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Abstract

We give modular algorithms to compute row-reduced forms, weak Popov forms, and Popov forms of
polynomial matrices, as well as the corresponding unimodular transformation matrices. Our algorithms
improve on existing fraction-free algorithms. In each case, we define lucky homomorphisms, determine the
appropriate normalization, as well as bound the number of homomorphic images required. The algorithms
have the advantage that they are output-sensitive; that is, the number of homomorphic images required
depends on the size of the output. Furthermore, there is no need to verify the result by trial division or
multiplication. Our algorithms can be used to compute normalized one-sided greatest common divisors
and least common multiples of polynomial matrices, along with irreducible matrix-fraction descriptions of
matrix rational functions. When our algorithm is used to compute polynomial greatest common divisors,
we obtain a new output-sensitive modular algorithm.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Row-reduced forms, weak (or quasi) Popov forms, and Popov forms (Kailath, 1980;
Mulders and Storjohann, 2003) of polynomial matrices, as well as the associated unimodular
transformation matrices, appear in many application areas in computer science and engineering
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(for example in control theory). Informally, a polynomial matrix is in row-reduced form if its
leading row coefficient matrix has maximal rank, and it is in weak Popov form if its leading row
coefficient is in upper echelon form (up to row permutation). A polynomial matrix is in Popov
form if it is in weak Popov form and the leading column coefficient matrix is diagonal. Normal
forms for polynomial matrices are used in such computations as one-sided greatest common
divisor or least common multiple of two polynomial matrices (Kailath, 1980).

These normal forms are traditionally computed by performing elementary row operations to
eliminate unwanted coefficients (Beckermann and Labahn, 1997; Kailath, 1980; Mulders and
Storjohann, 2003). In the common cases of integer or polynomial coefficients, it is well known
that such row operations can introduce significant intermediate expression swell, which must
be carefully controlled (von zur Gathen and Gerhard, 2002; Geddes et al., 1992). By reversing
the coefficients of a polynomial matrix, the problem of row-reduction is equivalent to one of
elimination of trailing coefficients. The latter can be solved by finding an order basis of a
polynomial matrix (Beckermann and Labahn, 1997). The Fast Fraction-Free Gaussian (FFFG)
elimination algorithm of Beckermann and Labahn (2000b) can be used to compute one-sided
GCDs for polynomial matrices while controlling coefficient growth. The procedure was later
extended to compute row-reduced forms (Beckermann and Labahn, 2001) and weak Popov
forms (Cheng, 2003, Section 4.4) of polynomial matrices. The FFFG elimination algorithm has
also been used for computing Popov forms (Beckermann et al., 1999, 2006b) by reducing the
problem to one of computing minimal bases. The FFFG elimination algorithm, which includes
the subresultant algorithm as a special case (Beckermann and Labahn, 2000a), predicts common
factors by examining the linear systems of equations associated with the order basis problem.
For an input m × n polynomial matrix of degree N , the FFFG algorithm has a worst case bit
complexity of O((m +n)α3M(α(log α + K ))) when the coefficients are integers of size (number
of bits) bounded by K , α = m min(m, n)N , and M(K ) is the complexity of multiplying two
integers of length K . The worst case bit complexity is O((m + n)α4 K 2) when the coefficients
are polynomials in Z[x] with degrees bounded by K and quadratic multiplication is assumed
(Cheng, 2003, Section 3.6).

The use of modular methods in controlling coefficient growth is well known for many
problems in computer algebra (see, for example, von zur Gathen and Gerhard (2002) and Geddes
et al. (1992)). In this paper we are interested in the modular computation of row-reduced, weak
Popov, and Popov forms for polynomial matrices, as well as the associated transformation
matrices. There are traditionally three major issues that must be addressed: the problem of
“unlucky” homomorphisms, the number of images required for the reconstruction of the result,
and the normalization of the result to ensure a unique answer. Although these issues are well
understood in the case of polynomial GCD computations, they are nontrivial in our case. The
problem of computing these normal forms and their transformation matrices can be viewed as one
of determining a basis for a particular module. The difficulties in devising a modular algorithm
to compute a basis for a module or a vector space are well known. The lack of uniqueness,
definitions of lucky homomorphisms, and appropriate normalizations are all far from obvious
in any basis computation. We overcome these difficulties by reducing the problem to a linear
algebra problem.

While modular algorithms for systems of linear equations are well known (Geddes et al.,
1992), the design of our modular algorithms is complicated by the fact that the corresponding
fraction-free algorithm computes solutions to a sequence of systems of linear equations. The
sequence computed under each homomorphism may be different, and it is not clear a priori
which linear systems are the desired ones. Additional insights are required to detect unlucky
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homomorphisms. In particular, we must ensure that the linear systems solved under different
homomorphisms are the same. Our approach is to study the linear systems examined by the FFFG
elimination algorithm and compare them against those examined by the modular algorithm. The
key to our approach lies in examining the pivot choices (or a “computational path”) during the
execution of the algorithm.

Our algorithms can be used to solve the extended one-sided GCD problem for polynomial
matrices. This allows us to compute one-sided least common multiples of polynomial matrices,
as well as irreducible matrix-fraction descriptions of matrix rational functions. We also obtain an
efficient test for the coprimeness of two row-reduced polynomial matrices. In the special case of
polynomial GCD, we obtain a new modular algorithm for the extended GCD problem similar to
that of Brown (1971), except that no trial division or multiplication is required to verify the result
after early termination.

By following an approach of Cabay (1971), we obtain modular algorithms with early
termination, leading to output-sensitive algorithms. Unlike the polynomial GCD case, it is not
easy to verify the result by “trial division” of the input by the candidate normal form. The
elimination of the verification step is important. While Kaltofen and Monagan (1999) also
suggested lifting the “cofactors” and checking that the sum of the degrees is correct for the
polynomial GCD problem, the degree check is insufficient for the matrix case, and polynomial
matrix multiplication is needed to verify the result. Our approach is different in that when the
results have not changed after a few additional homomorphic images, the results are proven
to be correct without additional verification. The worst case complexity of the new modular
algorithm is O((m + n)αM(α(log α + K ))(α + log(α(log α + K )))) when the coefficients are
in Z, and O((m + n)α3 K 2) when the coefficients are in Z[x]. This is a significant improvement
over the fraction-free algorithm. Furthermore, the algorithm can be significantly faster when the
size of output is small. While our analyses and proofs assume that the polynomial matrices have
integer or univariate polynomial (over a field) coefficients, they can be adapted to other Euclidean
domains such as the Gaussian integers.

