (c

µ
[k]
π [k]−µ

[k]
� −δ

π [k],�+1(U
[k](Z)π [k],�)).
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Sinceµ
[k]
π [k] ≤ µ

[k]
� wheneverr� �= 0, and thatp� = 0 wheneverµ[k]

π [k] < µ
[k]
� − 1 by the

definition of a reduced order basis, it follows thatU[k+1](Z) ∈ D[Z; σ, 0]m×m. Moreover,
[U[k+1](Z), T[k+1](Z)] is obtained from[U[k](Z), T[k](Z)] by elementary row operations of the
second type, so ifU[k](Z) is unimodular thenU[k+1](Z) is also unimodular.

Theorem 9.1. Let M̂[k](Ẑ), R̂[k](Ẑ), �µ[k], and �ω[k] = κ · �e be the final output obtained from the
FFreduce algorithm with the input̂F(Ẑ). Then

(a) U[k](Z) ∈ D[Z; σ, 0]m×m andT[k](Z) ∈ D[Z; σ, 0]m×s;
(b) U[k](Z) is unimodular;
(c) U[k](Z) F(Z) = T[k](Z);
(d) thenonzero rows ofT[k](Z) form a row-reduced matrix.

Proof. Parts (a), (b), and (c) have already been shown above. By (27), we see that rank̂R[k](0) =
rank F̂(Ẑ) = rank R̂[k](Ẑ), which isalso the number of nonzero rows inR̂[k](Ẑ). Therefore, the
nonzero rows of̂R[k](Ẑ) form a matrix with trailing coefficient of full row rank. It is easy to see
that row-degT[k](Z) = µk + (N − κ) · �e and that

T[k](Z)i,∗ = σµ
[k]
i (R̂[k](0)i,∗) Zµ

[k]
i +N−κ + lower degree terms.

Therefore,L(T[k](Z)) = σ degT[k](Z)−N+κ (R̂(0)). Sinceσ is an automorphism onQD, it follows
that rankL(T[k](Z)) = rank R̂[k](0), andhence the nonzero rows ofT[k](Z) form a row-reduced
matrix. �

In fact, the FFreduce algorithm can be modified to obtainU(Z) andT(Z) suchthat T(Z)

is in weak Popov form (Mulders and Storjohann, 2003) (also known as quasi-Popov form
Beckermann et al.(in press)). The weak Popov form is defined as follows.

Definition 9.2 (Weak Popov form). A matrix of skew polynomialsF(Z) is said to be inweak
Popov formif the leading coefficient of the submatrix formed from the nonzero rows ofF(Z) is
in upper echelon form (up to row permutation).�

Formally, if �ω = κ · �e is the order obtained at the end of the FFreduce algorithm, we form the
matricesU(Z) andT(Z) by

[U(Z)i, j , T(Z)i, j ] =
{
[U[k](Z)i, j , T[k](Z)i, j ] if π [k] = i for someκs− s≤ k < κs,

[U[κs](Z)i, j , T[κs](Z)i, j ] otherwise.

We note thatU(Z) andT(Z) are well-defined because the pivotsπ [k] are distinct forκs− s ≤
k < κs by (28). We now show thatT(Z) is in weak Popov form.

Theorem 9.3. Let �ω = κ · �e be the order obtained from the FFreduce algorithm with the input
F̂(Ẑ). Then

(a) U(Z) ∈ D[Z; σ, 0]m×m andT(Z) ∈ D[Z; σ, 0]m×s;
(b) U(Z) is unimodular;
(c) U(Z) F(Z) = T(Z);
(d) T(Z) is in weak Popov form.
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Proof. Part(a) is clear, and (b) follows from the fact thatU(Z) can be obtained fromU[κs−s](Z)

by applying elementary rowoperations of the second type on each row until it has been chosen
as a pivot. Moreover, we have that for allk and�, U[k](Z)�,∗ F(Z) = T[k](Z)�,∗ and hence (c) is
true.

