
Computing Popov Form of General Ore Polynomial Matrices

Patrick Davies Howard Cheng

Department of Mathematics and Computer Science

University of Lethbridge, Canada

George Labahn

David R. Cheriton School of Computer Science

University of Waterloo, Canada

Abstract

The computation of the Popov form of Ore polynomial matrices is formulated as a problem of com-

puting the left nullspace of such matrices. While this technique is already known for polynomial matrices,

the extension to Ore polynomial matrices is not immediate because multiplication of the matrix entries

is not commutative. A number of results for polynomial matrices are extended to Ore polynomial ma-

trices in this paper. This in turn allows nullspace algorithms to be used in Popov form computations.

Fraction-free and modular algorithms for nullspace computation can be used in exact arithmetic setting

where coefficient growth is a concern. When specialized to ordinary polynomial matrices, our results

simplify the proofs for the computation of Popov form while keeping the same worst case complexity.

1 Introduction

Ore polynomial matrices provide a general setting for describing systems of linear differential, difference and
q-difference operators [12]. We look at the problem of transforming such matrices into a normal form known
as the Popov form. If a matrix is in Popov form, one may rewrite high-order operators (e.g. derivatives) in
terms of lower ones (Example 2.5). Algorithms for computing the Popov form for polynomial matrices are
well known [9, 10], but there have been few works on the computation of Popov form for Ore polynomial
matrices. The problem was studied in [8] using row reductions, which can introduce significant coefficient
growth which must be controlled. This is important for Ore polynomials as coefficient growth is introduced
in two ways—from multiplying by powers of the indeterminate and from elimination by cross-multiplication.

Fraction-free and modular algorithms [1, 5] exist to compute a minimal polynomial basis of the left
nullspace of Ore polynomial matrices, such that the basis is given by an Ore polynomial matrix in Popov
form. We show that the problem of computing the Popov form and the associated unimodular transformation
matrix can be reduced to the problem of computing a left nullspace in Popov form. The case when the input
matrix has full row rank has been examined in a previous work [6, 7]. When the input matrix does not have
full row rank, the unimodular multiplier is not unique. Instead, we define a unique minimal multiplier and
show the reduction can still be applied by giving a degree bound for the minimal multiplier.

The technique of reducing the computation of normal forms such as row-reduced form and Popov form is
well known for polynomial matrices [2, 3, 4, 11]. Unfortunately, the proofs of many of the results rely on the
fact that the entries of the matrices commute. The main contribution of our work is to extend the results
to Ore polynomial matrices. For the special case of ordinary polynomial matrices, we obtain the same worst
case complexity as those obtained previously [3] with simpler proofs.

2 Notations and Definitions

We first give some notations and definitions similar to those given in previous works [1].
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For any matrix A, we denote its elements by Ai,j . For any sets of row and column indices I and J , we
denote by AI,J the submatrix of A consisting of the rows and columns indexed by I and J . For convenience,
we use Ic to denote the complement of the set I, and ∗ for I and J to denote the sets of all rows and columns,
respectively. For any vector of non-negative integers ~ω = (ω1, . . . , ωp), we denote by |~ω| =

∑p
i=1 ωi. We

define ~e = (1, . . . , 1) of the appropriate dimension. We denote by Im the m × m identity matrix.
In this paper, we will examine Ore polynomial rings with coefficients in a field K. That is, the ring

K[Z; σ, δ] with σ an automorphism and δ a derivation, so that the multiplication rule holds for all a ∈ K:

Z · a = σ(a)Z + δ(a).

Let K[Z; σ, δ]m×n be the ring of m×n Ore polynomial matrices over K[Z; σ, δ]. Let F(Z) ∈ K[Z; σ, δ]m×n

and N = degF(Z). An Ore polynomial matrix F(Z) is said to have row degree ~µ = rdeg F(Z) if the ith row
has degree µi. The leading row coefficient of F(Z), denoted LCrow (F(Z)), is the matrix whose entries are
the coefficients of ZN of the corresponding elements of ZN ·~e−~µ · F(Z). An Ore polynomial matrix F(Z) is
row-reduced if LCrow (F(Z)) has maximal row rank. We also recall that the rank of F(Z) is the maximum
number of K[Z; σ, δ]-linearly independent rows of F(Z), and that U(Z) ∈ K[Z; σ, δ]m×m is unimodular if
there exists V(Z) ∈ K[Z; σ, δ]m×m such that V(Z) ·U(Z) = U(Z) ·V(Z) = Im.