The paper is organized as follows. In Section 2, we review the relevant definitions of
polynomial matrices. In Section 3, we review the FFFG elimination algorithm and give examples
illustrating the difficulties in obtaining a modular algorithm. In the next two sections, we develop
the ingredients of the modular algorithms: computation of the homomorphic images of the
normal form, normalization, and definition of lucky homomorphisms. In Section 6, we study
early termination for our algorithms, and in Section 7 we examine a termination strategy that
is sensitive to both input and output. In Section 8 we study the complexity of the algorithms
presented. Section 9 explains how the algorithms can be used to compute a one-sided GCD of
polynomial matrices, and provides a fast test for the coprimeness of two polynomial matrices.
Section 10 gives some experimental results. Concluding remarks and future research directions
are discussed in the closing section.

2. Polynomial matrices: Definitions

Let D be an integral domain with quotient field QD. We shall denote the ring of integers Z, the
field of rational numbers Q, and the finite field of p elements Zp for a prime p. In this paper, we
will only examine the cases where D = Z and D = Z[x]. Other choices of D (such as D = K[x]

for any field K) can also be used.
Let D[z]m×n and QD[z]m×n be the rings of m × n polynomial matrices over D and QD,

respectively. Let F(z) ∈ QD[z]m×n and N = deg F(z), and write
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F(z) =

N∑
j=0

F ( j)z j , with F ( j)
∈ Qm×n

D .

We also write c j (F(z)) = F ( j) to denote the j-th coefficient matrix. We denote the elements
of F(z) by F(z)k,`, the elements of F ( j) by F ( j)

k,` , the i-th row of F(z) by F(z)i,∗, and the j-th
column by F(z)∗, j . For any sets of row and column indices I and J , F(z)I,∗ is the submatrix
of F(z) consisting of the rows indexed by I , F(z)∗,J is the submatrix of F(z) consisting of the
columns indexed by J , and F(z)I,J is the submatrix of F(z) consisting of the rows and columns
indexed by I and J .

For any vector of non-negative integers (also called multi-index) Eω = (ω1, . . . , ωn), we
denote by | Eω| =

∑n
i=1 ωi . The function max(·, ·) gives the vector whose components are the

maximum of the corresponding components of its input vectors. Additionally, two vectors can
be compared in lexicographical order. We say that Ev ≤lex Ew if Ev = Ew or if the leftmost nonzero
entry in Ev− Ew is negative. The vector Eei denotes the i-th unit vector (of the appropriate dimension)
such that (ei ) j = δi j ; we also have Ee = (1, . . . , 1) (of the appropriate dimension). We denote by
Im the m × m identity matrix, and by z Eω the diagonal matrix having zωi on the diagonal.

A polynomial matrix F(z) is said to have row degree Eν = rdeg F(z) if the i-th row has degree
νi . The leading row coefficient of F(z), denoted LCrow (F(z)), is the matrix whose i-th rows
are the coefficients of zνi of the corresponding elements of F(z). A polynomial matrix F(z) is
row-reduced if LCrow (F(z)) has maximal row rank. F(z) is in weak Popov form if LCrow (F(z))
is in upper echelon form (up to row permutation). In other words, if we define the pivot index of
row i , denoted Πi to be

Πi =

 min
1≤ j≤n

{
j : deg F(z)i, j = deg F(z)i,∗

}
if F(z)i,∗ 6= 0

0 if F(z)i,∗ = 0,

then Πi 6= Π j whenever i 6= j , and F(z)i,∗ and F(z) j,∗ are both nonzero. Finally, a polynomial
matrix F(z) is in Popov form1 if it is in weak Popov form, and if i is such that F(z)i,∗ is nonzero,
then

(1) F(z)i,Πi is monic;
(2) deg F(z) j,Πi < deg F(z)i,Πi for all j 6= i .

3. The FFFG elimination algorithm

In this section, we give a brief description of the FFFG elimination algorithm (Beckermann
and Labahn, 2000b), which forms much of the basis of our work. Instead of eliminating unwanted
high-order coefficients in the input polynomial matrix A(z) ∈ D[z]m×n of degree N , we reverse
the coefficients to get its reciprocal F(z) = A(1/z) · zN and eliminate the low-order coefficients
instead.

3.1. Order bases and normal forms

The elimination problem can be formalized as follows. A polynomial vector P(z) ∈ D[z]1×m

1 Our definition is equivalent to the ones given by others (for example, Mulders and Storjohann (2003)) up to row
permutation.
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is said to have order Eω with respect to F(z)2 if

P(z) · F(z) = R(z) · z Eω (1)

for some residual R(z) ∈ D[z]1×n . It is easy to see that the set of all polynomial vectors of
a particular order Eω forms a QD[z]-module. The FFFG algorithm computes a basis M(z) ∈

D[z]m×m of row degree Eµ for this module, called an order basis, such that

(1) every row, M(z)i,∗, has order Eω for all 1 ≤ i ≤ m;
(2) the rows of M(z) form a basis of the module of all vectors of order Eω. That is, every P(z) ∈

QD[z]1×m of order Eω can be written as P(z) = Q(z) · M(z) for some Q(z) ∈ QD[z]1×m ;
(3) the leading column coefficient is normalized. That is, there exists a nonzero d ∈ QD such

that

M(z) = d · z Eµ
+ L(z)

where deg L(z)k,l ≤ µl − 1.

Condition (3) implies that the row degree can be viewed as the number of times each row of
F(z) has been used as a pivot in the elimination process (see Example 3.4). An order basis of
a particular order and degree, if it exists, is unique up to a scalar constant (Beckermann and
Labahn, 2000b). In the FFFG algorithm, the order is given as input, but the degree of the order
basis computed is not known in advance. The final row degree reached depends on the input and
a pivoting scheme (or computational path) to be described later.

Let R(z) be the residual corresponding to an order basis M(z) of order Eω, such that

M(z) · F(z) = R(z) · z Eω (2)

with Eω = σ · Ee. It has been shown (Beckermann et al., 2006a, Section 9) that if σ = m N +1, then
| Eµ| ≤ σ min(m, n) and the trailing coefficient of R(z) has rank F(z) nonzero rows. Furthermore,
one can choose the pivot rows used in the last n steps of the algorithm to construct M̂(z) and
R̂(z) satisfying (2) with the trailing coefficient of R̂(z) in upper echelon form (Cheng, 2003, Sec.
4.4). Reversing the coefficients of M(z) and R(z) (or M̂(z) and R̂(z)) gives U(z) = z Eµ

· M(1/z)
and T(z) = z Eµ

· R(1/z) · zN ·Ee−Eω, such that

U(z) · A(z) = T(z) (3)

with U(z) unimodular and T(z) in row-reduced form (weak Popov form).
The FFFG algorithm can also be used to compute the Popov form of a polynomial matrix

(Beckermann et al., 1999, 2006b). In particular, we compute an order basis M(z) of the input

matrix
[

A(z)
−In

]
of a sufficiently large order. Then, a basis M′(z) of the nullspace of the input

matrix can be obtained by choosing the rows of M(z) corresponding to the zero rows of the
residual. If we use a particular pivoting scheme, then

M′(z) =
[

U(z) T(z)
]

where U(z) is unimodular and T(z) is a constant multiple of a matrix in Popov form.
Since we are interested in matrix normal forms, we will only consider the order basis problem

of (2) with Eω = σ · Ee for the remainder of this paper.

