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Abstract

In this paper we give formulas for performing row reduction of a matrix of Ore polynomials in a
fraction-free way. The reductions can be used for finding the rank and left nullspace of such matrices.
When specialized to matrices of skew polynomials our reduction can be used for computing a weak Popov
form of such matrices and for computing a GCRD and an LCLM of skew polynomials or matrices of
skew polynomials. The algorithm is suitable for computation in exact arithmetic domains where the growth
of coefficients in intermediate computations is a concern. This coefficient growth is controlled by using
fraction-free methods. The known factor daa predicted and removed efficiently.

(© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ore rings provide a general setting for describing linear differential, recurrence, difference
andg-difference operators. Formally these are giverkliy ; o, §] with K a field of codficients,
Z anindeterminatey an injective homomorphism,a derivation and with the multiplication rule
Za=o(a)Z+§(a)foralla € K. In this paper we are interested in matrices of Ore polynomials
and look at the problem of transforming such matrices into “simpler” ones using only certain
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row operations. Examples of such transformations include conversion to special forms, such as
row-reduced, Popov or weak Popov normal forms. In our case we are primarily interested in
transformations which allow for easy @emination of rank and left nullspaces.

For a givenm x s matix F(Z) € K[Z; o, §]™*S we are interested inpmlying two types of
elementary row operations. The first type includes

(a) interchange two rows;
(b) multiply a row by a nonzero elementlif{Z; o, §] on the kft;
(c) add a polynomial left multiple of one row to another.

In the second type of elementary row operations we include (a), (b) and (c) but require that
the row multiplier in (b) comes frofi. The seond set of row operations is useful, for example,
when computing a Greatest Common Right Divisor (GCRD) or a Least Common Left Multiple
(LCLM) of Ore polynomials.

Formadly, in the first instance we cariew a sequence of elementary row operations as a matrix
U(Z) € K[Z; o, §]™™M with the result of theseow operations given by (Z) = U(Z) F(Z) €
K[Z; o, 5]™%S. In the ®cond caseJ(Z) would have the additional property that there exists a
leftinverseV(Z) € K[Z; o, §]™™ suchthatV(Z) U(Z) = Im. In the canmutative case, such a
transformation matrix is called unimoduldtdilath, 1980.

In many cases it is possible to transform via row operations a matrix of Ore polynomials
into one whose rank is completely determined by the rank of its leading or trailing coefficient.
In the commutative case, this can be done via an algorithBeckermann and Labait997)
while in the noncommutative case of skew polynomials (i.e. whe£e0) this can be done using
either the EG-elimination method &bramov(1999 or the ayorithm ofAbramov andBronstein
(200)). In the commutative case, examples of applications for such transformations include
matrix polynomial division, inversion of matrix polynomials, finding matrix GCDs of two matrix
polynomials and finding all solutions to various rational approximation problems. For the skew
polynomial case, it was shown Bbramov andBronstein(2001]) that sich transformations can
be used to find polynomial and rational solutions of linear functional systems.

The algorithm given byAbramov andBronstein(2001) improves on theEG-elimination
method ofAbramov (1999 and exends a method oBeckermann and Labahii997) to the
noncommutative case. While these algorithms have good arithmetic complexity, coefficient
growth may occur and can only be controlled through coefficient GCD computations. Without
sich GCD computations the coefficient growth can be exponential. Examples of such growth can
be found inSection 8

In this paper we consider the problem of determining the rank and left nullspace of a matrix of
Ore polynomials for problems where coefficient growth is an issue. Our aim is to give a fraction-
free dgorithm for finding these quantities when working over the donfi{id; o, §] with D an
integral domain, anads (D) C D, §(D) c D. Examples 6suchdomains includéd = F[n] for
some fieldF with Z the shft operator and) = F[x] and whereZ is the differential operator.

By fraction-free we mean that we can work entirely in the doniyig; o, §] but tha coefficient
growth is controlled without any need for costigefficient GCD computations. In addition we
want to ensure that all intermediate results can be bounded in size which allows for a precise
analysis of the growth of coefficients of our computation.

Our results extend the algorithm Beckermann and Labai8000 in the caonmutdive case
andBeckermann et al2002) in the case of matrices of skew polynomials. This extension has
considerable technical challenges. For example, unlike the skew and commutative polynomial
case, the rank is no longer necessarily determingtiéyank of the leading or trailing coefficient
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matrix. As a result, a different termination criten is required for matrices of Ore polynomials.
We alsoshow how toobtain a row-reduced basis of the left nullspace of matrices of Ore
polynomials.

In the common special case of matrices of skew polynomials, we can say more. Our methods
can be used to give a fraction-free algorithm to compute a weak Popov form for such matrices
with negligible additional computations, which is an improvement over the row-reduced form ob-
tained in our preious algorithm Beckermann et 812002. In addition, the methods can be used
to compute, in a fraction-free way, a GCRD and an LCLM of skew polynomials or matrices of
skew polynomials. Finally, we show how the quéies produced during such a GCRD computa-
tion relate to the subresultants of two skew polynomikis 1996 1998, the dassical tools used
for fraction-free GCRD computations. Theredowe can view our algorithm as a generalization
of the subresultant algorithm. Although previous algorithms ¢@bgamov andBronstein 2007)
may be faster in some cases, our algorithms have polynomial time and space complexities in the
worstcase. In particular, when coefficient growth is significant our algorithm is faster. As our
methods for skew polynomials require the coefficients be reversed, we restrict our attention to
the case where is an automorphism when dealing with matrices of skew polynomials.

The remainder of this paper is organized as followSéetion 2ve discuss classical concepts
sieh as rank and left nullspace of matrices of Ore polynomials and extend some well known
facts from matrix polynomial theory to matrix Ore domains.3action 3we give a brief
overview of ourapproach. IrSection 4we defineorder basesthe principal tool used for our
reduction vhile in Section 5we place these bases into a linear algebra setting. A fraction-free
recursion formula for comging order bases is given iBection 6followed by a discussion of
the termination criterion along with the complexity of the algorithm in the following section.
Section 8gives some examples where coefficient growth is an important issue. We also compare
the requirements for our algorithm and that of Abramov and Bronstein in these cases. Matrices
of skew polynomials are handled Bection Swhere we show hat our algorithm can be used
to find a weak Popov form of such matrices. histsetion we also show how the algorithm
can be used to compute a GCRD and LCLM of two skew polynomials and relate order bases to
subresultants in the special case ok2l matrices of skew polynomials. The paper ends with a
conclusion along with a discussion of directidasfuture work. Finally, we include an appendix
which gives a number of technical facts about ricais of Ore polynomials that are necessary for
our results.

Notation. We shall adpt the following conventions for the remainder of this paper. We assume
thatF(Z) € D[Z; 0, §]™S. Let N = degF(Z), andwrite

N
Fz)y=) FWzl,  with F) e D™

j=0
We denote the elements df(Z) by F(Z), ;, and tre elements oF (1) by Fk(’je). The jth row
of F(Z) is denotedF(2); ... If J C {1, ..., m}, the sibmatrix formed by the rows indexed by
the elements of is denotedF(2),; .. For a scalar polynomial, however, we will write(Z) as
f(2) = Z?‘:o fj Z1. For any vector of integers (also called multi-inde¥)= (w1, ..., wp),
we denote by|@| = Zipzl wi. We also @note byZ® the matrix of Ore polynomials having®
on the diagonal and 0 everywhere else. A matrix of Ore polynori@fy is said to have row
degreev = row-deg-(Z) (and column degreg = col-degF(Z), resgectively) if theith row
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has degree; (and thejth column has degree;). The vector§ denotes the vector having 1 in
component and 0 elsewhere arél= (1, ..., 1).

2. Row-reduced matrices of Orepolynomials

In this section we will generalize some classical notions such as rank, unimodular matrices,
and the transformation to row-reduced matrices (see for instdadath (1980) to the case
of Ore matrix polynomials. For the sake of completeness, generalizations of other well known
classical properties for matrix polynomials such as the invariance of the rank under row
operations, the predictable degree propenty minimal indices are included in the appendix.

With ¥ = row-degF(Z) andN = max; v; = degF(Z), we maywrite

ZN&VE(Z) = L ZN + lower degree terms,

where the matrixX. (F(Z)) := L € K™S is called theleading coefficient matrixf F(Z). In
analogy with the case of ordinary matrix polynomiBl&) is row-reducedif rank L = m.

Definition 2.1 (Rank, Unimodulay.

(a) ForF(2) € K[Z; o, ™S, thequantity rankF(Z) is defined to be the eximum number of
K[Z; o, §]-linearly independent rows &f(Z).

(b) A marix U(Z) € K[Z; o, §]™ ™M is unimodulaiif there exists & (Z) € K[Z; o, §]™™M such
thatV(Z)U(Z) = U(Z)V(Z) = Iy, O

Weremark that our definition of rank is different from (and perhaps simpler than) th@obh
(1971 or Abramov andBronstein(2001) who consider the rank of the module of rowskfZ)

(or the rank of the matrix over the skew-fidkd Z; o, §) of left fractions). This definition is more
convenient for our purposes. We show in the appendix that these quantities are in fact the same.
For the main result of this section we will show that any matrix of Ore polynomials can be
transformed tmne whose nonzero rows form a row-reduced matrix by means of elementary row

operations of the second type given in the introduction.

Theorem 2.2. For any F(Z) € K[Z; o, 8]™S there exists a unimodular matrik)(Z) <
K[Z; o, 5]™M with T(Z) = U(Z) F(Z) having r < min{m, s} nonzero rowstow-degT (Z) <
row-degF(Z), and where the submatrix consisting of the r nonzero row3 @) are row-
reduced.

Moreover, the unimodular multiplier satisfies the degree bound

row-degU(Z) < v + <|ﬁ| — V] — min{u; }> €,
]

whereji := max0, row-degF(Z)) and? := max0, row-degT (2)).