Let H [k] be the coefficient of̂Z(κ−1)·�e of M̂[k](Ẑ) F̂(Ẑ) for κs− s ≤ k ≤ κs. SinceM̂[k](Ẑ)

is an order basis, it follows that the firstk− (κs− s) columns ofH [k] are zero. Ifπ [k] = i , then
we haveH [k]i,k−(κs−s)+1 �= 0. Furthermore, ifi �= π [k] for anyκs− s ≤ k < κs , H [κs]

i,∗ must be
zero. Therefore, if we form the matrixH by

Hi, j =
{

H [k]i, j if π [k] = i for someκs− s ≤ k < κs

H [κs]
i, j otherwise,

(33)

then the nonzero rows ofH form a matrix in upper echelon form (up to a permutation of rows).
By reversing the coefficients ofT(Z) we see that

T(Z)i,∗ = σµ
[κs−s]
i (Hi,∗) Zµ

[κs−s]
i +N−κ + lower degree terms.

Thus, L(T(Z)) = σ degT(Z)−N+κ (H ). Sinceσ is an automorphism onQD it follows that the
nonzero rows ofL(T(Z)) are in upper echelon form and henceT(Z) is in weak Popov form. �

Recall fromTheorem A.2that the multipliers ofTheorem 9.1and ofTheorem 9.3both provide
a basis ofthe left nullspace ofF(Z).

9.3. Computing GCRD and LCLM of matrices of skew polynomials

Using the preceding algorithm for row reduction allows us to compute a greatest common
right divisor (GCRD) and a least common left multiple (LCLM) of matrices of skew polynomials
in the same way it is done in the case of matrices of polynomials (Beckermann and Labahn, 2000;
Kailath, 1980). Let A(Z) ∈ D[Z; σ, 0]m1×s andB(Z) ∈ D[Z; σ, 0]m2×s, such that the matrix

F(Z) =
[

A(Z)

B(Z)

]
has ranks. Such an assumption is natural since otherwise we may have GCRDs of arbitrarily
high degree (Kailath, 1980, page 376). After row reduction and possibly a permutation of the
rows, we obtain

U(Z) F(Z) =
[

U11(Z) U12(Z)

U21(Z) U22(Z)

]
·
[

A(Z)

B(Z)

]
=
[

G(Z)

0

]
(34)

with G(Z) ∈ D[Z; σ, 0]s×s, andU1, j (Z), U2, j (Z) matrices of skew polynomials of sizes×mj ,
and(m1 + m2 − s) × mj , respectively. Standard arguments (see, for example,Kailath (1980))
show thatG(Z) is a GCRD ofA(Z) and B(Z). Furthermore, for any common left multiple
V1(Z) A(Z) = V2(Z) B(Z) we see that the rows of

[
V1(Z) − V2(Z)

]
belong to the left

nullspaceNF(Z). Since
[
U21(Z) U22(Z)

]
is a basis ofNF(Z) by Theorem A.2, thereexists

Q(Z) ∈ QD[Z; σ, 0](m1+m2−s)×(m1+m2−s) suchthat[
V1(Z) − V2(Z)

] = Q(Z)
[
U21(Z) U22(Z)

]
,

implying thatU21(Z) A(Z) and−U22(Z) B(Z) are LCLMs ofA(Z) andB(Z).
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In contrast to the method proposed inBeckermann and Labahn(2000), our GCRD has the
additional property of being row-reduced or being in weak Popov form.

9.4. Computation of subresultants

The method ofSection 9.3, applied to two 1× 1 matrices, gives the GCRD and LCLM of
two skew polynomialsa(Z) andb(Z). In this subsection we examine the relationship of the
intermediate results obtained during our algorithm to the subresultants of skew polynomials
defined byLi (1996, 1998). Denoting the degrees ofa(Z), b(Z) by da ≥ db, the j th subresultant
sresj (a, b) for skew polynomials is defined by taking the determinant of the matrix

σ db− j−1(ada) · · · · · · · · · σ db− j−1(a2 j+2−db) Zdb− j−1a(Z)

. . .
...

...

σ (ada) · · · · · · σ(aj ) Za(Z)

ada · · · aj+1 a(Z)

σ da− j−1(bdb) · · · · · · · · · σ da− j−1(b2 j+2−da) Zda− j−1b(Z)

. . .
...

...

σ (bdb) · · · · · · σ(bj ) Zb(Z)

bdb · · · bj+1 b(Z)



.

Theorem 9.4. Let a(Z) and b(Z) be two skew polynomials of degrees da and db, respectively,
such that da ≥ db. Then sresj (a, b) �= 0 if and only if there exists an� = � j with
�µ[2da−2 j−1] = (da − j , da − j )− �e�. In this case,

T[2da−2 j−1](Z)�,1 = ±γ sresj (a, b), γ =
da−db−1∏

i=0

σ db− j+i (ada).