2 Order bases in this paper will be with respect to F(z) and it will not be explicitly stated for the remainder of the
paper.
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3.2. Linear algebra formulation

In (2), the coefficients of M(z)i,∗ can be viewed as a solution to the linear system of
equations:

(Mi,∗) Eµ−Ee+Eei · K( Eµ − Ee + Eei , Eω) = 0, (4)

where for any P(z) ∈ QD[z]m×n (recall that Eω = σ · Ee)

PEv =

[
P(0)

∗,1 · · · P(v1)
∗,1 | · · · | P(0)

∗,n · · · P(vn)
∗,n

]
(5)

K( Eµ, Eω) =



c0( F(z)1,∗) · · · cσ−1( F(z)1,∗)
...

...

c0( zµ1 · F(z)1,∗) · · · cσ−1( zµ1 · F(z)1,∗)
...

...

c0( F(z)m,∗) · · · cσ−1( F(z)m,∗)
...

...

c0( zµm · F(z)m,∗) · · · cσ−1( zµm · F(z)m,∗)


. (6)

The matrix K( Eµ, Eω) has dimensions | Eµ + Ee| × | Eω|, and is called a striped Krylov matrix (with m
stripes). In general, when m = 2 we have a generalization of the well-known Sylvester matrix.

Example 3.1. Let A(z) =
[

a2z2
+ a1z + a0, b2z2

+ b1 + b0
]T , and F(z) = A(1/z) · z2.

Then

K((1, 1), (4)) =


a2 a1 a0 0
0 a2 a1 a0
b2 b1 b0 0
0 b2 b1 b0

 . �

Example 3.2. Let A(z) be the 4 × 2 polynomial matrix
3 z4

+ 3 z3
+ 4 z2

− 2 z − 4 3 z4
+ 3 z2

+ 14 z + 8
z4

+ 5 z3
+ 3 z2

+ 3 z + 1 z4
+ 7 z3

+ 6 z2
+ z + 1

z3
+ 9 z2

+ 5 z + 1 z3
+ 15 z2

+ 19 z + 5
z5

+ z4
+ 2 z3

+ 3 z2
+ 2 z + 1 z5

+ z3
+ 7 z2

+ 6 z + 1

 .

If we reverse the coefficients and let F(z) = A(1/z) · z5, we get, for example,

K((1, 1, 1, 1), (6, 6)) =



0 0 3 3 3 0 4 3 −2 14 −4 8
0 0 0 0 3 3 3 0 4 3 −2 14
0 0 1 1 5 7 3 6 3 1 1 1
0 0 0 0 1 1 5 7 3 6 3 1
0 0 0 0 1 1 9 15 5 19 1 5
0 0 0 0 0 0 1 1 9 15 5 19
1 1 1 0 2 1 3 7 2 6 1 1
0 0 1 1 1 0 2 1 3 7 2 6


. �

We also define the matrix K∗( Eµ, Eω) = K( Eµ, Eω)∗,J where J is the lexicographically smallest
set of column indices such that K∗(σ · Ee, Eω)∗,J has full column rank (this is called the rank
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profile by Storjohann (2000)). An order basis of degree Eµ and order Eω exists if K∗( Eµ − Ee, Eω)

is nonsingular (Beckermann and Labahn, 2000b), and in that case, (4) has a solution space
of dimension one. The system can be transformed into the following system with a unique
solution:

(Mi,∗) Eµ−Ee · K∗( Eµ − Ee, Eω) = c ·
[

c0
(
zµi · F(z)i,∗

)
· · · cσ−1

(
zµi · F(z)i,∗

) ]
(7)

where c = ± det K∗( Eµ − Ee, Eω). In other words, we are interested in the Cramer solution of (7).

3.3. Fraction-free recursion

Starting from M(z) = Im and Eω = E0, the FFFG algorithm computes order bases for increasing
Eω until the desired order is reached. It performs a fraction-free elimination of the matrix K( Eµ, Eω)

efficiently by taking advantage of the inherent structure in the matrix K( Eµ, Eω). Indeed, the
algorithm has the effect of maintaining only one row in each of the m stripes. The recursion
formulas to increase the order of an order basis from Eω to Eω + Ee j are given by the following
theorem (Beckermann and Labahn, 2000b, Theorem 6.1):

Theorem 3.3. Let M(z) be an order basis of order Eω and degree Eµ, and r` =

cω j

(
(M(z) · F(z))`, j

)
. If r` = 0 for all ` = 1, . . . , m, then M(z) is an order basis of

order Eω + Ee j and degree Eµ. Otherwise, we choose a pivot π such that rπ 6= 0, and let
p` = cµ`−1+δπ,`

(
M(z)π,`

)
. Then an order basis M̃(z) of order Eω + Ee j and degree Eµ + Eeπ

can be computed by

pπ · M̃(z)`,∗ = rπ · M(z)`,∗ − r` · M(z)π,∗ for ` 6= π ; (8)

pπ · M̃(z)π,∗ = z · rπ · M(z)π,∗ −

∑
`6=π

p` · M(z)`,∗. � (9)

In the case of row-reduced and weak Popov forms, the pivot π is chosen by the formula

π = min
1≤`≤m

{
` : r` 6= 0, µ` = min

1≤ j≤m
{µ j : r j 6= 0}

}
. (10)

The formula for the Popov form is induced by an “offdiagonal path”. We refer the reader to the
references for more details (Beckermann et al., 2006b).

It can be shown that pπ is the pivot in the previous step in computing M(z), in a way similar to
fraction-free Gaussian elimination of Bareiss (1968). The elements of M(z) are Cramer solutions
to (7). The order basis M(z) can be viewed as the transformation matrix representing the row
operations performed during Gaussian elimination. We also note that the degree of the order
basis (and hence the corresponding linear systems of equations) depends on the pivot choices in
(10), and cannot be predicted in advance.