Definition 2.1 (Pivot Index) Let F(Z) ∈ K[Z; σ, δ]m×n with row degree ~µ. We define the pivot index Πi

of the ith row as

Πi =

{

min1≤j≤n

{

j : deg F(Z)i,j = µi

}

µi ≥ 0,

0 otherwise.
(1)

Definition 2.2 (Popov Normal Form) Let F(Z) ∈ K[Z; σ, δ]m×n with pivot indices Π1, . . . , Πm and row
degree ~µ. Then F(Z) is in Popov form if it may be partitioned as

F(Z) =

[

0
F(Z)Jc,∗

]

, (2)

where J = (1, . . . , n − r) and r = rank F(Z), and for all i, j ∈ Jc we have

(a) Πi < Πj whenever i < j;

(b) F(Z)i,Πi
is monic;

(c) If k = Πj for some j 6= i, then degF(Z)i,k < µj .

If a matrix is in Popov form, its pivot set is defined as {Πi : Πi > 0}.

Every matrix F(Z) can be transformed into a unique matrix in Popov form using the following elementary
row operations:

(a) interchange two rows;

(b) multiply a row by a nonzero element in K;

(c) add a polynomial multiple of one row to another.

Formally, we may view a sequence of elementary row operations as a unimodular transformation matrix
U(Z) ∈ K[Z; σ, δ]m×m with the result of these operations given by T(Z) = U(Z) · F(Z). We recall the
following result from [1, Theorem 2.2].

Theorem 2.3 For any F(Z) ∈ K[Z; σ, δ]m×n there exists a unimodular matrix U(Z) ∈ K[Z; σ, δ]m×m, with
T(Z) = U(Z) ·F(Z) having r ≤ min{m, n} nonzero rows, rdeg T(Z) ≤ rdeg F(Z), and where the submatrix
consisting of the r nonzero rows of T(Z) is row-reduced. Moreover, the unimodular multiplier satisfies the
degree bound

rdeg U(Z) ≤ ~ν + (|~µ| − |~ν| − α) · ~e (3)

where ~µ = max(~0, rdeg F(Z)), ~ν = max(~0, rdeg T(Z)), and α = minj{µj}.
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We also recall the predictable degree property for Ore polynomial matrices [1, Lemma A.1(a)]. This result
is used a number of times in our proofs.

Lemma 2.4 (Predictable Degree Property) Let F(Z) ∈ K[Z; σ, δ]m×n with ~µ = rdeg F(Z). Then
F(Z) is row-reduced if and only if, for all Q(Z) ∈ K[Z; σ, δ]1×m,

degQ(Z)F(Z) = max
j

(µj + deg Q(Z)1,j. (4)

Example 2.5 Consider the differential algebraic system

y′′
1 (t) + (t + 2)y1(t) + y′′

2 (t) + y2(t) + y′
3(t) + y3(t) = 0

y′
1(t) + 3y1(t) + y′′′

2 (t) + 2y′
2(t) − y2(t) + y′′′

3 (t) − 2t2y3(t) = 0
y′
1(t) + y1(t) + y′′

2 (t) + 2ty′
2(t) − y2(t) + y′′′′

3 (t) = 0.

(5)

Let D denote the differential operator on Q(t) such that D · f(t) = d
dt

f(t). Then the matrix form of (5) is:





D2 + (t + 2) D2 + 1 D + 1
D + 3 D3 + 2D − 1 D3 − 2t2

D + 1 D2 + 2tD + 1 D4



 ·





y1(t)
y2(t)
y3(t)



 = 0. (6)

The matrix of operators is in Popov form with row degree (2, 3, 4) and pivot set {1, 2, 3}. Notice that we can
now convert every highest derivative into ones of lower order. For example, we can eliminate the highest
derivatives of y2(t) as

y′′′
2 (t) = −y′

1(t) − 3y1(t) − 2y′
2(t) + y2(t) − y′′′

3 (t) + 2t2y3(t). (7)

3 General Approach

Given an m×n matrix F(Z) ∈ K[Z; σ, δ]m×n, we wish to compute a unimodular matrix U(Z) ∈ K[Z; σ, δ]m×m

and T(Z) ∈ K[Z; σ, δ]m×n such that U(Z) · F(Z) = T(Z), where T(Z) is in Popov form. The fraction-
free and modular algorithms [1, 5] can be used to compute a minimal polynomial basis M(Z) of the left
nullspace of a Ore polynomial matrix such that M(Z) is in Popov form. Using these algorithms, we com-

pute the left nullspace of the matrix
[

F(Z) · Zb − In.
]T

. Then the nullspace M(Z) can be partitioned as

[U(Z) T(Z) · Zb] such that
[

U(Z) T(Z) · Zb
]

·

[

F(Z) · Zb

−In

]

= 0. (8)

The matrix U(Z) obtained in this manner is unimodular.