Proof. We will give a constructive proof of this theorem. Starting withZ) = |y and
T(Z) = F(Z), we oonstruct a sequence of unimodular matrité®) andT (Z) = U(Z) F(2),
with row-degU(Z) < v — & + (Jjiz| — |V)& v = max(O0, row-degdT (Z)), and tle final T(Z)
having the desired additional properties. In one step of this procedure, we will update one row
of the previously computed(2), T(Z) (and bence one componenti®)f, and obtain the new
quantities U(Z)"W T (Z)"®Wwith p"W = max(0, row-degdT (Z)"eW).
Denote byJ the set of indices of zero rows 8f(Z), andL = L(T(Z)). If the matix formed
by the nontrivial rows off (Z) is not yet row-reduced, then we can find & K<™ with v # 0,
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vL = 0, andv; = 0 for j € J. Choose an indek with vk # O (the index of the updated row)
and

vk = MmaxX{vj : vj # 0},
and defineQ(2) € K[Z; o, §]11*™ by Q21 = a”k—t(vj)Z”k—”J if vj # 0,andQ(2)y; =0
otherwise, wheré = degT (Z). Then

T2 = Q(2)T(2)

= Z ot (vj)Z% i TJ-(:")Z”J + lower degree terms
vj#0

m
Z ot (j)o Vi (TJ-(”*‘))Z”k + lower degree terms
=1

= o tL)Z% + lower degree terms

Hence ded (Z)p%" < vk — 1, showing that row-de§(Z)"*" < row-degT (Z). Notice that
U(Z)"™W = V(Z)U(Z), whereV(Z) is obtained froml by replacing itskth row by Q(2).
Since Q(Z)1x € K\ {0} by construction, we may consid&¥(Z) obtained fromly by
replacing its(k, j) entry by —(Q(Z)1 ) 1Q(Z)y  for j # k, andby (Q(Z)1 )~ for j = k.
The reader may easily verify th&/(Z2)V(Z) = V(Z)W(Z) = In. Thus, as withU(2),
U(Z)"®" is also unimodular. Making use of the degree boundsU¢Z), we also @t that
deqQ(Z2)U(2)) < vk — uk + || — |v|. Hence the degree bounds fdfZ)"W are obtained
by observing that

row-degu(Z)"" < ¥ — i + (|ji| — [VD& < "W — fi + (|| — [D"*M)E.

Finally, we naotice that, in each step of the algorithm, we either produce a new zero Ta& n
or else decreagé|, the sum of the row degrees of nontrivial rowsIaZ), by at least one. Hence
the procedure terminates, whiamplies that he nonzero rows of (Z) are row-reduced. O

Remark 2.3. The algorithm given in the proof oTheorem 2.2closely follows the one in
Beckermann and Labah(i997), Eqn. (12), for ordinary matrix polynomials, and is similar to
that of Abramov andBronstein(200)) in the case of skew polynomials. However, we prefer
to perform our computations with skew polynomials instead of Laurent skew polynomials
(e.g. whenz is the dfferentiation operator). The degree bounds giveiilieorem 2.Xor the
multiplier matrix U(Z) appear to be new.O

Remark 2.4. In the case of commutative polynomials there is an exampReirkermann et al.
(in press Example5.6) of aF(Z) which is unimodular (and hencé(Z) = I), has row degree
N& and where its multiplier satisfies row-dggz) = (m— 1) Né. Herce the worst case estimate
of Theorem 2.Zor the degree ob)(2) is sharp. O

In Theorem A.2of Appendix Awe will prove that the quantity of Theorem 2.2n fact equals
the rank ofF(Z). In addtion, this theorem will also show that the mattiZ) of Theorem 2.2
gives some important properties about a basis for the left nullspaeg€ofgiven by

Nezy ={Q(2) € K[Z; 0, 81Y™: Q(Z) F(Z) = 0}.

Furthemore, various other properties are includedAippendix A In paticular we prove in
Lemma A.3that the rank does not change after perfimgrelementay row operations of the first
or second kind.
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3. Overview

Theorem 2.Zhows thabne way to compute a row-reduced form is to repeatedly eliminate
unwanted high-order coefficients, until the leading coefficient matrix has the appropriate rank.
Instead of eliminating high-order coefficients, approach is to eliminateW-order coefficients.

In the case of skew polynomials a suitable substitution &saion 9 can be made to reverse

the coefficients to eliminate high-order coefficients. By performing elimination until the trailing
coefficient has a certain rank (or in triangular form), we can reverse the coefficients to obtain a
row-reduced form (or a weak Popov form).

We introduce the notion of order and order basis for the elimination of low-order coefficients.
Roughly, the order of an Ore polynomial is the smallest poweZ @fith a nonzero coefficient;
an order basis is a basis of the module of all left polynomial combinations of the rows of
F(Z) such tlat the combinations have a certain number of low-order coefficients being zero.
One can, in fact, view an order basis as a randéserving transformation which results in
an Ore matrix with a particular order. If the basis element corresponds to a left polynomial
combination which is identically zero, thénis also an element in the left nullspaceefz).

If we obtain the appropriate number of left polynomial combinations which are identically zero,
we get abasis for the left nullspace &f(Z) because the elements in an order basis are linearly
independent.

From degree bounds on the elements in the order basis, we obtain linear systems of equations
for the unknown coefficients in an order basis. By studying the linear systems we obtain results
on uniqueness as well as a bound on the sizes of the coefficients in the solutions. The coefficient
matrices (cHed striped Krylov matrices) of these linear systems have a striped structure, so that
each stripe consists of the coefficientsZ3f muitiplied by a row of F(Z) for somek. One may
apply any technique for solving systems of linear equations to obtain an order basis. However,
the structure inherent in striped Krylov miaes of the linear systems are not exploited.

Our algorithm exploits the structure by nperming elimination on only one row for each
stripe. The recursion fanulas gven in Section 6are equivalent to performing fraction-free
Gaussian eliminationBareiss 1968 on the stped Krylov matrk to incrementhly eliminate
the omlumns. By performing elimination on the matrix of Ore polynomials directly, our
algorithm controls coefficient growth without having to perform elimination on the much
larger Krylov matrix. The relationship with fraction-free Gaussian elimination is also used to
show thatour algorithm can be considered a geneation of the subresultant algorithm (cf.
Section 9.4.

4. Order basis

In this section we introduce the notion ofder andorder basedor a given matrix of Ore
polynomialsF(Z). These arette primary tools which will be used for our algorithm. Informally,
we are interested in taking left linear combinations of rows of our input m&tf) in order to
eliminate low-order terms, with the elimination differing for various columns. Formally such an
elimination is captured using the concept of order.

Definition 4.1 (Orden. Let P(Z) € K[Z; o, 5]1**™ be a vector of Ore polynomials ariél a
multi-index. ThenP(2) is said to haverder o if

P(Z)F(Z) = R(Z) Z° (1)
with R(Z) € K[Z; o, §]*S. The marix R(Z) in (1) is cdled aresidual. O
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We are nterested irall possible row operations which eliminate lower order termb@).
Using our formalism, this corresponds to finding all left linear combinations (&&t; o, §]) of
elements of a given order. This in turn is captured in the definition of an order basis, which gives
a basis of the module of all vectors of Ore polynomials having a particular order.

Definition 4.2 (Orderbasig. Let F(Z) € K[Z; o, §]™S, andw bea multi-index. A matrix of
Ore polynomialsM (Z) € K[Z; o, §]™™M is said to be arorder basisof orders and column
degreeu if there exists a multi-inde} = (i1, ..., um) suchthat

(a) every row oM (Z) has orde#,
(b) for everyP(Z) € K[Z; o, §1*™ of ordera there exists ®(Z) € K[Z; o, §]1*™ suchthat

P(2) = Q(2)M(2),
(c) there exists a nonzetbe K suchthat
M(Z) =d Z* +L(2)
where ded (Z)y ¢ < ue — 1.

If in additionM (Z) is row-reduced, with row-del (Z) = ji, then we efer toM (Z) as areduced
order basis O

Part(a) of Definition 4.2staes that every row of an order basis eliminates rows @) up
to a certain order while part (b) implies that the rows describe all eliminates of the order. The
intuition of part (c) is thatu; gives the number of times roivhas been used as a pivot row in
a row dimination process. A reduced order bakss added degree constraints, which can be
thought of as fixing the pivots.

By the Predictable Degree Property for matrices of Ore polynomials showeinma A.1a)
of the Appendix Awe can show that an order basis will be a reduced order basis if and
only if row-degM (Z) < i, and wehave the added degree constraint in part (b) that, for all
j=1,...,m,

degQ(2)y,j < degP(Z) — ;. 2

Example4.3. LetD = Z[x], o (a(X)) = a(x), ands(a(x)) = dixa(x) foralla(x) e D and
27?2 4 2XZ+ x> Z2-Z+2

F(Z):[ XZ+2 3xZ+1] ®
Then an order basis fét(Z) of order(1, 1) and degre€l, 1) is given by
(X2 —4)Z — 2x 4x

0 (x2 — 4)2} '

Note thatM (Z) is a reduced afer basis. O

M(Z)=|:

We remak that the definition of order basis given Beckermann et al2002 is slightly
more restrictive than our definition of reduced order basis given here. We use the more general
definition in order to gain more flexibility with our pivoting.

A key theorem for proving the correctness of the fraction-free algorithm deals with the
unigueness of order basis. The prooBackermann et al2002) is not applicable for the new
definition of order basis and so we give a new proof here for this result.
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Theorem 4.4. LetM (Z) be an order basis of ordeb and degreei.

(a) There exists only the trivial row vect®t(Z) = 0 with column degree< 11 — & and order
> o.

(b) For any k, a row vector with column degree i — € + & and order> & is unique up to
multiplication with an element fror.

(c) An order basis of a particular order and degree is unique up to multiplication by constants
fromK.

Proof. Weonly need to show part (a) as (b) and (c) follow directly from (a). Suppos®tizat ~
0 has oder® and column degreg — &. By Definition 4.2b), there exist®(Z) € K[Z; o, §]1*™
suchthatP(Z) = Q(Z)M(Z). Let j be an index such that d€)Z), j is maxmum. Since

P(Z) # 0, it follows that degQ(Z), ; > 0. Now,

m
degP(2), j = deg(Z Q(2)1kM(2)x, j) .

k=1
Note that ifk £ |, then
degQ(2)1 k M(2)y,j = degQ(2); k + degM (2)y
< degQ(Z)y,j +degM(Z)y
<degQ(Z)yj +uj — L.
Also,
degQ(2)1, M(2)j,j = degQ(2)y,j + uj,
so that
degP(2)1; = degQ(2)1j + ij = uj.

This contradicts the assumption that ®&@); j < uj —1. O

In the commutative case there are a number of characterizations of order bases. For example

in Beckermann and Labal{h997) order basesra characterized by profégs on its determinant.