Example 3.4. Let A(z) be defined as in Example 3.2, so that we are performing Gaussian
elimination on K(·, ·). In the first step of FFFG, we choose π = 4 to eliminate the first column,
so that the row considered in the fourth stripe is advanced to the second row of the stripe. That is,
we no longer consider the first row of the stripe and the second row is used for elimination in the
next step. In the second step, the entries in the second column are zero (except those rows that
have already been used), and so no elimination is performed. In the third step, we choose π = 1
to eliminate the third column, but in the fourth step we see that all entries in the fourth column are
zero, and so no elimination is performed. This gives us an order basis of order Eω = (2, 2). The
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row degrees of the order bases computed are (0, 0, 0, 1), (0, 0, 0, 1), (1, 0, 0, 1), and (1, 0, 0, 1).
The first two elements of J are 1 and 3. Note that at each step, we are solving a linear system
whose coefficient matrix grows column-wise (as the order increases) and row-wise (as the degree
of the order bases increases).

As we can see, the row degrees of the order bases computed correspond to the number of
times a row in each stripe is used as a pivot in the elimination process. The column indices in J
give the columns in which elimination is performed.

If we perform the same computations in Z3, we see that the pivot chosen in the third step will
be different, and we have an order basis of order (0, 1, 0, 1) instead. It is also possible that r` = 0
for all ` at a particular step when the computation is done in Zp, but some r` is nonzero at the
same step when the computation is done in Z. This means that the set of column indices J is
different in Zp. Note that the latter cannot occur in the computation of polynomial GCD (with
n = 1) provided that the leading coefficients of the input polynomials do not vanish in Zp. �

4. Computing homomorphic images and normalization

Let I ⊆ D be an ideal, and φ : D → D/I be the natural homomorphism defined by
φ(a) = a + I for all a ∈ D. If D = Z, we choose I = pZ for some prime p ∈ Z, while if
D = Z[x] we choose I = (x−α)Z[x] for some α ∈ Z. Thus, φ corresponds to the “modulo p” or
“evaluation at α” operation. In a modular algorithm, a number of distinct primes pi or evaluation
points αi is chosen and the computation is performed in the domain (D/Ii )[z], where Ii is the
ideal defined by the i-th prime or evaluation point. The images of the results are combined via
Chinese remaindering to obtain the desired result in D[z].

Let φi be the natural homomorphism defined by Ii . We will compute an order basis Mi (z) of
degree Eµi , and order Eω = σ · Ee of φi (F(z)) with residual Ri (z). The desired results M(z) and
R(z) are reconstructed from Mi (z) and Ri (z) via Chinese remaindering.

Since order bases are unique up to multiplication by a constant, we need to ensure that the
images computed under each homomorphism correspond to the same result in D[z]. This is
ensured by normalizing the order basis such that LCrow (M(z)) has d = det K∗( Eµ − Ee, Eω) on the
diagonal (recall that M(z) is square) as in (Beckermann and Labahn, 2000b). The normalization
is done by applying the same operations specified in the formulas (8) and (9) in (D/Ii )[z].
However, the sequence of pivots chosen may be different, so the result is correct up to sign
(e.g. consider Example 3.2 in Z3[z]), which can be computed by the following formula:

ε0 = 1 (11)

εk+1 =

{
εk if r` = 0 for all `,

εk · (−1)
∑m

i=πk+1(νk )i otherwise,
(12)

where πk and Eνk are the values of π and Eµ at the k-th step of the algorithm performed in (D/Ii )[z]
(Beckermann and Labahn, 2000b, Lemma 5.1(c)). As long as the final degrees of the order bases
Eµi are identical, the order bases Mi (z) and the residuals Ri (z) correspond to the same result in
D[z] with the normalization above. We also compute the vector EJi recording the steps in which
formulas (8) and (9) are applied. Then EJi has | Eµi | components and it gives the set of column
indices J in the definition of K∗( Eµi − Ee, Eω) in D/Ii .

5. Lucky homomorphisms

Although order bases are unique (up to a constant) for a given degree and order, FFFG may
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not always arrive at the same final degree for the order basis even when the order is the same.
In terms of the systems of linear equations (7), this implies that the systems solved under
distinct homomorphisms may be different. In this section, we discuss the definition of lucky
homomorphisms and how they are detected.

As we have seen in Example 3.4, the sequence (or path) of row degrees of the order bases
constructed during the execution of FFFG represents the choice of pivots πk . We define the path
w = { Ewk}k=0,1,2,... by Ew0 = E0 and Ewk+1 = Ewk + Eek mod m+1. The path w is the sequence of
degrees followed by FFFG for row-reduced and weak Popov forms, if r` 6= 0 for all ` at every
step. The path w for computing Popov forms can similarly be defined (Beckermann et al., 1999,
2006b).

In either case, it was shown (Beckermann and Labahn, 2000b, Theorem 7.3) that the final
degree Eµi is the unique closest normal point3 to w. That is, if K∗(Ev − Ee, Eω) is nonsingular for
some Ev such that |Ev| = | Eµi |, then

| max(E0, Ewk − Eµi )| ≤ | max(E0, Ewk − Ev)| for all k ≥ 0. (13)

To facilitate the presentation, we let K∗

i ( Eµ − Ee, Eω) be the submatrix of the corresponding
striped Krylov matrix Ki ( Eµ − Ee, Eω) over D/Ii , with the column indices J given by EJi . We will
assume that M(z), R(z), Eµ, and EJ are the outputs of FFFG over D, and d is the diagonal element
of LCrow (M(z)). The subscript i is used to indicate the corresponding quantities computed over
D/Ii .

We define lucky homomorphisms for our row-reduced form computation as follows.

Definition 5.1. The homomorphism φi is lucky if φi (d) 6= 0 and | Eµ| = | Eµi |. Otherwise, it is
unlucky.

We remark that if the degree of A(z) drops under φi , then φi (F(0)) = 0. It follows that φi is
unlucky, because the first column of K∗( Eµ − Ee, Eω) is zero.

We now prove Lemma 5.2 and Theorem 5.3, which will be used for detecting whether a
homomorphism is lucky.

Lemma 5.2. Suppose φi (F(0)) 6= 0 and | Eµi | = | Eµ|. Then EJ ≤lex EJi . Moreover, if EJ = EJi , then
Eµ is at least as close to w as Eµi , as defined in (13).

Proof. The columns indexed by EJi in Ki ( Eµi − Ee, Eω) are linearly independent over D/Ii .
Therefore, the same columns in K( Eµi − Ee, Eω) are also linearly independent over QD. By the
definition of K∗( Eµ − Ee, Eω), it follows that EJ ≤lex EJi .

If EJ = EJi , then φi (det K∗( Eµi − Ee, Eω)) = det K∗

i ( Eµi − Ee, Eω) = di 6= 0. It follows that
K∗( Eµi − Ee, Eω) is nonsingular over QD. The second part now follows (Beckermann and Labahn,
2000b, Theorem 7.3). �

Theorem 5.3. Suppose φi (F(0)) 6= 0. Then φi is lucky if and only if Eµi = Eµ and EJi = EJ .