Lemma 3.1 Suppose that
[

U(Z) T(Z)
]

is a basis of the left nullspace of

[

F(Z)
−In

]

. Then U(Z) is unimod-

ular.

Proof. The rows of
[

Im F(Z)
]

belong to the left nullspace of

[

F(Z)
−In

]

. Since
[

U(Z) T(Z)
]

is a basis of

the left nullspace, there exists V(Z) ∈ K[Z; σ, δ]m×m such that V(Z) · U(Z) = Im. Thus, U(Z) has a left
inverse. Now, U(Z) ·V(Z) · U(Z) = U(Z). Therefore,

(U(Z) · V(Z) − Im) ·U(Z) = 0. (9)

Since m = rank Im = rank (V(Z) ·U(Z)) ≤ rank U(Z) ≤ m, U(Z) has full row rank. Thus, (9) implies
that U(Z) ·V(Z)−Im = 0, so that V(Z) is also a right inverse of U(Z). Since U(Z) has a two-sided inverse,
it is unimodular. �

If b > degU(Z), this also implies that T(z) is in Popov form since the leading coefficients are “con-
tributed” by T(z). Thus, our goal is to determine an upper bound on degU(Z). A similar approach has
also been used to compute the row-reduced form and the Popov form of polynomial matrices [2, 3, 4, 11].
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4 Degree Bound in the Full Row Rank Case

In the case when the input matrix F(Z) has full row rank, we follow the approach of [4] in order to obtain
a bound for deg U(Z). We first prove some results which relate the degrees of the input matrix F(Z), the
unimodular multiplier U(Z), and any matrix T(Z) resulting from the row transformation specified by U(Z).

Lemma 4.1 Suppose F(Z) ∈ K[Z; σ, δ]m×n has full row rank, and let T1(Z) ∈ K[Z; σ, δ]m×n be a row-
reduced form of F(Z). Suppose that T2(Z) = U2(Z)·F(Z) for some unimodular matrix U2(Z) ∈ K[Z; σ, δ]m×m,
with ~γ = rdeg T2(Z). There exists a unimodular matrix V(Z) such that T2(Z) = V(Z) · T1(Z) and
deg V(Z)i,j ≤ γi − νj where ~ν = rdeg T1(Z).

Proof. Since T1(Z) is a row-reduced form of F(Z), there exists a unimodular matrix U1(Z) ∈ K[Z; σ, δ]m×m

such that U1(Z) · F(Z) = T1(Z). Setting V(Z) = U2(Z) · U1(Z)−1 gives T2(Z) = V(Z) · T1(Z). Since
V(Z) is a product of unimodular matrices, it is unimodular.

Since T1(Z) is row-reduced, Lemma 2.4 gives

degV(Z)i,j + degT1(Z)j,· ≤ degT2(Z)i,·, (10)

which implies that deg V(Z)i,j ≤ γi − νj . �

Theorem 4.2 Suppose that F(Z) ∈ K[Z; σ, δ]m×n has full row rank. Let V(Z) ∈ K[Z; σ, δ]m×m be unimod-
ular and let T(Z) = V(Z) · F(Z) with ~γ = rdeg T(Z). There exists a unimodular matrix U(Z) such that
U(Z) · F(Z) = T(Z) and rdeg U(Z) ≤ ~γ + (|~µ| − α) · ~e, where ~µ = rdeg F(Z) and α = minj{µj}.

Proof. By [1, Theorem 2.2], there exists a unimodular matrix U1(Z) such that T1(Z) = U1(Z) · F(Z)
is row-reduced and rdeg U1(Z) ≤ ~ν + (|~µ| − |~ν| − α) · ~e, with ~ν = rdeg T1(Z). By Lemma 4.1, there
exists a unimodular matrix U2(Z) such that T(Z) = U2(Z) · T1(Z) = U2(Z) · U1(Z) · F(Z). Setting
U(Z) = U2(Z) ·U1(Z) gives U(Z) · F(Z) = T(Z). For the degree bound, note that

deg U(Z)i,j ≤ max
1≤k≤m

deg U2(Z)i,k + deg U1(Z)k,j ≤ max
1≤k≤m

(γi − νk) + (νk + |~µ| − |~ν| − α) ≤ γi + |~µ| − α.