Example4.5. Let a(Z) b(Z) € D[Z; o, 0] with degreesd,, dp, resgectively, withd, > dp. Set
t=dy—dp y:= ]'[I _oo' (bp) and solve

ya(Z) =q(2)b(Z) +r(z) z'** 4

with degq(Z) = t and deg(Z) < dy. Eq. @) corresponds to solving the linear system of
equations

bo o(b1) - ol(by)

vlao,....al =1l0o, ..., G o (ko . . ()

o' (.bo)
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an equation similar to that encountered in performing right pseudo-division of skew polynomials.
Setting

—q(Z
M(Z):[y q( )]

0 yzt+l

we see that
Z Z
M(2) [a( )] = [r( )] AN
b(2) w(Z)
wherew(Z) = y ot1(b(2)) = y Zidio ot1(b))Z'. Properties (a) and (c) dDefinition 4.2

are trivially satisfied byM (Z). Property (b) follows from the linear equations given in the next
section. O

5. Determinantal representations

Assume nowhat the entries of (Z) come fromD[Z; o, §]. We are ierested in constructing
an algorithm for recursively computing order basdsz) ¢ K™M[Z; o, §] for increasing
orders, wherékK = Qp, the quotient field ofD. In order topredict the size of these objects
and predict common factors, we derive in this section a determinantal representation together
with a particular boice of the constart arising inDefinition 4.4c).

Because the order condition Pefinition 4.1is on the right, we observe that if

F2)=) Fizl,  pP2)y=) pPkz¥
i k

then we have
P2)F(2)=) sVzl (6)

J

with the unknownsP® obtained by constructing a system of linear equations by setting the
undesired coefficients &) equal to zero.

Let us examine the underlying system of linear equations. Notice first that foA &y e
K[Z; o, §] we may write

k(ZA(2)) = o (ck-1(A(2))) +8(ck(A(2))) (7

wherecy denotes théth coefficient of a polynomial (witle_; = 0). We maywrite (7) in terms
of linear algebra. Denote By = (Cy,»)u,v=0,1.... the lower triangular infinite matrix of operators
defined bycy y = é, cu+1,u = o and 0 otherwise, and b§,, (¢ > 0) its principd submatrix
of orderu. Furthermore, for eaclA(Z2) € K[Z; o, §] and nonnegative integer we associate
vectors of coefficients

AW = [co(A(Z)). ....cu1(A@N]T = [AQ, ... AWDT, (8)

A = [c(A(2)). ca(A(Z)). .1 =[AQ, AP, T, 9)

Note that we begin our row and column enumeration at 0. We can inteffrét (erms of
matiices by

Cu AW =[Co(ZAZ)). ..., Cu1(ZAZNT.
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Comparing with 6), we know thaP(Z) has ordes if and only if foreacht = 1, ...,s,j =

0,...,wr — 1we have

m
> ¢ (P(Z)1xkF(Z)ke) = 0.
k=1

If we wish to find solutiond?(Z) such that deg?(Z); x < vk for some multi-index v, then we
obtain a system of linear equations of the form

(P(O) P(Vl) P(O)

(1)) - > -
O P PO PRI K+ 8 @)

0, (20)
where the coefficiennatix has he form
S 2= e=1,...,s

KW +8 o) = (Kkek+ 1 we))y 17
andKy ¢ (v + 1, @) T may be written as

[Fit co Ry o chRY]. (11)
Thus, the matrixK (v + & )" is in the form of a striped Krylov matrixBeckermann and
Labahn 2000, except that by stepping from one column to the next we not only multiply with
a lower shif matrix butalso apply the functions ands. Thus, in ontrast toBeckermann and
Labahn(2000, here we obtain a striped Krylov matrix with a matfixhaving operator-valued

elements.

Example5.1. Let F(Z) be as inExample 4.3with Z a differential operator. Then we have

Tx2  2x 2 2 -1 17

2x X242 X 0 2 -1

2 4x X2+ 4 0O 0 2
KIG3.G3) = X cJ)r 1 3x 0

0 3 X 0 4 X

| 0 0 4 0 0 7] g

Example5.2. In the case of matrices of skew polynomials, the& » submatrixKg ¢ (v, @) is
simply

@ g Q@ -1
C’O( k(zz)) GO( k(e)) C’O( k(zz)) O'O(Fk(,g ))
g ¢! A
0 o lie)) al( k(zz)) C’l(Fk(,aé ))
- 0 -
0 0 lold l(Fk(,e)) coeoV l(Fk()“é ”))

Thus withF(Z) as in @) butwith o (a(x)) = a(x + 1) ands = 0 we have
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X2 2X 2 2 -1 1 7]
0 x+12 2x+1) | 0 2 -1
0 0 X + 2)2 0 0 2
K(G 3,33 = 2 X (T)) 1 3x 0
0 2 x+1 0 1 3x+1
0 0 2 0 O 1 1 0

According to (0), it follows from Theorem 4.4hat if there exists an order basi%(Z) of
orders and degreei thenK (i, @) has full row rank, and more precisely

k=1,....,m: rank K(i,®) =rank K(i + &, @) = |1i|. (12)

Suppose more generally thatanda are multi-indices verifying12). We call amultigradient
d = d(j1, ®) any constard:1 times the determinant efregular submatrix . (i1, @) of maximal
order of K (i1, ), and aMahler systentorresponding tdji, @) a matrix of Ore polynomial
M (Z) with rows haing orders and degree structure

M(z) =d- Z* + lower order column degrees

In order to show tha such a system exists, we state explicitly the linear system of equations
needed to compute the unknown coefficients ofktrerow of M (Z): denote byb¥(ji, &) the
row added while passing frol (i, @) to K (i + &, ). Then, by (10), the vector of coefficients
is a solution of the (oweletermined) system
X+ K(ii, @) = d - b"(ji, @)
which by (12) is equivalent tothe system
X - Ky (fi, @) = d - b¥(ii, @), (13)

where inbX(ji, @) and inK., (11 +&, @) we keep the same columns asdp(ji, ). Notice that by
Craner’s rule, (L3) leads to a solution with coefficientsh Moreover, we may érmadly write
down a determinantal representation of the edata of a determinantal order basis, namely

M(Z)y = £ det[Ky(ii + &, &) | Ee.pp—116,(2)] (14)
with

E¢,(Z)=10,...,011,Z,...,2"[0,...,0]", (15)
thenonzero entries ik, ,(Z) occurringin the ¢th stripe. h addtion, we have that

R(Z)e 2% = Y M@ jF(2)j, =+ det[Ku(ji + 8. @) | Egjiva(2)]. (16)

J

where

Es(2) = [F(Z)1gs -, Z (D)1l .. .. IF(Dmes - 2 (D)l

In both (14) and (L6) the matices have commutative entries in all but the last column. It is
understood that the determinant in both cases is expanded along this column.

Finally we mention that, byhe uniqueness result dftheorem 4.4any oder basis of degree
@ and orderw coincides up to multiplication with some element&awith a Mahler system
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associated t@ji, ), which therefore itself is an order basis of the same degree and order. By a
particular pivoting technique we get a reduced order basis by computing Mahler systems.

6. Fraction-freerecursion formulasfor order bases

In this section we show how to recursively compute order bases in a fraction-free way. This
can also be thought of as constructing a sequence of eliminations of lower order tdf(xs of
In terms of linear algebra, the recursion can be viewed as a type of fraction-free Gaussian
elimination which takes into consideration the special structure of the coefficient matrix of the
linear system associated to the “eliration of lower order terms” problem.

For an order basis! (Z) of order® and degreg having a Mahler system normalization, we
look at the first terms of the rehials. If they are all equal to zero then we have an order basis of
a higher order. Otherwise, we give a recursive formula for building an order basis of higher order
and degree. However, a priori this new order basis has coefficientsresmQp, the quotient
field of D, Snce we divide through some factors. In our case, however, the new system will be a
Mahler system according to the existence and unigse results established by the determinantal
representations, and hence we will keep objects with coefficiefids in

In the fdlowing theorem we give a recurrence relatiwhichclosely follows the case of skew
polynomials Beckermann et 312002 and the ommutdive case Beckermann and Labahn
200Q Theorem 6.1(c)). The resulting order bases have properties similar to those cited by
Beckermann and Labal{B00Q Theorems 7.2 and 7.3).

Theorem 6.1. LetM (Z) be an order basis of ordes and degregi, andi € {1, ..., s}. Denote
by rj = €y, (M(Z2)F(2))j 5), the(j, ») entry of the first term of the residual bf(2). Finally,
setw := & + &,.

@lfri=---=rp= 0thenM (Z) := M (Z) is anorder basis of degreeé := ﬁ and ordera.

(b) OtherW|se letr be an index such that,r # 0. Then an cader basisM (Z) of degree
V:=i+8& and ordera with coefficients if is obtained via the formulas

Pr M(Z)pk =12 M(Z)px — TeM(Z) 7k (7)
fore,k=1,2,...,m,¢ # m,and
(P)IM(Z)rk = (1 Z=8Tx)MDzic— Y o () M(Z)g (18)
L#T

fork=1,2,...,m,where p = Cuj+67—1(M(Z)y j)-

(c) If in additionM (2) is a Mahler system with respect ., @), thenM (Z) is also a Mahler
system with respect i@, ®). In particular, M (Z) has coefficients ii.

Proof. Part(a) is clear from the fact that the rowsif(Z) have ordefs whenri =.-..=rp =
0.

For part (b)notice first that rowsM(Z)g,* for £ # m have orders by construction, as
required inDefinition 4.4a). In addition row(r, Z — §(r;)) M(Z), . also has orded since
(rr Z—38(ry))(ry) =rpo(ry)Z. By construction therefore rom (2). 4 has ordefs.