Proof. Suppose φi is lucky. Since φi (d) 6= 0, φi (K∗( Eµ − Ee, Eω)) is nonsingular over D/Ii . Thus,
the columns of K( Eµ − Ee, Eω) indexed by EJ are linearly independent over D/Ii , so that EJi ≤lex EJ .
Hence EJi = EJ by Lemma 5.2. Moreover, Eµ is at least as close to w as Eµi by Lemma 5.2. On the
other hand, Eµi is the unique closest point to w, so that Eµi = Eµ.

3
Eµ is a normal point if K∗( Eµ − Ee, Eω) is nonsingular.
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Conversely, assume that Eµi = Eµ and EJi = EJ . Then | Eµ| = | Eµi | and φi (d) = di 6= 0, so φi is
lucky. �

Theorem 5.4. If φi is lucky, then φi (M(z)) = Mi (z) and φi (R(z)) = Ri (z).

Proof. Suppose that φi is lucky, so that Eµ = Eµi and EJ = EJi by Theorem 5.3. Then φi (K∗( Eµ−Ee+

Ee j , Eω)) = K∗

i ( Eµi − Ee + Ee j , Eω) for all j . It follows from (7) that φi (M(z)) = Mi (z). Finally, over
D/Ii we have φi (R(z)) = φi (M(z)·F(z)) = φi (M(z))·φi (F(z)) = Mi (z)·φi (F(z)) = Ri (z). �

This shows that Definition 5.1 is sufficient. Since Eµ and EJ are not known a priori, we need
criteria to compare the results computed under two homomorphisms and determine if one of
them is unlucky.

Theorem 5.5. Suppose φi (F(0)) 6= 0 and φ j (F(0)) 6= 0. Then φi is unlucky if one of the
following holds:

(1) | Eµi | = | Eµ j | and EJi >lex EJ j ;
(2) | Eµi | = | Eµ j |, EJi = EJ j , and Eµ j is closer to w than Eµi ;
(3) | Eµi | < | Eµ j |.

Proof. Conditions (1) and (2) follow from Lemma 5.2. For (3), recall that | Eµ| is the maximum
rank of K(Eν − Ee, Eω) over all Eν (Beckermann and Labahn, 2000b). Since the rank of such matrices
over D/Ii cannot increase, we have | Eµi | ≤ | Eµ|. �

Example 5.6. Let

F(z) =

[
2 + 3z + 4z2 z + 4z2

1 − 2z − 2z2 3 + z + z2

]
.

The striped Krylov matrix K((1, 1), (4, 4)) is

K((1, 1), (4, 4)) =


2 0 3 1 4 4 0 0
0 0 2 0 3 1 4 4
1 3 −2 1 −2 1 0 0
0 0 1 3 −2 1 −2 1

 .

We see that over Z, EJ = (1, 2, 3, . . .). However, over Z3, it is EJ3 = (1, 3, . . .). Since EJ3 >lex EJ ,
it follows that p = 3 is unlucky. �

For the computation of the weak Popov form, the definition of lucky homomorphisms is given
as follows.

Definition 5.7. The homomorphism φi is lucky if it is lucky by Definition 5.1 and the trailing
coefficients of Ri (z) and R(z) have leading nonzero entries at the same position in each row.
Equivalently, the sequences of pivot rows used in the last n steps of FFFG are the same over D
and D/Ii .

In this case, we can also compare the results computed under two homomorphisms to detect
if one of them is unlucky, by detecting which sequence of pivot rows is less desirable using
the pivoting strategy (10). Equivalently, we can compare the sequences of pivot indices in the
computed normal forms. The one that is lexicographically larger must correspond to an unlucky
homomorphism.
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6. Termination

As all coefficients in M(z) are Cramer solutions of the linear systems (7), they can be written
as determinants of the coefficient matrices (Beckermann and Labahn, 2000b). Note that the
coefficient matrix in (7) has at most σ min(m, n) rows with σ = m N + 1 (in each block of
n columns, the rank, and hence the number of elimination steps, is at most min(m, n)). By
Hadamard’s inequality, the size of the coefficients is O(α(log α+ K )) where α = m min(m, n)N
and K bounds the bit length of the coefficients in F(z) ∈ Z[z]m×n . When F(z) ∈ (Z[x])[z]m×n ,
the bound is O(αK ), where K is a bound on the size of each coefficient (the product of its degree
in x and bit length of coefficients in x). We may terminate the modular algorithm when the size
of

∏
i pi or

∏
i (x − αi ) exceeds the Hadamard bound.

Unfortunately, the Hadamard bound can be extremely pessimistic. A common approach is to
reconstruct the results incrementally, and verify the results when they do not change for a certain
number (e.g. one) of additional homomorphisms. The verification step typically involves trial
division or multiplication.

An approach of Cabay (Cabay, 1971) was first used for solving systems of linear equations
with a modular algorithm without the need for verification. Once the reconstructed result of a
system of linear equations has not changed for τ additional homomorphisms, it can be proven
that the reconstructed result is in fact correct. The quantity τ is determined a priori from
the coefficient matrix. We note that the desired transformation matrix (order basis) consists
of solutions to systems of linear equations (7). The coefficient matrices have size | Eµ| ≤

(m N + 1) min(m, n). Therefore, we have the following result.

Theorem 6.1. Suppose D = Z and the primes are ordered such that p1 < p2 < · · · , and that

m∑
i=1

N∑
k=0

∣∣∣F (k)
i, j

∣∣∣ ≤ p1 · · · pτ

for all j = 1, . . . , n. Suppose that M̃(z) and R̃(z) are the reconstructed results in the modular
algorithm and have not changed for τ additional primes. Then M̃(z) and R̃(z) give a solution to
(2).

If D = Z[x], then M̃(z) and R̃(z) give a solution to (2) if degx F(z)i, j ≤ τ for all i, j .

Proof. The fact that M̃(z) is correct is a straightforward application of the result of Cabay (1971).
To see that R̃(z) is correct, note that (2) holds for M̃(z) and R̃(z) modulo p1 · · · pk+τ for some
k ≥ 1 in the case of D = Z. Since M̃(z) and R̃(z) both have coefficients bounded by p1 · · · pk , we
see that the coefficients of M̃(z) ·F(z)−R̃(z) · z Eω must have magnitudes bounded by p1 · · · pk+τ ,
and hence they must be zero in Z. The case D = Z[x] is similar. �

Theorem 6.1 shows that if the reconstructed results are unchanged for a sufficient number of
steps, we indeed have an order basis M̃(z) of degree Eµ′. However, it is not sufficient to guarantee
that the reconstructed result is correct. Indeed, it is possible that Eµ 6= Eµ′, so that R̃(z) 6= R(z).
This happens when the matrix K∗( Eµ − Ee, Eω) in (7) is singular under all homomorphisms so far,
but is in fact nonsingular over D. In spite of this, the computed results M̃(z) and R̃(z) can be
used to obtain the desired normal form and the transformation matrix.