�

We have only stated the existence of unimodular matrices satisfying certain degree bounds in the previous
results. We now show that such unimodular matrices are also unique.

Lemma 4.3 Suppose that F(Z) ∈ K[Z; σ, δ]m×n has full row rank. Given T(Z) ∈ K[Z; σ, δ]m×n, the solution
U(Z) ∈ K[Z; σ, δ]m×m to the equation U(Z) · F(Z) = T(Z) is unique (if it exists).

Proof. Let U1(Z) and U2(Z) be two matrices such that

U1(Z) · F(Z) = T(Z) = U2(Z) · F(Z). (11)

Then (U1(Z) − U2(Z)) · F(Z) = 0. Since F(Z) has full row rank, it follows that U1(Z) − U2(Z) = 0 and
hence U1(Z) = U2(Z). �

Since F(Z) has full row rank, the uniqueness of the unimodular multiplier gives us a bound on the degree
of the unimodular multiplier by Theorem 4.2 and Lemma 4.3.

Theorem 4.4 Suppose that F(Z) has full row rank. If T(Z) = U(Z) · F(Z) for some unimodular matrix
U(Z) then U(Z) satisfies the degree bound (3).

Finally, we give a degree bound on U(Z) and provide a method to compute the Popov form of F(Z) and
the associated unimodular multiplier U(Z).

Theorem 4.5 Suppose that F(Z) ∈ K[Z; σ, δ]m×n has full row rank and has row degree ~µ. Let b > |~µ| −

minj{µj}, and suppose
[

U(Z) R(Z)
]

is a basis in Popov form of the left nullspace of
[

F(Z) · Zb −In

]T
.

Let T(Z) = R(Z) · Z−b. Then
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(a) U(Z) is unimodular;

(b) T(Z) = U(Z) ·F(Z) ∈ K[Z; σ, δ]m×n;

(c) T(Z) is in Popov form.

Proof. Part (a) is immediate from Lemma 3.1. For (b), we see that U(Z) · F(Z) · Zb = R(Z), so T(Z) =
U(Z) ·F(Z). To prove (c), we see from Theorem 4.4 that rdeg U(Z) ≤ ~ν +(|~µ|−α) ·~e where ~µ = rdeg F(Z),
~ν = rdeg T(Z), and α = minj{µj}. Therefore, rdeg U(Z) ≤ rdeg R(Z) + (|~µ| − α − b) · ~e < rdeg R(Z).
Thus, the leading coefficient of

[

U(Z) R(Z)
]

is the same as the leading coefficient of
[

0 R(Z)
]

. It follows
that R(Z) and hence T(Z) is in Popov form. �

5 Minimal Multipliers

In the case when the input matrix F(Z) does not have full row rank, the situation is considerably more compli-

cated. In fact, a unimodular multiplier of arbitrarily high degree exists. Suppose T(Z) =
[

0 T(Z)Jc,∗

]T
=

U(Z) · F(Z) is the Popov form of F(Z). One may add any polynomial multiple of the rows of U(Z)J,∗ to
the other rows of U(Z) and still obtain a unimodular multiplier U′(Z) satisfying T(Z) = U′(Z) · F(Z).

In fact, all unimodular multipliers satisfying T(Z) = U(Z) · F(Z) are related, and there is a unique
multiplier that has minimal column degrees and is normalized in some way. We first give a result related to
“division” of Ore polynomial matrices. This allows us to “reduce” one Ore polynomial matrix by another
one that is in Popov form to obtain a unique remainder. This is an analogue of [3, Lemma 3.5].

Lemma 5.1 Let B(Z) ∈ K[Z; σ, δ]n×n be a full row rank matrix in Popov form with row degree ~β. Then for
any A(Z) ∈ K[Z; σ, δ]m×n with row degree ~γ, there exist unique matrices Q(Z),R(Z) ∈ K[Z; σ, δ]m×n such
that

A(Z) − Q(Z) ·B(Z) = R(Z), (12)

where for all i, j, deg R(Z)i,j < βj and degQ(Z)i,j ≤ γi − βj.

Proof. It suffices to prove this in the case m = 1 as we may consider each row of (12) independently.
We first show the existence of Q(Z) and R(Z). Let K = {k : deg A(Z)1,k ≥ βk}, and d = deg A(Z)1,K .