The verification of the new degree constraint®efinition 4.2c) (with /i being replaced by)
for thematiix M (2) is straightforward and is the same as in the commutative &eekérmann
and Labahn200Q Theorem 7.2). In addition, notice that; is the leading coefficient dfl (Z), ,,
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so the leadingaefficient ofM (2),, equalg ; for all £ by construction. However it still remains
to show that we obtain a new order basis with coefficieni.in _

We now fcus on the properties @efinition 4.2b). If P(Z) € K[Z; o, §]**™ has orde®
then it has orde® and so there exists@(Z) € K[Z; o, §]**™ suchthat

m
P(Z) =) Q(2)1,; M(2)j..

j=1
Applying the first set of row operations if'Y) to rows¢ # n resuts in

P(2) =) Q@)1 M)} + Q21 M(2)ss (19)
j#m
where
L (20)

T[ 71'

Q(2)1j =Q(2)yj — forall j # x andQ(2)y , = ZQ(Z)l.
|_

Since P(Z) and all theI\N/I(Z)J-)* terms hae order Zf), this nust also be the case for
Q(Z)Ln M(Z), .. Let p be the degee on(Z) and WriteQ(Z)ln = OQ(k) ry Z —
S(rz)X. Since(ry Z — 8(rx))fy = rpo(ry)Z, we seethat Q&OJ)T ry = O. Therefore, by
assumption onr we have thathj)T = 0. Writing Q(Z)lﬂ = Q(Z)lﬂ (rr Z —8(ry)) gives

P(2) =) Q@)1 M(2)j++ Q21 (1r Z =80 x) M(D)rs. (21)
j#m

Completing the rovoperations which normalize the degreesfoZ) in (18) gives aQ(Z) with
P(Z2) =Q(2) M (Z). Consequently, the property &fefinition 4.2b) holds.

Finally, in order to establish part (c) we know already fr@®ction 5and the existence of
order bases of a specified degree and order that foth) and (v, @) satisfy (12) By the
unigueness result gfheorem 4.4ve only need to show that the “leading coefficiedtdf M (2)
in Definition 4.4c) is amultigradient of (v, a)) the later implying thatM (Z) is a Mahler system
and in particular has coefficients frdn

Denote byd the corresponding “leading coefficient” d¥l (Z). In the case discussed in part
(a), we do notincrease the rank by going fréhyi, ») to K (¥, @) since ve just ald one column
and keep full row rank. Hence = d beng a multigradient with respect tqi, ©) is also a
multigradient with respect tav, ®). In the finalcase described in part (b) we hatte= r.
Using formula (6) for the resdual of thexrth row of M (Z) we learn that,, coincides (up to a
sign) with the determinat of a submatrix of ordefv| of K (v, @). Sincer, # 0 by cnstruction,
it follows thatd = r; is a new multigradient, as required for the conclusion.

Corollary 6.2. If M(2Z) is a reduced atter basis then the order basl@(Z) computed by(17)
and(18) in TheorenB.1is alo a redwced order basis of degreg provided hat the pivotr is
chosen such that

g = mjin{uj :rj #0} (22)



526 B. Beckamann et al. / Journal of Symbolic Computation 41 (2006) 513-543

Proof. It is straightforward to check that row- ng(Z) = V. Herce, byLemma A.%a), it is
sufficient to show that col- de@(Z) < degP(Z))é — v, with P(Z) = Q(2Z) M(Z) as in the
proof of Theorem 6.1

We see in 20) that degﬁ(Z)Lj < degP(Z) — nj = degP(Z) — vj for all j # 7 while
degQ(Z)lﬂ < degP(Z) — u, because of the minimality ofi;. In (21), degQ(Z)l_y,T <
degP(Z) — (ur + 1) = degP(Z) — v,. Conpleting the row operations which normalize the
degrees oM (Z) in (18) gives aQ(Z) with P(Z) = Q(Z)M(Z) having the correct degree
bounds. O

Example 6.3. Let F(Z) be defined as ifExample 5.1 Stating from M (Z) = I, as an order
basis of order0, 0) and degre€0, 0), we can compute an order basis (Z) of order(1, 0) and
degree(1, 0) by choosingr = 1. Thenr; = x2 andr, = 2, so that

ML) x2Z —2x 0
l =
-2 X2
by (17) and (98).
In the next step, we note that = —4x andry = X2 — 4. Choosingr = 2 dlows us to

compute an order basis of orddr, 1) and degre€1, 1). Noting that he previous pivok? is a
common factor,17) and (L8) gives the oder basisVl (Z2) found inExample 4.3 O

7. The FFreduce algorithm

Theorem 6.1gives a computational procedure that results in the FFreduce algorithm given in
Table 1 where the gperscriptk] denotes the value of a variable at iteratiorin this ®ction we
consider the termination criterion for this algorithm and discuss its complexity.

Theorem 7.1 (Terminaion of Algorithm FFreduck Let r = rankF(Z). The final residual
R(Z) has rank r and m- r zero rows. Moeover, if J C {1,..., m} is the set ofow indices
corresponding to the zero rows Bi(Z), then he rowsM (Z); . for j € J form a rov-reduced
basis of the left nullspac®kz, of F(Z).

Proof. Recall that the last computed Mahler syst&m(Z) results fromiterationk = sk,
« = mN+ 1, and has orderé and degregi.

The statement rarfk(Z) = rankR(Z) follows from Lemma A.3sinceR(Z)Z* is obtained
from F(Z) by applying row operations of the first type.

In order to show thaR(Z) hasm — r zero rows, letW(Z) be as inTheorem A.2 with
a = row-degW(Z). Recall from Theorem A.2that W(Z) is row-reduced, and thak <
(m — 1) - N&. Sincethe rows ofW(Z) have ordek&, thereexigs Q(Z) € K[Z; o, §](M-")*xm
suchthatW(Z) = Q(Z) M(Z). By constructionM (Z) is a reduced order basis, and therefore
row-reduced, with row degreg. Lemma A.Xc) then implies that there is some permutation
p:{lL....m—r} ~ {1,...,m}, with aj > pupg for j = 1,...,m —r. Herce, for
ji=1....m-r,

degR(Z)p(j),« = —k + degR(Z)p(j),*ZKé) = —k + degM(2) p(j),« F(2))
—k + N +degM(2)pj),«) = —« + N + up(j)
—k+N+oj <—«k+mN=-1,

IATA

showing hat thesem —r rowsR(Z) ), are indeed zero rows.
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Table 1
TheFFreduce algorithm

ALGORITHM FFreduce
INPUT: Matrix of Ore polynomiald € D[Z; o, ]S,
OuUTPUT: Mahler gystemM < D[Z; o, §]™*™M,
ResidualR € D[Z; o, §]™*S with rankF nonzero rows,
Degreeji, ordera.
INITIALIZATION : MO « [ RION  F IOl 1 7101 6, 5[0 0,
N « degF(Z)),p < 0,k <0
Whilek < (MmN + 1)sdo
oKl p, p <0
For A =1,..,sdo
Calculate for = 1, .., m: first term d residualsr, < RKl(0),
Define setd = {¢ € {1, ..,m} : rp # O}.
If A ={}then mIk+1 MlkJ’ Rrlk+1 lely dlk+11 dlkJ’ Ij[k+ll «— ﬁlkl
else
Choose pivotr Kl < min{¢ € A : ;LE(] = min; {Mgk] 1j e A}
Calculate fort = 1,..,m, £ # 7Kl p, < CuEk]—l(MJ[Tk[Jk],Z)'

Increase order fot = 1, .., m, £ # w[XI:

[k+1] 1 [K] [kl
M(Z,* < m[rn[k] MZ,*irﬁMﬂ[kl,*]

[k+1] 1 [k] [K]
RE.* <~ Jk_][rn[k] RL’*—I'[ Rr[[k].*]

Increase order and adjust degree constraints forr 8k

[k+1] 1 [K] [k+1]
Mk, < gy Lta Z =8 M g = 2 psrtia (PO M

[k+1] 1 [K] [k+1]
Rﬂ[k],* <« >k [, Z =80 k) R,,[k]’* - Z[?gﬂ[k] o(pe) R(Z,* ]

Update multigradient, degree apd
glk+1 rﬂ[k],ﬁl”l] < plK +éﬂ[k]yp ~p+1
end if
Adjust residual in columi.: for£ =1,...,m
k+1 k+1
RH“ T RH“ J/Z (formally)
Ak oK 48k —k+1
end for
end while

M« MK R« RK i Kl &« &Ikl
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It remains to show the part on the rows(2); , for j € J. Clearly, with M(Z), also
the sibmatrix M (Z2), , is row-reduced. AnyP(Z) € Ngz) has orderxé, so thereexiss
Q(2) € K[Z: o, §]1*™ suchthatP(Z) = Q(Z) M(Z). Thus,

QZ)R(Z)Z* = Q(Z)M(Z)F(Z) = P(Z)F(Z) = 0.

The relationr = rankR(Z) implies that thenonzero rows oR(Z) are Qp[Z; o, §]-linearly
independent, and hen@&Z), ; = Ofor j ¢ J. Consequently, the rows & (2) ; , form a basis
of Ng(z), as clamed inTheorem 7.1 O

In what follows we denote byycle the set of iterationk = ks, ks+1,...,(k + D)s—1in
algorithm FFreduce for some integefthat is, the execution of the inner loop).

Let us comment on possible improvements of our termination criterion. In all examples given
in the remainder of this section, we choose lasthe =t of polynomials inx with rational
coefficients, withz = &, andthuso (a(x)) = a(x), §(@(x)) = fa(x).

Remark 7.2. The above proof was based on the estimgte< (m — 1)N for the left minimal
indices of the left nullspac&/(z), which for general matrix polynomials is quite pessimistic,
but can be attained, as shown Beckermann et al(in press Example5.6) for ordinary
matrix polynomials. For applications where a lower boynds available for|v|, the sum

of the row degrees of the nontrivial rows of the row-reduced counterpdf{dj (compare
with Theorem 2.2, it would be sufficient to compute Mahler systems up to the final order
(mN + 1 — y)8, sincethen we géfrom Theorem 2.2andTheorem A.2the improved estimate

aj <(M-DN—-y. O

Remark 7.3. In contrast to the special case of skew polynomials (compare Béttkermann
etal, 2002 Lemma 5.2), the pivots ! in one cycle are not necessarily distinct. In case m,
there mightoe even up t@ nontrivial steps in one cycle of the algorithm. THug /| may be as
large ak (all iterations are nontrivial). As an example, consider

F(Z)=[1,x+ Z],
leadingtor® = 7z1 =1. O

Remark 7.4. Inthe special case of skew polynomiais£ 0), the rank of any matrix polynomial
F(Z) (overQ[Z; o, 8]) isbounded below by the rank of its trailing coefficién©) (overQ). This
property is no longer true for general Ore domains, as becomes clear from the example

2 1o
F(2) = .
Z 1+xZ

Here the rank oF(0) is 2, whereas the second rowkefZ) equalsZ times the first row of-(Z),
and hencerank(Zz) =1. 0O

Remark 7.5. If in the cycle starting ak = «s there are only distinct pivots, following
Beckermann et al2002 Lemma 5.1) we may still prove that the rank R#S!(0) coincides

with the number bpivots used in lis cycle. However, in contrast ®eckermann et a(2002
Lemma5.2), itis no longer true in general that the number of pivots (or distinct pivots) in a cycle
is increasing. Inded, for the example

|:1—xZ 0 ]
F(Z) =
0 1—exZ
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we have in the first cycle !9 = 1, 711 = 2, giving rise to

—xZ? 0
RP(zyz = )
0 (1—€)XZ — exZ?