Theorem 6.2. If the coefficients of R̃(z) and M̃(z) in Theorem 6.1 are reversed, we obtain a row-
reduced form (or weak Popov form) of the input polynomial matrix, as well as the corresponding
transformation matrix.
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Proof. Theorem 6.1 shows that M̃(z) is an order basis of order Eω = (m N + 1) · Ee with R̃(z)
the corresponding residual. Since each Ri (z) has the correct number of zero rows (as well as the
same echelon structure in the trailing coefficient for weak Popov form computation), it follows
that R̃(z) has the same property as well. �

The early termination criterion is most useful if τ is small. In particular, if τ = 1 then the
proposed criterion is clearly an improvement. This is often true in practical cases. For example,
when D = Z it is often true that m(N + 1) maxi, j,k

∣∣∣F (k)
i, j

∣∣∣ ≤ p1 (e.g. using 31-bit primes). This
performs especially well if the size of the output is small, because the Hadamard bound is based
on a matrix of size O(α), and it is larger than the bound given in Theorem 6.1 (see Cabay (1971)
for an analysis).

We also note that Theorems 6.1 and 6.2 still hold if we are only interested in the transformation
matrix and only perform the reconstruction of M(z). This is useful in the case of computing the
Popov form, and as well as other cases in which the row-reduced (or weak Popov) form itself is
not needed (see Section 9). Furthermore, the results can be adapted to other Euclidean domains,
such as the Gaussian integers, by applying the given norm and defining τ appropriately. Finally,
the early termination criterion is possible only because we choose to compute the fraction-free
results. If we apply a different normalization (e.g. by requiring d = 1 in the order basis), then
the images of rational numbers modulo increasing moduli may change even after the results of
rational reconstruction have stabilized.

7. Alternate FFFG termination strategy

In the proof of Theorem 6.2, we used the fact that the order bases computed under different
homomorphisms have the same order Eω = (m N + 1) · Ee. Alternatively, the FFFG elimination
algorithm can be terminated as soon as the number of nonzero rows of R(z) is the same as the
rank of the trailing coefficient of R(z) (Beckermann et al., 2002). This has the advantage that
the final order Eω, and hence the number of elimination steps performed, are typically smaller,
leading to less coefficient growth and a faster execution time. We may view this as an input-
sensitive strategy, so that less work is done if the input matrix is already close to being in normal
form.

With this termination strategy, the final order Eωi reached under different homomorphisms
may be less than the desired order Eω reached over D, so that we are examining solutions to
systems of equations which have different numbers of unknowns. As a result, it is more difficult
to detect unlucky homomorphisms. In particular, if | Eµi | 6= | Eµ j |, we cannot determine which
homomorphism is unlucky. One solution is to simply reject both homomorphisms. Otherwise, if
two homomorphisms give two different orders, the one giving a smaller order must be unlucky.
We also have to ensure that the zero rows in the residual Ri (z) occur at the same indices. These
are minor drawbacks as unlucky homomorphisms are not often encountered in practice.

More importantly, Theorem 6.2 still holds, and we can still apply the output-sensitive
termination strategy described in Section 6. Combining both strategies gives an algorithm that is
sensitive to both input and output. We also note that in the worst case the final order may still be
(m N + 1) · Ee, so that the worst case complexity is not improved.

Example 7.1. Let A(z) be the defined as in Example 3.2. If we apply FFFG over Z with the
alternate termination strategy, we get
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d = 2480256 = 27
· 32

· 2153,

Eµ = (5, 4, 3, 2),

EJ = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16),

T(z) = 1240128 ·


2z2

− 4z − 8 12z2
+ 28z + 16

3z 6z + 6
0 0
0 0

 .

When p1 = 2, we have Eµ1 = (3, 3, 2, 2), and when p2 = 3, we get Eµ2 = (3, 2, 2, 2). These
two primes are unlucky not only because they both divide d, but also because EJ1, EJ2 <lex EJ .
Since | Eµ1| 6= | Eµ2|, we simply assume that Eµ1 is unlucky, and the corresponding results are
discarded. The prime p3 = 5 is lucky, and the previous results are discarded. However, for
p4 = 7 we get Eµ4 = (4, 3, 3, 2). Notice that although d 6≡ 0 mod 7, p4 = 7 is an unlucky
prime because | Eµ4| 6= | Eµ|. This means that when FFFG is applied over Z, in one of the steps all
residuals are 0 mod 7. Thus, the linear system solved by FFFG over Z7 is different from the one
over Z.

Since | Eµ3| 6= | Eµ4|, the previous results are also discarded. The primes pi = 11, 13, . . . , 37
are all lucky, and we can terminate the algorithm because the reconstructed results satisfy (2). If
we used p1, p2, . . . = 2, 3, 5, . . ., then τ = 4 and we would need the reconstructed results to
remain unchanged for 4 additional primes. On the other hand, the Hadamard bound implies that
the size of the coefficients is bounded by 2308 and is extremely pessimistic. In practice, we are
more likely to use 31-bit primes and in that case we have τ = 1. �

8. Complexity analysis

In the worst case, the number of homomorphisms required is implied by the Hadamard bound.
In the case of D = Z, if we assume that the primes chosen have size O(log α + K ), then the
number of lucky primes needed is O(α) where α = m min(m, n)N . The same reasoning shows
that we need O(αK ) lucky evaluation points when D = Z[x].

To bound the number of unlucky homomorphisms, we see that if φi is unlucky, then either
φi (d) = 0 or | Eµ| 6= | Eµi | by Definition 5.1. In the first case, d is the determinant of K∗( Eµ, Eω)

of order at most min(m, n)(m N + 1). In the latter case, some column of K∗( Eµ, Eω) is linearly
dependent on the others, so again φi (d) = 0. If D = Z, the product of all unlucky primes must
divide d , so there are at most O(α) unlucky primes. Similarly, there are at most O(αK ) unlucky
evaluation points if D = Z[x]. Since the number of unlucky homomorphisms is of the same
order as the lucky ones, we may ignore the presence of unlucky homomorphisms in our analysis.
In practice, unlucky homomorphisms are rarely encountered.