In other words,sresj (a, b) �= 0 if and only if the FFreduce algorithm computes an order basis
of degree(da − j − 1, da − j ) or (da − j , da − j − 1) as an intermediate result.

Proof. After expanding with respect to the firstda − db columns of the matrix



σ da− j−1(ada) · · · · · · · · · σ da− j−1(a2 j+2−da) Zda− j−1a(Z)

. . .
.
.
.

.

.

.

σ (ada ) · · · · · · · · · σ (aj ) Za(Z)

ada · · · · · · aj+1 a(Z)

σ da− j−1(bda ) · · · · · · · · · σ da− j−1(b2 j+2−da) Zda− j−1b(Z)

. . .
.
.
.

.

.

.

σ (bda ) · · · · · · σ (bj ) Zb(Z)

bdb · · · bj+1 b(Z)



,
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we see that the determinant coincides with the quantityγ sresj (a, b). Denote bySj the matrix
of size(2da − 2 j )× (2da − 2 j − 1) obtained by dropping the last column, and notice that

σ−(da− j−1)(Sj ) = K ((da − j , da − j ), (2da − 2 j − 1)), (35)

the Krylov matrix associated tôF(Ẑ) = (â(Ẑ), b̂(Ẑ))T, â(Ẑ) = a(Ẑ−1) Ẑda , and b̂(Ẑ) =
b(Ẑ−1) Ẑda . Thus sresj (a, b) �= 0 if andonly if the dimension (overQD) of the leftnullspace
of Sj is equal to one, which in turn is true if and only if there is a uniqueP ∈ QD[Z; σ, 0] (up to
multiplication with an element fromQD) of order �ω = (2da − 2 j − 1) and degP ≤ da − j − 1.

One verifies usingBeckermann et al.(2002, Lemma 5.2) and the relationda �= 0 that
| �ω[k]| = k = |�µ[k]| for all k in algorithm FFreduce. Letk = 2da − 2 j − 1, then from (2)
we conclude that sresj (a, b) �= 0 if andonly if �µ[k] has one component being equal toda− j −1
and the other one being at least as large asda − j , that is,�µ[k] = (da− j , da− j )− �e� for some
� ∈ {1, 2}.

Finally, if sresj (a, b) �= 0, then we use (35) and the determinant representations ofSection 5
together with theuniqueness of Mahler systems in order to conclude that

γ sresj (a, b) = ±Zµ� R̂[k](Ẑ)�,∗ Ẑ �ω−da·�e = T[k](Z)�,1. �

Thus, whenever�µ[2k−1] is of the form(k, k) − �e� for some� ∈ {1, 2} during the execution
of our algorithm, we can recover the nonzero sresda−k(a, b) from R̂[2k−1](Ẑ) Z �ω−da·�e after
multiplying by Zk and dividing by the extra factor ofγ (or by dividing T[2k−1](Z)�,1 by γ ).

Notice that the extra factor ofγ is introduced at the beginning of the algorithm, before any
step with|Λ| > 1. There is no reduction performed in these firstda − db steps. Thus, we may
modify our algorithm so that no reduction is done until|Λ| = 2 for the firsttime, except the
updating of�µ[k]. Then

sresda−k(a, b) =
{
±Zµ

[2k−1]
1 −da+db R̂[2k−1](Ẑ)1,1 Ẑ2k−1−da if �µ[2k−1] = (k− 1, k),

±Zµ
[2k−1]
2 R̂[2k−1](Ẑ)2,1 Ẑ2k−1−da if �µ[2k−1] = (k, k− 1).

10. Conclusion

In this paper we have given a fraction-free algorithm for transforming a given matrix of
Ore polynomials into one where both the rank and the left nullspace is easily determined. The
algorithm is a modification of the FFFG algorithm ofBeckermann and Labahn(2000) in the
commutative case. In the case of skew polynomials we also show how our approach can be used
to find a weak Popov form of a matrix of skew polynomials. In addition, in the special case of
2× 1 skew polynomial matrices we relate our algorithm along with the intermediate quantities
to the classical subresultants typically usedfor one sided GCD and LCM computations.