Thenk = 2 is a trivial iteration, and there is either one (for# 1) or no pivot (fore = 1) in

the second cycle. Moreover,dfis a positive integer, then we have 2 pivots in all further cycles
up to the eth one. Thus, the trailing coefficients of the residuals after a cycle do not remain
nonsingular. O

For the alove reasons, we belietleat it is quite unlikely that there exists an early termination
criterion for FFreduce in Ore domains such 26)(below based o thenumber of pivots in one
cycle which insures that one has found r&i{lc). The stuation is different for the special case
of skew polynomials discussed Beckermann et a{2002 which will be further studied in the
next section.

Let us now examine bounds on the sizes of the intermediate results in the FFreduce algorithm,
leading to a bound on the complexity of the algorithm. For our analysis, we assume that the
coefficient domairD satisfies

sizea + b) = O(max(siz&(a), sizeb)))
sizelab) = O(sizga) + sizgb))

cosi{a + b) = O(max(size(a), sizab)))
cos{ab) = O(size(a) sizeab)),

where the function “size” measures the total atge required for its arguments and the function
“cost” estimates the number of bit operations required to perform the indicated arithmetic. These
assumptions are justified for large operands where, for example, the cost of addition is negligible
in comparison to the cost of multiplication.

In a first step, let us examine the size of the coefficients and the complexity of one iteration of
algorithm FFreduce.

Lemma 7.6. Let N = degF(Z), and let K be a bound on the size of the coefficients appearing
iNF(Z)j 4 ZF(2)j ..., ZM F(Z)j, for j = 1,...,m, wheregi = ;!X Then he sie of the
coefficients irM X andR! is bounded by)(|i| K ). Moreover, the cost at iteration k is bounded
by O((MsNjil? + (M + )|} K?).

Proof. Egs. (L4) and (L6) show hat both the Mahler system and the residual can be represented
as determinants of a square matrix of ortél The cefficients in this matrix are coefficients
of F(D «» ZF(Dk s - - - » ZMF(Z)y . Hence the well-known Hadamard inequality gives the
above bound for the size of the coefficients.

In order to obtain the cost, we have to takéoi account essentially only the multiplication
of each row of(MKl RIKl) by two scalars and the multiplication of the pivot row by at most
m + 1 scalars. It remains to count the number of coefficients, and to take into account that each
multiplication with a coeffiient has a cost bounded BY(|j112K2). O

By slightly generalizingBeckermann and Labah{2000 Theorem 6.2), we deduce the
following complexity bound (compare also wiBeckermann et a{2002 Theorem 5.5)).

Corollary 7.7. Let N = degF(Z), and let K be a bound on the size of the coefficients appearing
iNF(2)j 4 ZF(Z)j ... ZHF(Z)j, for j = 1,...,m, whereii = ¥l of iteration k of
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FFreduce. Then the total cost for computidd<! andRK! by algorithm FFreduce is bounded by
O(MSNAR + (m+9)|aHK?).

In the general Ore case, we obtain for FFreduce a worst case bit complexi@(@h +
s)mM*s*N*K?), wheras in the case of skew polynomials we may obtain the slightly sharper
worst case bound?((m + s)m* min(m, s)*N*K 2).

Proof. The first part of the corollary is an immediate consequendeofma 7.6and of the fact

that the number of iterations in the FFreduce algorithm in which any reduction is done equals
liz]. In order to show the second part, we use the boyijd< || with the final order vector

® = (MN+ 1€, and|®| = s(mN + 1). In the case of skew polynomials, pivots are distinct, and
hence their number in a cycle is bounded by ¢mins) (in fact by the rank of(2)), leading to
thebound|ii| < min(m,s)y(MN+1). O

Remark 7.8. The complexity model proposed befokemma 7.6is reasonhle not only for
D = Z, but also forD = K[x] as long as we measure the size of elements only in terms of
x-degrees and ignore the growth of coefficients. However, the latter simplification is no longer
acceptable for domains suchlas= Z[x], and wehave to adapt our complexity analysis.

Fora e Z[x], let deg(a) denote the degree afwith respect tak, and||a| be the naximal
absolute value of the integer coefficientsaofA good measure for size for a nonzexe& 7Z[X]
seems to be

sizea) = O((1+ deg,(a))(1 + log lall)),
since it reflects worst case memory requirements. In addition the two rules

costfa + b) = O(max(size(a), sizeb)))
costah) = O(sizga) sizgb))

continue to hold. However, it is easy to construct polynomials where the rules f¢a gig and
sizgab) given beford.emma 7.6are no longer true because of cross products between degrees
and the bit lengths of the coefficients. The essential ingredient in the pra@oifa 7.6(and

thus ofCorollary 7.7) was to pedict the size of a coefficientX! € Z[x] in MKl or in RKK!, by
means of its derminant representation in terms of a matrix of orfiéK!| containing suitable
coefficients ofZ/ F(Z) for stitable j. Here we propose to estimate separatelyxtuegree and

the norm of ¢!, In our three examples @k the apficationso, § : Z[x] — Z[x] will not
increase the degree, and thus one easily checks that

deg c < M| Kgeg

with Kgeg being the maximal degree of a coefficient occurring-iZ). Definealso Kyt to be

the logarithm of the legestnorm of a coefficient occurring if(Z). We will show below that

the logarithm of the norm of an entry of the above-mentioned matrix is bounded for our three
exampes by

Kpit + (mgaxuy‘]) f (Kdeg) (23)
for a sutable functionf depending only ow, §, andhence

size(c™) = O + || Kaeg (1 + |2 | Kpit + 2] <m€ax;/,5”) f (Kdeg))
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or
size(c™®) = O(KgegKbit|ii™12 + Kdegf (Kaeg |2M]3),

in contrast to size!®) = O(K |iK!|) derived inLemma 7.6 As a ®nsequence, we may directly
generalize bottbemma 7.6andCorollary 7.7, but now higher powers wilbe invdved. Notice
that a tighter estimate could be obtained if we specify the size and cost of the sums and products
in two components (dega) and||a|) semrately (i, 2003.

Let us first consider the skew-symmetric cas@(x)) = a(ax), §(a) = 0, for an integer
a # 0. Since for the norm of the coefficients &fx) we ge log(||a*(x})|) = jk log(|a|), we
observe that43) holds with f (Kgeg) = Kdeg log(||).

More generally, for the skew-symmetric cas@(x)) = a(ax + B), §(a) = 0 with integers
a # 0 andpg, we have Iog||ak(x1)||) < jklog(2 max|«|, |8])). Thus here Z3) holds with
f (Kdeg = Kdeg 109(2 max(|e|, |B1)).

We findly consider the differential case in which is the identity ands(a) = d—‘f(a for all
a € Z[x]. Theno does not increase the norm, ajila)|| < deg,(a) |lall, implying that @3)
holds with f (Kgeg = 10g(Kgeg). O

8. Comparisonsand examples

In this section we give some examples which allow us to make some simple comparisons with
the algorithm inAbramov andBronstein(2001). We make no claims that our algorithm performs
better than theirs in general. Indeed for examples where coefficient growth does not enter into the
problem, the algorithm of Abramov and Bronstein is typically faster than the one presented in this
paper. However, there are instances where tbhevtlr of ccefficients does become a significant
factor and in such cases the near linear growth of our algorithm does allow us to solve larger
problems.

The Abramov—Bronstein algorithm uses the constructive approach outliféteiorem 2.2
It also incorporates a number of additional improvements, for example making use of a basis
of elements from the nullspace of the leading or trailing coefficients (rather than just a single
element) in order to reduce the number of iteratiohlsramov andBronstein 2002. We also
note that since the row-reduced form is not unique, the results computed by the Abramov—
Bronstein algorithm are typically diffent from the ones obtained by FFreduce.

It is possible, as suggested Abramov andBronstein(2001), to compute the basis for the
nullspace by using fraction-frees@ssian elimination on the leadjor trailing coefficient matrix,
seeBareiss(1968. This also results in a fraction-free algorithm for row-reducing a matrix
of skew polynomials. However it is not the case that this guarantees a reasonable growth of
coefficient size. For example, one step of such a method could result in an increased size of
coefficients by a factor af 4+ 1 wherer is the rank of the actual trailing or leading coefficient
matrix. This occurs becauseethullspace obtained by Bareissnethod could be as large as
times the original input size. Even removing the contents of the nullspace elements afterwards
will not guarantee good coefficient growth as our examples below illustrate.

The implementation of the Abramov—Bronstein algorithm used for our comparisons is that
programmed in Maple given in the routihénearFunctionalSystems[MatrixTriangularization]

This implementation finds a basis for the nullspace by working over a field and then clearing

denominators. Notice that this approach is mathematically equivalent to using fraction-free

Gaussian elimination and then removing the eoitd from individual basis elements. Note that

the contents are only removed from the basis elements used to perform the elimination. The
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contents in the intermediate results are notoged, so that exponential growth may still occur.
This implementation performs additional optimizations when the trailing coefficient has a zero
row or a zero column. This reduces the number of iterations required to obtain the final result.
Our fraction-free algorithm can be adopted to perform such shifts as well. In our comparison,
such optimizations aregpformed in the Abramov—Bronstein algorithm but not in the fraction-
free one. Finally, we have done a slight modification to ensure that it works in the case when the
rank is not full.

We have run seval examples, including those é&fbramov andBronstein(2002), in which
the dimensions of the matrices, as well as the degree, are varied. For the measure of size we have
used the sum of Maple’s length of all the coefficients d@én], nanely the coefficients of the
residuals for the AB algorithm and the coefficients of both the Mahler system and the residuals
for FFreduce.