Theorem 8.1. Let D = Z and K be a bound on the size of the coefficients appearing in F(z).
The worst case complexity of the modular algorithm is O((m + n)αM(α(log α + K ))(α +

log(α(log α + K )))) bit operations.

Proof. Using the same analysis as for the FFFG elimination algorithm (Beckermann and Labahn,
2000b, Theorem 6.3) while assuming all arithmetic operations can be done in M(K ) time, we
see that the computation of Mi (z) and Ri (z) can be done in O((m + n)α2M(K )) operations.
Moreover, we can compute φpi (F(z)) in O(mnNM(K )) bit operations. Since we need O(α)

primes, all Mi (z) and Ri (z) can be computed in O((m + n)α3M(K )) bit operations, or
O((m + n)α2M(α(log α + K ))) bit operations since αM(K ) ∈ O(M(αK )).
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Finally, each coefficient in M(z) and R(z) can be reconstructed in O(M(α(log α + K ))

log (α(log α + K ))) by Chinese remaindering (von zur Gathen and Gerhard, 2002). There are
potentially O(m2 min(m, n)N ) nonzero coefficients in M(z) and O(mnN ) nonzero coefficients
in R(z). Combining the two parts gives the desired complexity. �

When D = Z[x], a similar analysis gives the following complexity result.

Theorem 8.2. Let D = Z[x] and K be a bound on the degree of the coefficients appearing in
F(z). The worst case complexity is O((m + n)α3 K 2) operations in Q.

This shows that the modular algorithm is an order of magnitude faster than the FFFG elimination
algorithm in the parameter α = m min(m, n)N .

9. Greatest common divisors

Let A1(z) ∈ QD[z]m1×n and A2(z) ∈ QD[z]m2×n . Without loss of generality, we may
assume that both A1(z) and A2(z) have coefficients in D. We will make the standard assumption
that the matrix [A1(z)T A2(z)T

]
T has full column rank (Kailath, 1980, page 378). Then any

greatest common right divisor (GCRD) of A1(z) and A2(z) is nonsingular, and it is unique up to
multiplication on the left by a unimodular matrix. A GCRD of A1(z) and A2(z) can be obtained
by computing a row-reduced or a weak Popov form of [A1(z)T A2(z)T

]
T :

U(z) ·

[
A1(z)
A2(z)

]
=

[
G(z)

0

]
, (14)

where the GCRD G(z) is in row-reduced or weak Popov form. The unimodular matrix U(z) can
be partitioned into submatrices of appropriate dimensions to obtain a solution to the extended
matrix GCRD problem:

S1(z) · A1(z) + T1(z) · A2(z) = G(z),

S2(z) · A1(z) + T2(z) · A2(z) = 0.
(15)

A least common left multiple (LCLM) of A1(z) and A2(z) is given by S2(z) · A1(z), and
an irreducible left matrix-fraction description of A1(z) · A2(z)−1 is given by S2(z)−1

· T2(z)
(Kailath, 1980). Since these can be obtained from the transformation matrix U(z) alone, we
do not need to reconstruct the matrix R(z) over D for these problems. Greatest common left
divisors, least common right multiples, and irreducible right matrix-fraction descriptions can
be computed by considering the transposes of the input matrices. Note that the computation of
least common multiples requires a polynomial matrix multiplication on matrices smaller than
the entire transformation matrix U(z), so that it is still worthwhile to use the output-sensitive
algorithm.

We remark that when m1 = m2 = n = 1, we obtain an output-sensitive modular extended
polynomial GCD algorithm with complexity O(N 3 K 2). When the size of the coefficients is also
O(N ), this gives a complexity of O(N 5) which is as good as the “small primes modular extended
Euclidean Algorithm, single row” as described by von zur Gathen and Gerhard (2002, Table 6.5)
(where multiplication with quadratic complexity is assumed).

Example 9.1. Let A(z) be defined in Example 3.2, A1(z) = A(z){1,2},∗, and A2(z) = A(z){3,4},∗.
Then T(z){1,2},∗ in Example 7.1 is a GCRD of A1(z) and A2(z). �
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It is well known that if deg φ(a(z)) = deg a(z), deg φ(b(z)) = deg b(z), and φ(a(z)) and
φ(b(z)) are relatively prime in (D/I )[z], then a(z) and b(z) are relatively prime in D[z] (Geddes
et al., 1992). We now prove an analogous result for polynomial matrices. For simplicity, we
assume that the input matrices are square and nonsingular.

Theorem 9.2. Let A1(z), A2(z) ∈ D[z]m×m , G(z) ∈ D[z]m×m be a GCRD of A1(z) and A2(z)
computed by FFFG over D, and G′(z) ∈ (D/I )[z]m×m be a GCRD of φ(A1(z)) and φ(A2(z))
computed by FFFG over D/I . If deg φ(det A1(z)) = deg det A1(z) and deg φ(det A2(z)) =

deg det A2(z) then

deg det G(z) ≤ deg det G′(z).

Furthermore, if deg det G′(z) = 0 then A1(z) and A2(z) are right coprime over QD (i.e. the
GCRD is unimodular).

Proof. Let Q1(z) and Q2(z) be polynomial matrices such that A1(z) = Q1(z) · G(z) and
A2(z) = Q2(z) · G(z). Note that Q1(z) and Q2(z) are submatrices of the unimodular matrix
U(z) computed by FFFG and have entries in D[z], and they cannot vanish in D/I because
φ(A1(z)) and φ(A2(z)) are nonzero. Examining these equations over D/I reveals that φ(G(z)) is
a common right divisor of φ(A1(z)) and φ(A2(z)), so φ(G(z)) is a right divisor of G′(z). Taking
determinants, we also see that det G(z) is a common divisor of det A1(z) and det A2(z), so that
deg det G(z) = deg φ(det(G(z))) by the degree assumptions on deg det A1(z) and deg det A2(z).
Thus,

deg det G(z) = deg φ(det G(z)) ≤ deg det G′(z).

The second part of the theorem follows. �

Note that the theorem above can only be applied easily if the input polynomial matrices are
row-reduced. In this case, the condition deg φ(det A(z)) = deg det A(z) can be tested quickly by
checking whether φ(LCrow (A(z))) is nonsingular over D/I . A similar test exists to determine
whether A(z) is row-reduced (Cheng, 2003, Theorem 5.16):

Theorem 9.3. Let T(z) be a row-reduced form of φ(A(z)) over D/I . If
|rdeg A(z)| = |rdeg T(z)|, then A(z) is row-reduced over QD. �

10. Experimental results

In this section, we show some experimental results comparing the performance of the modular
algorithm and the fraction-free algorithm. Both termination strategies described in Sections 6 and
7 were implemented. All experiments were performed on the Maple 10 computer algebra system
using a Pentium M 1.6 GHz processor with 1 Gb of RAM. For D = Z, we used the modp1
representation for polynomials for the efficient implementation of the modular algorithm.