There are a number of topics for future research. In this paper we have given a fraction-
free method for elimination of low-order terms of a matrix of Ore polynomials. However for
general Ore domains it appears to be more useful to work with leading coefficients, something
not possible using our methods except for the case of skew-polynomial domains. We note that this
is possible to do using the approach of Abramov and Bronstein simply by usingTheorem 2.2. In
our case we would like to find a fraction-free method for such a reduction over Ore domains. We
will look at combining theprocedure inTheorem 2.2along with modified Schur complements
(Beckermann et al., 1997) of Krylov matrices to help us develop such an algorithm.
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In a recent workAbramov andBronstein(2002) extend their results to handle the case
of nested skew Ore domains, allowing for computations for example in Weyl algebras. We
would like to extend our methods to this important class of matrices again with the idea of
controlling the growth of the resulting matrices. This is a difficult extension to do using the
methods described in our paper since the corresponding associated linear systems do not have
commutative elements. As such the standard tools that we use from linear algebra, namely
determinants and Cramer’s rule, do not exist in the classical sense.

Finally, it is well known that modular algorithms improve on fraction-free methods by an
order of magnitude. We plan to investigate such algorithms for our rank and left nullspace
computations. We note that the determinantal representations gives a first step in this direction
since it provides an upper bound for the sizes of the objects which need to be computed. As in the
modular algorithm for computing a GCRD of Ore polynomials (Li , 1996; Li and Nemes, 1997),
we expect that the fraction-free algorithm would be a basis for the modular algorithm.

Appendix A. Further facts on matrices of Ore polynomials

In this appendix we will present a number of technical results that are needed in our paper.
These results are typically well understood in the context of commutative matrix polynomials
but are not at all obvious for the case of noncommutative matrices of Ore polynomials.

Consider first the notion of the rank of a matrix of Ore polynomials,F(Z) ∈ K[Z; σ, δ]m×s.
Denote byMF(Z) = {Q(Z)F(Z) : Q(Z) ∈ K[Z; σ, δ]1×m} the submodule of the (left)
K[Z; σ, δ]-module⊂ K[Z; σ, δ]1×s obtained by forming left linear combinations of the rows of
F(Z). Then following Cohn(1971, p. 28, Section 0.6), the rank of a moduleM overK[Z; σ, δ]
is defined to be the cardinality of a maximalK[Z; σ, δ]-linearly independent subset ofM.
Comparing with ourDefinition 2.1, we see that rankF(Z) ≤ rankMF(Z). Theorem A.2below
shows that in fact we have equality.

Notice that for any A(Z) ∈ K[Z; σ, δ]m×m we have thatMA(Z)F(Z) ⊂ MF(Z). If now
A(Z) has a leftinverseV(Z) ∈ K[Z; σ, δ]m×m, then we also have the inclusionsMF(Z) =
MV(Z)A(Z)F(Z) ⊂MA(Z)F(Z), showing thatin this caseMA(Z)F(Z) =MF(Z).

For identifying the different concepts of rank, it will be useful to show that the rows of a
row-reduced matrix of Ore polynomials are linearly independent overK[Z; σ, δ]. This however
is an immediate consequence ofLemma A.1(a) below which in the case of ordinary matrix
polynomials is referred to as thepredictable degree property(seeKailath (1980), Theorem
6.3.13).

Lemma A.1. LetF(Z) ∈ K[Z; σ, δ]m×s, with �µ = row-degF(Z).

(a) F(Z) is row-reduced ifand only if, for allQ(Z) ∈ K[Z; σ, δ]1×m,

degQ(Z)F(Z) = max
j

(µ j + degQ(Z)1, j ).

(b) Let A(Z) = B(Z) C(Z) be matrices of Ore polynomials of sizes m× s, m× r , and r × s,
respectively. ThenrankA(Z) ≤ r .

(c) LetA(Z) = B(Z) C(Z) be as in part(b), with A(Z) andC(Z) row-reduced with row degrees
α1 ≤ α2 ≤ · · · ≤ αm andγ1 ≤ γ2 ≤ · · · ≤ γr , respectively. Then m≤ r , andα j ≥ γ j for
j = 1, . . . , m.

(d) Let T(Z) = U(Z) S(Z), with U(Z) unimodular and with bothS(Z) andT(Z) row-reduced.
Then, up to permutation, the rowdegrees ofS(Z) andT(Z) coincide.
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Proof. For anyQ(Z) ∈ K[Z; σ, δ]1×m let N′ := maxj
(
µ j + degQ(Z)1, j

)
and define the vector

�h ∈ K1×m, �h �= �0, by

Q(Z)1, j = h j ZN′−µ j + lower degree terms.