For examples in Wich coefficient growth is not significant, the Abramov—Bronstein algorithm
isin general faster, sometimes by more than a factor of 1000. For these examples, the cost of GCD
computations required for removing the content (or for clearing fractions) was negligible.

In contrast, consider the matrix

N [ N—1 i

N opZ! N-  Zi

F(Z) = |: NZ|_0 Pi | - |l_0 Pi :| 24
Yico PiaN+1Z' 3Ty PieN+1Z!

where p; is the (i + 1)th prime and where we are working over the commutative polynomial
domainZ[Z]. The storage and running time requirements for this matrix using the two algorithms
is given inFig. 1 In paticular we see that the growth inghPAbrama—Bronstein algorithm is
exponential (varying between 48 fof = 5 and58 685 030 folN = 300) while that of FFreduce
is essentially linear for this case (varying between 97 and 880 154). This of course impacts the
timings of the two algoritms for this example.

Similarly such growth is also possible in the noncommutative case of skew polynomials. For
exampe, one can construct matrices similar to that24) (but using a noncommutativé and
get comparable behaviour. This is the case with

do,N(2) Go,N-1(Z) Oo,N—2(Z)
F(Z) = | dang2,N(Z)  GoNt2,N-1(Z)  QantaN—2(2) (25)

UaN+4,N(Z)  Oan+anN—1(Z) O2N+2,N—2(Z)

whereqj k(Z) = Zik:o(pzi+j+1n + p2i+j+2)Z‘ andZ is the forward shift operator acting on
The experimental results are shownTeble 2

Finally, in Table 3we show experimental results on larger matrices, in this case of skew
polynomials which are generated by applying random transformations to the final result in
reverse.

9. Applicationsfor skew polynomials

In this section we show how the FFreduce algarittan be used to solve a number of different
problems in the special case when the input is a matrix of skew polynomials. Of courserwhen
is the identity then this also gigdraction-free algorithms for oidary matrix polynomials. We
note again that is assumeda be an automrphism onQpy.



B. Beckamann et al. / Journal of Symbolic Computation 41 (2006) 513-543 533

2500 . . Time : :
FFreduce ——
2000 |- I
o 1500+ |
° /
c
[e]
[&]
]
1000 -
500
0 I e L I
0 50 100 150 200 250 300
Degree
6e+07 : : Size . ,
FFreduce ——
ses07} T P
40407} i
° g
N /
7]
3e+07 - g
26407 | -
1e+07 | 1
00 50 100 150 200 250 300
Degree

Fig. 1. Plots for timings and sézfor FFreduce and the AB algorithm on the matrices define@4i. (

In the case of skew polynomialBéckermann et 812002, the termin&on criterion
o!“S! + thenumber of zero rows iR“S!(Z) = m (26)
allows us to proveHBeckermann et gl2002 Theorem 5.3) that
rankRs1(0) = rankR*$(Z)) = rankF(2), (27)

the rank of the trailing coefficient matriR[“s(0) being defined over the quotient fieldr.
Moreover Beckermann et gl2002 Lemma 5.2),

the pivotsr™® for ks — s < k < ks are distinct (28)
and henceBeckermann et 312002 Lemma 5.1 and Lemma 5.2)
pl*S! = rankR¥$1(0) = rankR¥S~31(0). (29)
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Table 2
Timings and storage for the AB algorithm and FFreduce on input mati2&s (
d AB FFreduce
Time (s) Size Tme (s) Size
2 0123 654 0.101 1488
3 0.125 2606 0.239 4589
4 0.287 7920 0.455 8621
5 0691 27972 0.900 17267
6 1582 84523 1.867 27208
7 4656 265003 2.717 44369
8 19.342 714330 6.334 62900
9 331.509 1948 947 20.334 92194
10 1943.193 4770766 148.652 122964
11 5821.765 12177824 516.682 169 323
12 10 144.400 27971967 631.781 213626
13 ? ? 1528.602 280124
14 ? ? 1660.289 340995
15 ? ? 2403.154 432 665

An entry of ? neans that no result was obtained within the time limit of 3 h.

Table 3
Timings and storage for the AB algorithm and FFreducenpit matrices generated by random transformations
m,s AB

FFreduce
Time (s) Size Tme (s) Size

2 32.609 365188 1.600 26295

3 542.440 2004 249 145.799 430330
4 1996.640 1343010 546.931 950614
5 ? ? 1480.871 1830960

6 ? ? 2837.691 1959785

7 8955.809 25525731 3851.930 2353846
8 ? ? 5132.750 2732281

An entry of ? neans that no result was obtained within the time limit of 4 h.

It is also shown implicitly in the proof oBeckermann et al(2002 Theorem 5.4) thatc <
m(N + 1) which has to be compared with the number of cyated] + 1, required by FFreduce.

Thus the new termination propert38) essentially does not increase the complexity of algorithm
FFreduce, but for many examples may improve the run time.

9.1. Full rank decomposition and solutions of linear functional systems

When F(Z) represents a system of linear recurrence equations, one can show that an
equivalent system with a leading (or trailing) coefficient with full row rank allows one to obtain
bounds on the degrees of the numerator and the denominator of all rational solutions. This has
been used byAbramov andBronstein(2001) to conpute rational solutions of linear functional
systems.

In Beckermann et al(2002 it is shown thatthe output of FFreduce applied B(Z) €
D[Z; o, 0]™*S can be used to constru€®(Z—1) € D[Z~1; o1, 0]™™ and implicitly S(Z) e
QplZ; o, 0]™M suchthat

T(ZHF2Z) =W(2) € D[Z; 5, 0]™S, STZ™H =1m,
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with the number 6nonzero rows ofV (Z) coinciding with the rank of the trailing coefficient
W (0), andhence vith the rank ofW(Z). The exisence of a left invers&(Z) shows hat the
reduction process is invertible in the algebra of Laurent skew polynomials, moreover, we obtain
afull rank decompositior (Z) = S(Z)W(Z) in Qp[Z; o, 0O].

In this context we should mention that an exact arithmetic method involving coefficient GCD
computations for the computation 8(Z~1) F(Z) = W(Z) with W(Z) as above has already
been given iMAbramov andBronstein(2007).

9.2. Row-reduced form and weak Popov form

The FFreduce algorithm as described above kaalised to eliminate low-order coefficients,
such that the rank of the trailing coefficient matrix is the same as the rank of the original matrix
of skew polynomials. In the case of matrices of commutative polynomials, we can reverse the
coefficients so that the high-order coefficients are eliminaBstkermann and LabahB000.

This allows us to obtain a row-reduced form of the input matrix polynomial.

In this section we show that a similar technique can be used to obtain a row-reduced form
for a matrix of skew polynomials. Furthermore, we note that the FFreduce algorithm essentially
performs fraction-free Gaussian elimination on the striped Krylov matrix. If we collect the rows
used as pivots during the last cycle, we obtainadlitrg coefficient that is triangular up to row
permutations. As a result, reversing the coefficients gives a weak Popov form. One may reverse
the aoefficients in the input, invoke the FFreduce algorithm, and reverse the coefficients in the
output to obtain the final results. Instead, wél wodify the recursion formulas to directly
eliminate the high-order coefficients.

GivenF(Z) € D[Z; o, 0]™S we can comput&)(Z) andT(Z) such that the nonzero rows
of T(Z) = U(Z)F(Z) form a row-reduced matrix. Since weish to eliminate high-order
coefficients, we perform the substitutigh= Z~1, 6 = o1 and perform the reduction over
]D)[Z; ,0]. We furtherassume thatr 1 does not mtroduce fractlons so thatl(a) € D for
alla € D. We wite F(2) := F(Z~1) zZN, and letMX (2), RKI(2), ikl and®K! be the
intermediate results obtained from the FFreduce algorithm with the i@, If we define

uklz) = z=mmk(zy,  TM(Z) = z#RKI(Z) 2ex—NE (30)

thenUKl(Z) F(Z) = T¥I(Z). In this case simple algebra shows that the recursion formulas for
Ukl(Z) obtained from {7) and (L8) become

(k] k] k] (k] _
ol (pr)URF (2, = o (rp)UM(Z), , — ot (rp) 2" Kl UKL (Z), g L (31)
for ¢ # =Kl and
k]+2(p,,m) U[k+l](z)n[k1 X

kK 5 ko Ik g
= o"a 1) UK(Z) i, — Y oMl R (py) ZVat TR Yk (), (32)
2#£m Kl
where

[k]
— = [K]
rZ =0 He (CN+M£k]7Lk/SJ (T (Z)e,(k modm)+1))v

_ K
p@ =0 'urr[k] (C [kl U[k (Z) e))

_ K (
Kotk —He =84k o+l
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Slnceu[k[]k] < W I whenever, # 0, and thatp, = 0 Whmeveruj[f[]k] < W — 1 by the

definition of a reduced order basis, it follows thetk*11(Z) € D[Z; o, 0]™™. Moreover,
[Utk+1l(Z), TIk+1(Z)] is obtained from{UX(Z), TIKI(Z)] by elementary row operations of the
second type, so iX1(Z) is unimodular thertu!*+11(Z) is also unimodular.

Theorem 9.1. LetMK(2), RI(Z), i, and & = « - & be the final output obtained from the
FFreduce algorithm with the inp@(Z). Then

(@) UKI(Z) e D[Z; o, 0]™M and Tk (Z) € D[Z; &, O]™S;
(b) UK (Z) is unimodular;

(©) UK(Z)F(Z) = TH(Z);

(d) the nonzero rows oT XI(Z) form a row-reduced matrix.

Proof. Parts (a), (h)and (c) haveleeady been shown above. B§q), we see that ranRK (0) =

rank F(Z) = rank RK!(2), which isalso the number of nonzero rowsi! (2). Therdore, the
nonzero rows oR!¥(Z) form a matrix with trailing coefficient of full row rank. It is easy to see
that row-ded@ ™ (Z) = uk + (N — k) - @and that

Kl A~ K
TM(Z), = ot ](R[k](O)i,*) ziN=¢ | lower degree terms

ThereforeL (T (2)) = adegj[k](z*’\'Jf"(FA%(O)). Sinceo is an automgphism onQp, it follows
thatrankL (TK(Z)) = rank RX1(0), andhence the nonzero rows & (Z) form a row-reduced
matix. O

In fact, the FFreduce algorithm can be modified to obta{@) andT(Z) suchthatT(Z)
is in weak Ppov form Mulders and Storjohan2003 (also known as quasi-Popov form
Beckermann et alin pres$). The weak Popov form is defined as follows.