All our experiments were performed on the computation of GCRDs of two n × n polynomial
matrices. That is, the dimensions of the input polynomial matrix are 2n × n. In the following, κ

is a bound on the coefficients of the input matrices. In the case of D = Z[x], κ is a bound on the
degree (in x) of the coefficients in the input matrices. In this case, the integer coefficients have
size O(1).

In the first set of experiments, we chose various values of n, N , and κ , and generated the input
matrices randomly. In these cases, the input matrices are usually right coprime so that coefficient
growth is the greatest. The experimental results are presented in Tables 1 and 2.
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Table 1
Comparison of fraction-free and modular algorithms for various values of n and N for D = Z (κ = 104)

n N Size FFFG (s) Modular (s) Ratio
1 25 386 0.261 1.174 4.480
1 50 445 0.504 1.934 3.830
1 100 1325 13.844 18.718 1.360
1 200 2765 127.747 91.407 0.714
1 400 4572 1136.155 433.241 0.380
2 25 708 3.326 15.024 4.500
2 50 1457 31.978 86.637 2.710
2 100 2692 230.528 433.523 1.880
2 200 5477 3629.549 3753.344 1.030
2 400 11732 39685.209 32157.333 0.811
2 500 13652 72724.670 55450.968 0.763
2 600 17660 189932.281 126398.590 0.663
Also shown is the size (in number of decimal digits) of the largest
coefficient in the result.

Table 2
Comparison of fraction-free and modular algorithms for various values of n, N , and κ for D = Z[x]

n N κ Size FFFG (s) Modular (s) Ratio
1 5 1 24 0.440 0.860 1.950
1 10 1 42 4.250 4.101 0.965
1 15 1 60 16.130 10.451 0.652
1 20 1 74 63.089 20.451 0.325
2 5 1 46 15.160 11.839 0.776
2 10 1 86 445.129 94.381 0.212
2 15 1 122 2361.239 355.330 0.150
2 20 1 152 5476.321 930.549 0.170
3 5 1 68 282.409 84.991 0.301
3 10 1 128 4922.710 882.271 0.179
3 15 1 182 28952.810 4631.179 0.160
5 5 1 112 2688.831 777.028 0.289

10 5 1 222 > 172800.000 52993.325 < 0.306
Also shown is the size (in degree in x) of the largest coefficient in the
result.

We see from the results that in the case of D = Z, the implementation of integer arithmetic
in Maple 10 (using gmp) is very efficient, but one can see that the modular algorithm becomes
better than the fraction-free algorithm as the coefficient growth increases.4 The main reason
that the modular algorithm is slower for small inputs is that the overhead in the bookkeeping
(e.g. loop control, extracting coefficients, etc.) in the FFFG algorithm is repeated for each of
the computations under the O(α) primes. Over all primes, the bookkeeping requires O(α3)

bit operations. This is significant for smaller inputs given that all homomorphic images can be
computed in O((m + n)α3M(K )) bit operations (see the proof of Theorem 8.1). On the other

4 The same experiments run on Maple 7 (before gmp was used in Maple) showed that the modular algorithm was
superior even for smaller inputs. The fraction-free algorithm was 4–6 times slower in Maple 7, while the modular
algorithm was slower by only 10%–20%. We also note that gmp was used only for sufficiently large integers in Maple
10.
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Table 3
Comparison of fraction-free and modular algorithms for various values of n and d with N = 15 and κ = 1

n d Size FFFG (s) Modular (s) Ratio
1 1 46 5.900 5.150 0.873
1 5 42 4.109 3.950 0.961
1 10 22 0.631 0.930 1.470
2 1 110 1271.039 204.560 0.161
2 5 86 283.510 112.641 0.398
2 10 48 35.690 21.719 0.608
3 1 176 10636.089 2635.260 0.249
3 5 127 8053.540 1012.950 0.125
3 10 76 580.631 181.110 0.312

hand, the O(α2) bookkeeping cost is only incurred once in the fraction-free algorithm. After
some simple optimizations in the bookkeeping operations, we were able to reduce the cost of
the modular algorithm by as much as 40% for smaller input matrices. As expected, the same
optimizations on the fraction-free algorithm did not provide significant improvement.

In the case of D = Z[x], the modular algorithm is already superior for small input matrices.
The modular algorithm is better when coefficient growth is significant, or when arithmetic
operations in D are not very efficient. Again, our complexity analysis is confirmed. Here, the
overhead in bookkeeping is not as significant, as coefficient arithmetic has a much higher cost.

In the second set of experiments, we generated random input matrices over D = Z[x] with a
known greatest common divisor of degree d . The results are shown in Table 3. As expected, the
advantage of the modular algorithm is more significant when the degree of the GCRD is small,
because coefficient growth is the greatest in this case.

In the case of D = Z, we have also performed the experiments with a version of the modular
algorithm that terminates only when the Hadamard bound is reached. Even when only the normal
form is computed (without the transformation matrix), the algorithm is 2–3 times slower for
small inputs, and much slower for larger inputs, compared to the modular algorithm with early
termination.

11. Conclusions and future work

In this paper, we presented modular algorithms for computing a row-reduced form, a weak
Popov form, and a Popov form of a polynomial matrix, along with the associated unimodular
transformation matrix. By formulating the problem as a sequence of related linear algebra
problems, we were able to define lucky homomorphisms. Normalization and bounds on the
number of homomorphisms needed were also determined by examining the corresponding
linear systems. The worst case complexity of the algorithm is significantly improved over the
fraction-free algorithm. We also gave an early termination criterion which eliminates the need
for verification of the reconstructed results. In many practical cases, the criterion provides an
improvement over the commonly used approach of early termination with verification.

A limitation of our algorithm is that the properties of the unimodular transformation matrix
are used in many aspects of the algorithm, including the definition of lucky homomorphisms,
normalization, and early termination. We currently do not have modular algorithms in which
only the normal forms are computed.

It would be interesting to see if the techniques used by Giorgi et al. (2003) can be applied
to incorporate matrix multiplication into our fraction-free and modular algorithms. We are also
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interested in devising a modular version for the corresponding fraction-free algorithm for Ore
polynomial matrices (Beckermann et al., 2006a, 2002). For example, we showed that the FFFG
algorithm for Ore polynomial matrices can be faster than a non-fraction-free approach (Abramov
and Bronstein, 2001, 2002) when coefficient growth is significant (Beckermann et al., 2006a).
We expect that techniques similar to those of Li and Nemes (1997) can be combined with those
proposed in this paper.
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