Clearly, degQ(Z) F(Z) ≤ N′, with the coefficient atZN′ being given by

m∑
j=1

h j σ
N′−µ j (F

(µ j )

j ,∗ ) = �h σ N′−N(L(F(Z))).

Sinceσ is injective, we have thatF(Z) is row-reduced if and only ifσ j (L(F(Z))) is of full row
rank for any integerj that is, if and only if hσ j (L(F(Z))) �= 0 for all h �= 0 and all integersj .
This in turn holds true if and only if degQ(Z)F(Z) = N′ for anyQ(Z) ∈ K[Z; σ, δ]1×m.

In order to show (b), we may suppose by eliminating a suitable number of rows ofA(Z) and
B(Z) that rankA(Z) = m. If r < m, thenMB(Z) ⊂ K[Z; σ, δ]1×r , the latterK[Z; σ, δ]-module
being of rankr . Hencer ≥ rankMB(Z) ≥ rankB(Z). On theother hand,B(Z) has more rows
than columns. Thus, by definition of rankB(Z) there exists a nontrivialQ(Z) ∈ K[Z; σ, δ]1×m

with Q(Z)B(Z) = 0. ThusQ(Z)A(Z) = 0, a contradiction to the fact thatA(Z) has full row
rankm. Thereforer ≥ m, as claimed in part (b).

For a proof of part (c), recall first that the rows of the row-reducedA(Z) are K[Z; σ, δ]-
linearly independent by part (a), and hencem = rankA(Z) ≤ r by part (b). Suppose that
α j ≥ γ j for j < k, butαk < γk. Part (a) tells us that degB(Z) j ,� ≤ α j −γ�. Sinceα j < γk ≤ γ�

for j ≤ k ≤ �, we mayconclude thatB(Z) j ,� = 0 for j ≤ k ≤ �, in other words, the firstk rows
of A(Z) are left polynomial combinations of the firstk − 1 rows ofC(Z). Again from part (b)
it follows that the firstk rows ofA(Z) areK[Z; σ, δ]-linearly dependent, a contradiction. Hence
the assertion of part (c) holds.

Finally, part (d) is obtained by twice applying part (c) (compare withKailath (1980, Lemma
6.3.14, p. 388) for the case of ordinary matrix polynomials).�

Consider now the left nullspaceNF(Z) of a F(Z) ∈ K[Z; σ, δ]m×s. Clearly, NF(Z) is
a K[Z; σ, δ]-module. We want to construct a row-reduced basis of this space, and obtain
information about the degrees of such a basis.

Theorem A.2. Let F(Z) ∈ K[Z; σ, δ]m×s, and U(Z) ∈ K[Z; σ, δ]m×m be unimodular, with
T(Z) = U(Z) F(Z) having r nonzero rows, where the submatrix consisting of the r nonzero
rows ofT(Z) are row-reduced. Then

r = rankMF(Z) = rankF(Z) = m− rankNF(Z), (A.1)

with a basis overK[Z; σ, δ] of NF(Z) given by those rows ofU(Z) corresponding to the zero
rows ofT(Z).

Moreover, there exists a row-reducedW(Z) ∈ K[Z; σ, δ](m−r )×m with rows forming a basis
of the left nullspaceNF(Z), and

row-degW(Z) ≤ (m− 1)N�e, N = degF(Z).

Proof. Denote byJ the set of indices of zero rows ofT(Z), anddefine the matrixU(Z)J,∗ by
extracting fromU(Z) the rows with indices inJ. In a firststep, let us determine the left nullspace
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of T(Z), and establish equality (A.1) for the matrixT(Z). For someP(Z) ∈ K[Z; σ, δ]1×m we
have

P(Z)T(Z) =
∑
j �∈J

P(Z)1, j T(Z) j ,∗.

We have shown implicitly in Lemma A.1(a) that the rowsT(Z) j ,∗ for j �∈ J are linearly
independent overK[Z; σ, δ]. ThereforeP(Z) ∈ NT(Z) if and only if P(Z)1, j = 0 for all j �∈ J,
and in addition

r = rankT(Z) = m− rankNT(Z).