Definition 9.2 (Weak Bpov fornm). A matrix of skew polynomial$-(2) is said to be inveak
Popov formif the leading coefficient of the subatrix formed from the nonzero rows &{(Z) is
in upper echelon form (up to row permutation).]

Formadly, if @ = « - € is the order obtaied at the end of the FFreduce algorithm, we form the
maticesU(Z) andT(Z) by

[UK(Z); ;, THR(Z); ;1 if 7K =i for somexs — s < k < ks,

[U(Z)IJ > T(Z)I,J] = i[U[KS](Z)i,j , T[KS](Z)i,j] otherwise.

We note thatU(Z) andT(Z) are well-defined because the pivmtg] are distinct foks — s <
k < ks by (28). We now show thaT (2) is in weak Ppov form.

Theorem 9.3. Letw = « - € be the order obtained from the FFreduce algorithm with the input
F(Z). Then

(@) U(Z) e D[Z; 0, 0™MandT(Z) € D[Z; o, O]™*S;
(b) U(Z) is unimodular;

() U(D)F(2) =T(2);

(d) T(2) is in weak Bpov form.
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Proof. Part(a) is clear, and (b) follows from the fact thatZ) can be obtained frord¥S—sl(Z)
by applying elementary rowperations of the second type on each row until it has been chosen
as a pivot. Moreover, we have that for kland¢, UX(2), , F(Z) = TKI(Z), , and hence (c) is
true.

Let HIK! pe the coefficient o2 “—1-€ of MIKI(2) E(2) for ks — s < k < k. SinceMKl(2)

is an order basis, it follows that the filst— (xs — s) columns ofH X! are zero. 1fz X! ]= i,then
KS

we haveH\ . o 1 # 0. Furthermore, if # 7 for anyxs — s < k < ks, H** must be
zero. Therefore, if we form the matrid by '
HXif 709 =i for somexs — s <k < ks
Hij =1 ik - (33)
Hi’j otherwise,

then the nonzero rows d¢f form a matrix in upper echelon form (up to a permutation of rows).
By revesing the coefficients of (Z) we see that

[s—s] [KS—S]+N_K
T(2)i =0 (Hiy ZM + lower degree terms
Thus, L(T(Z)) = ¢9e9T(D-N+k(H) Sinces is an automgphism onQyp it follows that the
nonzero rows of (T (2)) are in upper echelon form and hert€Z) is in weak Ppov form. O

Recall fromTheorem A.Zhat the multipliers oTheorem 9.5and ofTheorem 9.3doth provide
a basis othe left nullspace oF (Z).

9.3. Computing GCRD and LCLM of matrices of skew polynomials

Using the preceding algorithm for row rediom allows us to compute a greatest common
right divisor (GCRD) and a least common lefuitiple (LCLM) of matrices of skew polynomials
in the same way it is done in the case of matrices of polynomBéxkermann and Labah200Q
Kailath, 1980. LetA(Z) € D[Z; o, 0]™>S andB(Z) € D[Z; o, 0]™*S, such hat the matrix

A(2)
F(Z) =
B(2)
has ranks. Such an asumption is natural since otherwise we may have GCRDs of arbitrarily

high degreeKailath, 1980 page 376). After row reduction and possibly a permutation of the
rows, we obtain

U11(2) U12(2) A(Z)i| G(2)
U(Z)F(Z) = : _ 34
(e [u21(2> U22(Z):| [B(Z> 0 (34)

with G(Z) € D[Z; 0, 0]5*%, andUy,j (Z), Uz j (Z) matrices of skew polynomials of sizex mj,
and(mg + mp — ) x mj, resgectively. Standard arguments (see, for examighlath (1980)
show thatG(Z) is a GCRD ofA(Z) and B(Z). Furthermore, for any common left multiple
V1(Z)A(Z) = V2(Z)B(Z) we see thathe rows of[V1(Z) — V2(Z)] belong to the left
nullspaceNg(z). Since[U21(Z) Uz22(2)] is a basis ofVg(z) by Theorem A.2 thereexigs
Q(Z) € QplZ; o, O](M+M2=S)x(M+M2—S) gy chthat

[V1(Z) — V2(2)] = Q(Z) [U21(Z) U22(2)].
implying thatU21(Z) A(Z) and—U22(Z) B(Z) are LCLMs ofA(Z) andB(Z2).



538 B. Beckamann et al. / Journal of Symbolic Computation 41 (2006) 513-543

In contrast to the method proposedBeckermann and Labah2000, our GCRD has the
additional property of being row-reduced or being in weak Popov form.

9.4. Computation of subresultants

The method ofSection 9.3 apgied to two 1 x 1 matrces, gives the GCRD and LCLM of
two skew polynomialsa(Z) andb(Z). In this subsection we examine the relationship of the
intermediate results obtained during our algorithm to the subresultants of skew polynomials
defined byLi (1996 1998. Denoting the degrees afZ), b(Z) by da > dp, the jth subresultant
sres;j (a, b) for skew polynomials is defined by taking the determinant of the matrix

[o%-1-1(ag,) o® 1 N agj42-g,) Z%171a(Z)
o(ag,) o(aj) Za(Z)
ad, aj41 a(2)

o%=17(by,) 0% by 124, Z%17M0(2)
o (ba,) o (bj) Zh(2)
I ba, - bj+1 b(z)

Theorem 9.4. Let a(Z) and b(Z) be two skew polynomials of degregsahd d,, resgectively,
such hat dy > dp. Thensresj(a,b) # O if and only if there exists ad = ¢; with
pl2da=2i-11 — (dy — j, da — j) — &. In this case,

da—dp—1

TR-2-1(Z), , = tysresj@b)., y= [] o® 1 (aq,).
i=0

In other wordssres; (a, b) # 0 if and only if the FFreduce algorithm computes an order basis
ofdegree(d; — j —1,d3 — j) or (da — j, dq — j — 1) as an intermeite result.

Proof. After expanding with respect to the fird§ — dp columns of the matrix

[o%=i-Y(ag,) 0% 1Y (apj p_g) Z%Ita(Z)]

U(ada) g(aJ) Za(Z)

ag, o aj+1 a(2)

0%17(hg,) 0%y 5 q,) Z%I-In(Z)

o) o o (b)) Z0(z)

by, - bj11 b(zZ)
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we see that the determinant coincides with the quantiyes; (a, b). Denote byS; the matrix
of size(2d; — 2j) x (2d4 — 2] — 1) obtained by dropping the last column, and notice that

o~ @I=D(S) = K((da — j, da — }), (2da — 2] — 1)), (35)

the Krylov matrix associated t6(2) = (&(2),b(2))T, a2) = a(z™1) 2%, andb(2) =
b(Z~1) z%. Thus sreg(a, b) # 0 if andonly if the dimension (ovefp) of the leftnullspace
of §j is equal to one, which in turn isue if and only if there is a unique € Qp[Z; o, 0] (up to
multiplication with an element fron@p) of order® = (2dy — 2j — 1) and ded® < dy — j — 1.

One verifies usingBeckermann et al(2002 Lemma 5.2) and the relatiod; # O that
16| = k = || for all k in algorithm FFreduce. Let = 2dy — 2j — 1, then from )
we conclude that srega, b) # 0 if andonly if ¥ has one component being equatito- j — 1
and the other one being at least as largésas |, that is, i = (da — j,da—j)— & for some
0 e 1,2}

Finally, if sres;j (a, b) # 0, then we use3p) and the detrminant representations 8&ction 5
together with thainiqgueness of Mahler systems in order to conclude that

ysresj(a, b) = +z# RM(2),  207%E _TI(Z),, O

Thus, whenevefil2-1l is of the form(k, k) — & for somet e {1, 2} during the execution
of our algorithm, we can recover the nonzero greg(a, b) from RIZ-1(2) z&-da® after
mutiplying by Zk and dividing by the extra factor gf (or by dividing T~ (2), 1 by y).

Notice thd the exta factor of y is introduced at the beginning of the algorithm, before any
step with|A| > 1. There is no reduction performed in these fitgt— dy steps. Thus, we may
modify our algorithm so that no reduction is done untl = 2 for the firsttime, except the
updating ofii/kl. Then

£z T dakdy RIZK11 () L p21da i 2k (k — 1 k),
sresy,—k(a, b) = 2 a ok 11050 ok ok
+71 " R (Z), ) 7%k-1-da if 21 = (k, k—1).

10. Conclusion

In this paper we have given a fraction-free algorithm for transforming a given matrix of
Ore polynomials into one where both the rank and the left nullspace is easily determined. The
algorithm is a modification of the FFFG algorithm Béckermann and Labahi2000 in the
commutative case. In the case of skew polynomials we also show how our approach can be used
to find a weak Popov form of a matrix of skew gobmials. In addition, in the special case of
2 x 1 kew polynomial matrices we relate our algorithdoag with the intermediate quantities
to the classical subresultants typically usedone sided GCD and LCM computations.

There are a number of topics for future research. In this paper we have given a fraction-
free method for elimination of low-order terms of a matrix of Ore polynomials. However for
general Ore domains it appears to be more useful to work with leading coefficients, something
not possible using our methods except for the case of skew-polynomial domains. We note that this
is possible to do usig the approach of Abramov and Bronstein simply by udihgorem 2.2In
our case we would like to find a fraction-free method for such a reduction over Ore domains. We
will look at combinirg the procedure inTheorem 2.2along with modified Schur complements
(Beckermann et 311997 of Krylov matrices to help us develop such an algorithm.
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In a recent workAbramov andBronstein (2002 extend heir results to handle the case
of nested skew Ore domains, allowing for computations for example in Weyl algebras. We
would like to extend our methods to this important class of matrices again with the idea of
controlling the growth of the resulting matrices. This is a difficult extension to do using the
methods described in our paper since the corresponding associated linear systems do not have
commutative elements. As such the standard tools that we use from linear algebra, namely
determinants and Cramer’s rule, do not exist in the classical sense.

Finally, it is well known that modular algorithms improve on fraction-free methods by an
order of magnitude. We plan to investigate such algorithms for our rank and left nullspace
computations. We note that the determinantal representations gives a first step in this direction
since it provides an upper bound for the sizes of the objects which need to be computed. As in the
modular algorithm for computing a GCRD of Ore polynomidlg (1996 Li and Nemes1997),
we expect that the fraction-free algorithm would be a basis for the modular algorithm.

Appendix A. Further factson matrices of Ore polynomials

In this appendix we will present a number of technical results that are needed in our paper.
These results are typically well understood in the context of commutative matrix polynomials
but are not at all obvious for the case of noncommutative matrices of Ore polynomials.

Consider first the notion of the rank of a matrix of Ore polynomikl&Z) € K[Z; 5, §]™*S.
Denote by Mrzy = {Q(2)F(2Z2) : Q(Z2) € K[Z;0, §12*™} the submodule of the (left)
K[Z: o, 8]-modulec K[Z; o, §]1*S obtained by forming left linear combinations of the rows of
F(Z). Then bllowing Cohn (1971, p. 28, Section 0.6), the rank of a modulé overK[Z; o, §]
is defined to be the cardinality of a maxim#l[Z; o, §]-linearly independent subset @1.
Comparing with ouDefinition 2.1, we see tht rankF(Z) < rankMg(zy. Theorem A.2obelow
shows that in fact we have equality.

Notice tha for any A(Z) € K[Z; 0,5]™™ we have thatMaiz)r(zy € MFp(z). If now
A(Z) has a leftinverseV(Z) € K[Z; o, 5]™™, then we also havthe incusions Mgz, =
My z)az)Fzy C Ma(z)r(z), showig thatin this caseMaz)r(z) = MFz)-

For identifying the different concepts of rank, it will be useful to show that the rows of a
row-reduced matrix of Ore polynomials are linearly independent Ky&, o, §]. This however
is an immediate @nsequence ofemma A.Xa) below which in the case of ordinary matrix
polynomials is referred to as theredictable degree propert{seeKailath (1980, Theorem
6.3.13).

LemmaA.l LetF(2) € K[Z; o, §]™*S, with ;i = row-degF(Z).
(a) F(2) is row-reduced iand only if, for allQ(Z) € K[Z; o, §]**™,
degQ(2)F(2) = mjaij +degQ(Z)1j)-

(b) LetA(Z) = B(Z) C(2) be matrices of Ore polynomials of sizesxrs, mx r, and r x s,
respectvely. TherrankA(Z) <r.

(c) LetA(Z) = B(Z) C(Z) be asin par{b), with A(Z) andC(Z) row-redwced with row degrees
a1 <ap <--- <amandy; < y2 <--- < %, resgectively. Then nx r, andaj > yj for
j=1...,m.

(d) LetT(Z) = U(Z) S(Z), with U(Z) unimodular and with botls(Z) and T (Z) row-reduced.
Then, upo permutdion, the rowdegrees 0§(Z) and T (Z) coincide.
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Proof. ForanyQ(Z) € K[Z; o, §]*™let N' := max; (1 + degQ(Z), j) and define the vector
h e KM h =0, by

Q(2)yj = hjZN/*“i + lower degree terms

Clearly, dedQ(Z) F(Z) < N/, with the coefficient aZ N’ being given by

m

Y hjeN T (FA) = hoN N LF@2)).

j=1

Sinceo is injective, we have thad(Z) is ron-reduced if and only i1 (L(F(2))) is of full row
rank for any integej that is, if and only if ha! (L(F(2Z))) # 0 for allh # 0 and all htegers;j.
This in turn holds true if and only if deQ(Z)F(Z) = N’ for anyQ(Z) € K[Z; o, §]**™.

In order to show (b), we may suppose by eliminating a suitable number of roveZgfand
B(Z) thatrankA(Z) = m. If r < m, thenMpgz) C K[Z; o, §1¢" the laterK[Z; o, §]-module
being of rankr. Hercer > rankMpg(z) > rankB(Z). On theother handB(Z) has more rows
than columns. Thus, by definition of raBkZ) there exists a nontriviaD(2) € K[Z; o, §]1*™
with Q(Z2)B(Z) = 0. ThusQ(Z)A(Z) = 0, a ontradiction to the fact thad(Z) has full row
rankm. Therdorer > m, as clamed in pat (b).

For a proof of part (c), recall first that the rows of the row-redude@) areK[Z; o, §]-
linearly indep@dent by part (a), and henee = rankA(Z) < r by part (b). Suppose that
aj > yj for j <k, butax < . Part@) tellsus thatdeB(Z); , < aj — ye. Sinceaj < y < ys
for j <k < ¢, we mayconclude thaB(2); , = O for j < k < ¢, in other word, the firstk rows
of A(2) are left polynomial combinations of the filst— 1 rows ofC(Z). Againfrom part (b)
it follows that the firsk rows of A(Z) areK[Z; o, §]-linearly dependent, a contradiction. Hence
the assertion of part (c) holds.

Finally, part @) is obtained by twice applying part (c) (compare whithilath (1980 Lemma
6.3.14, p. 388) for the case of ordinary matrix polynomialg)l

Consider now the left nullspacd/rz) of a F(Z) € KI[Z; o, 5]™*S. Clearly, Ng(z) is
a K[Z; o, 8]-module. We want to construct a rowegced basis of this space, and obtain
information about the degrees of such a basis.

Theorem A.2. Let F(Z) € K[Z;o,8]™S, andU(Z) e K[Z; o, 5]™™ be unimodular, with
T(Z) = U(Z)F(2Z) having r nonzero rows, where the submatrix consisting of the r nonzero
rows of T(Z) are row-reduced. Then

r = rankMg(z) = rankF(Z) = m — rankNg(z), (A1)

with a basis ovelK[Z; o, §] of Nz, given by those rows df(Z) corresponding to the zero
rows ofT(Z).

Moreover, there exists a row-reduc®d(Z) € K[Z; o, §]™M="*M with rows forming a basis
of the left nullspac&Vk(z), and

row-degW(Z) < (m — 1)NEg, N = degF(2).

Proof. Denote byJ the set of indices of zero rows @%(Z), anddefine the matrixJ(2Z); , by
extrading fromU(Z) the rows with indices ird. In a firststep, let us determine the left nullspace
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of T(Z), and establish equality/A.1) for the matrixT(Z). For someP(Z) € K[Z; o, §]**™ we
have

P)T(Z) =) P(Z)1jT(2)j.
jg¢d
We have shown implicitly in Lemma A.Xa) that the rowsT (Z); , for j ¢ J are linearly
independent oveK[Z; o, §]. Therdore P(Z) € N1 (z) ifandonlyif P(Z), ; =0forall j ¢ J,
and in addition

r = rankT(Z) = m — rankN7(z).

As mentbned before, we also have that raniZ) < rankMyzy =: p. Suppose that
there is strict inequality. Then there exjstelements ofMtz, which areK[Z; o, §]-linearly
independent and which can be written as rows of the ma&r(iX)T(Z) for someB(Z) €
K([Z; o, 81°*™M. ThenrankB(Z)T(Z) = p by construction oB(Z). HoweverT (Z) contains only
r rows different from zero, and hence raBKZ)T(Z) < r by Lemma A.Xb), a contradiction.
Consequently,A.1) holds for the matri¥-(Z) being replaced by (2).

We now use th fact thatU(Z) is unimodular, that is, there exists\gZ) € K[Z; o, §]™M
with V(Z)U(Z) = U(Z)V(Z) = |. ConsequentlyQ(Z) € Ngz if and only if P(Z) =
Q2)V(2) e NT(Z), that is,

Ne@z) ={P(2)U(2) : P(Z),; =0forj ¢ I} = Mu(z),,-

SinceU(Z) has a right inverse, we may conclude th¥tzy = {0}, showing that rows of
unimodular matrices are linearly independent digZ ; o, §]. Thus the rows otJ(Z); , form a
basis ofAVg(z), and

m — rankMgzy = m — rankMrzy = m —r = rankNg(z).

Since again the relatiop := rankF(Z) < rankMgz) is trivial, for a proof of the first part
of the assertion ofTheorem A.2it only remains to show that < r leads to a coméadiction.
Suppose without loss of generality that the fisgatows of F(Z) are linearly independent. Then,
by maximdity of p, we find foranyj = p +1,..., mquantitiesQ(2); x € K[Z; o, §] with

P
Q2)j;#0, QD) F@Dj.+ ) QD) (F(2)s=0,
k=1

that is, we have founth — p > m—r manyK[Z; o, §]-linearly independent elements.fz),
in contradiction to our previous findings on raff z).

In order to show the second part ©heorem A.2 suppose thatJ(Z) and T(Z) are those
defined inTheorem 2.2Let W(Z) be the row-reduced counterpart 0{Z); , obtained by
applyingTheorem 2.2Since one is obtained from the other by multiplying on the left by some
unimodular factor, the rows &% (Z) form a row-reduced basis &gz, with row-degW (Z) <
row-degU(Z); ... Hence it only remains to recall the bound for the row-degree of the multiplier
U(Z) of Theorem 2.2we have forj € J

degU(Z) ;. < vj — pj + (il = [B]) < il = fij < M—DN. O

We should mention that the quantity row-dég(Z) of Theorem A.Zs an invariant of(Z)
since byLemma A.X1d), we obtain the same degrees (up to permutation) for any row-reduced
basis of the left nullspace &f(Z). In the case of ordinary matrix polynomials, the components



B. Beckamann et al. / Journal of Symbolic Computation 41 (2006) 513-543 543

of row-degW (Z) are usually referred to dsft minimal indicesor left Kronecler indices (see
Section 6.54, p. 456 ofKailath (1980).

We monclude this appendix by showing that a certain number of elementary properties of the
rank remain equally valid for matrices of Ore polynomials.

LemmaA.3. ForanyF(Z) € K[Z; o, §]™S, the rank ofF(Z) does not change by applying any
of the row operations of first or second typesdébed in the introduction, or by multiplying(z)
on the right by a full rank square matrix of Ore polynomials.

Proof. Suppose thaA(Z) € K[Z; o, §]15*% is of ranks. ThenNa(z) = {0} by (A.1), implying
that Vrz)az) = Nr(z). Herce F(Z)A(Z) andF(Z) have the samrank by A.1). If U(Z) is
unimodular, themMyzyrz) = MFp(z), showng that the rank remas the sameFinally we
need to examine the row operation of multiplying one rowF6Z) with a nonzeo elemet of
K[Z; o, §]. SinceK[Z; o, §] contains no zero divisors, it is easy to check #h@) and the new
matiix will have the same number &[Z; o, §]-linearly independent rows, and hence the same
rank. O
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