As mentioned before, we also have that rankT(Z) ≤ rankMT(Z) =: ρ. Suppose that
there is strict inequality. Then there existρ elements ofMT(Z) which areK[Z; σ, δ]-linearly
independent and which can be written as rows of the matrixB(Z)T(Z) for someB(Z) ∈
K[Z; σ, δ]ρ×m. Then rankB(Z)T(Z) = ρ by construction ofB(Z). HoweverT(Z) contains only
r rows different from zero, and hence rankB(Z)T(Z) ≤ r by Lemma A.1(b), a contradiction.
Consequently, (A.1) holds for the matrixF(Z) being replaced byT(Z).

We now use the fact thatU(Z) is unimodular, that is, there exists aV(Z) ∈ K[Z; σ, δ]m×m

with V(Z) U(Z) = U(Z) V(Z) = I. Consequently,Q(Z) ∈ NF(Z) if and only if P(Z) =
Q(Z) V(Z) ∈ NT(Z), that is,

NF(Z) = {P(Z) U(Z) : P(Z)1, j = 0 for j �∈ J} =MU(Z)J,∗ .

SinceU(Z) has a right inverse, we may conclude thatNU(Z) = {0}, showing that rows of
unimodular matrices are linearly independent overK[Z; σ, δ]. Thus the rows ofU(Z)J,∗ form a
basis ofNF(Z), and

m− rankMF(Z) = m− rankMT(Z) = m− r = rankNF(Z).

Since again the relationρ := rankF(Z) ≤ rankMF(Z) is trivial, for a proof of the first part
of the assertion ofTheorem A.2it only remains to show thatρ < r leads to a contradiction.
Suppose without loss of generality that the firstρ rows ofF(Z) are linearly independent. Then,
by maximality of ρ, we find for anyj = ρ + 1, . . . , m quantitiesQ(Z) j ,k ∈ K[Z; σ, δ] with

Q(Z) j , j �= 0, Q(Z) j , j F(Z) j ,∗ +
ρ∑

k=1

Q(Z) j ,kF(Z)k,∗ = 0,

that is, we have foundm− ρ > m− r manyK[Z; σ, δ]-linearly independent elements ofNF(Z),
in contradiction to our previous findings on rankNF(Z).

In order to show the second part ofTheorem A.2, suppose thatU(Z) andT(Z) are those
defined inTheorem 2.2. Let W(Z) be the row-reduced counterpart ofU(Z)J,∗ obtained by
applyingTheorem 2.2. Since one is obtained from the other by multiplying on the left by some
unimodular factor, the rows ofW(Z) form a row-reduced basis ofNF(Z), with row-degW(Z) ≤
row-degU(Z)J,∗. Hence it only remains to recall the bound for the row-degree of the multiplier
U(Z) of Theorem 2.2: we have forj ∈ J

degU(Z) j ,∗ ≤ ν j − µ j + (| �µ| − |�ν|) ≤ |�µ| − �µ j ≤ (m− 1)N. �

We should mention that the quantity row-degW(Z) of Theorem A.2is an invariant ofF(Z)

since byLemma A.1(d), we obtain the same degrees (up to permutation) for any row-reduced
basis of the left nullspace ofF(Z). In the case of ordinary matrix polynomials, the components
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of row-degW(Z) are usually referred to asleft minimal indicesor left Kronecker indices, (see
Section 6.5.4, p. 456 ofKailath (1980)).

We conclude this appendix by showing that a certain number of elementary properties of the
rank remain equally valid for matrices of Ore polynomials.

Lemma A.3. For anyF(Z) ∈ K[Z; σ, δ]m×s, the rank ofF(Z) does not change by applying any
of the row operations of first or second type described in the introduction, or by multiplyingF(Z)

on the right by a full rank square matrix of Ore polynomials.

Proof. Suppose thatA(Z) ∈ K[Z; σ, δ]s×s is of ranks. ThenNA(Z) = {0} by (A.1), implying
thatNF(Z)A(Z) = NF(Z). Hence F(Z)A(Z) andF(Z) have the same rank by (A.1). If U(Z) is
unimodular, thenMU(Z) F(Z) = MF(Z), showing that the rank remains the same.Finally we
need to examine the row operation of multiplying one row ofF(Z) with a nonzero element of
K[Z; σ, δ]. SinceK[Z; σ, δ] contains no zero divisors, it is easy to check thatF(Z) and the new
matrix will have the same number ofK[Z; σ, δ]-linearly independent rows, and hence the same
rank. �
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