Let t ∈ K be the pivot index of A(Z)1,K . Thus, A(Z)1,t = aZd+ · · · for some a ∈ K. If B(Z)t,t = bZβt + · · ·

for some b ∈ K. Let R̂1(Z) = A(Z) − Q̂1(Z) · B(Z) where Q̂1(Z) =
[

0 · · · 0 a
σd−βt (b)

Zd−βt 0 · · · 0
]

with

the nonzero element in the tth column. It is easy to see that R̂1(Z)1,t < d. Since B(Z) is in Popov form,

deg B(Z)t,s ≤

{

βt if s ≥ t,

βt − 1 otherwise.
(13)

From the degree bounds on A(Z)1,K , we see that for s ∈ K we have

deg R̂1(Z)1,s ≤

{

d if s > t,

d − 1 otherwise.
(14)

For s 6∈ K, we have deg R̂1(Z)1,s ≤ max(deg A(Z)1,s, deg [Q̂1(Z) · B(Z)]1,s). If deg R̂1(Z)1,s ≤ degA(Z)1,s,

then deg R̂1(Z)1,s < βs by definition of K. Otherwise,

deg R̂1(Z)1,s = deg [Q̂1(Z) · B(Z)]1,s ≤

{

(d − βt) + βt = d if s > t,

(d − βt) + βt − 1 = d − 1 otherwise.
(15)
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Let K̂ = {k : deg R̂1(Z)1,k ≥ βk}. We see that either deg R̂1(Z) < d, or deg R̂1(Z) = d and the pivot index

of R̂1(Z)1,K̂ must be greater than t. We also note that it is possible that K̂ 6= K.

Continuing in this way we may construct R̂2(Z), R̂3(Z), . . . , so that after each step either the degree
is decreased or the pivot index is increased. Therefore, in a finite number of steps we will have R̂k(Z) =
A(Z)−

[

Q̂1(Z) + · · · + Q̂k(Z)
]

·B(Z), where deg R̂k(Z)1,j < βj for all j. Finally, setting Q(Z) = Q̂1(Z)+

· · · + Q̂k(Z), R(Z) = R̂k(Z) gives us the desired divisor and remainder matrices of (12).
To show uniqueness, suppose that we have A(Z)1,∗ = Q1(Z) · B(Z) + R1(Z) = Q2(Z) · B(Z) + R2(Z)

for some Q1(Z), Q2(Z), R1(Z), and R2(Z) ∈ K[Z; σ, δ]1×n. Letting Q̂(Z) = Q1(Z) − Q2(Z) and R̂(Z) =
R2(Z) − R1(Z) gives R̂(Z) = Q̂(Z) · B(Z) with deg R̂(Z)1,j < βj . Let k be such that deg R̂(Z)1,k =

deg R̂(Z). Since B(Z) is row reduced, Lemma 2.4 implies that deg Q̂(Z)1,k ≤ deg R̂(Z)1,k − βk < 0, so that

Q̂(Z)1,k = 0 whenever deg R̂(Z)1,k = deg R̂(Z). Now, let K = {k : deg R̂(Z)1,k < deg R̂(Z)}. If K is non-

empty, consider the equation R̂(Z)1,K = Q̂(Z)1,K · B(Z)K,K . A similar argument shows that Q̂(Z)1,k = 0

whenever deg R̂(Z)1,k = deg R̂(Z)1,K . Continuing in this way it can be seen that Q̂(Z) = R̂(Z) = 0, so
that the matrices Q(Z) and R(Z) in (12) are unique.

Finally, we prove the degree bound for Q(Z). For any 1 ≤ i ≤ m, let Li = {j : γi ≥ βj}. Then for j 6∈ Li

we have γi < βj and therefore Q(Z)i,j = 0 because Q(Z) is unique. If j ∈ Li, we have

deg(Q(Z)i,Li
· B(Z)Li,Li

) = deg(A(Z)i,Li
− R(Z)i,Li

) ≤ γi. (16)

Lemma 2.4 gives deg(Q(Z)i,Li
· B(Z)Li,Li

) ≥ deg Q(Z)i,j + βj , for all j ∈ Li. �

We can now show the main result in this section which shows the relationship among all unimodular
multipliers. This result is an analogue of [3, Theorem 3.3].

Theorem 5.2 Let F(Z) ∈ K[Z; σ, δ]m×n with row rank r. Let U(Z) ∈ K[Z; σ, δ]m×m be unimodular such

that U(Z) ·F(Z) = T(Z), with T(Z) =

[

0
T(Z)Jc,∗

]

the unique Popov form of F(Z).

(a) A unimodular matrix U(Z) is unique up to multiplication on the left by matrices of the form

W(Z) =

[

W(Z)J,J 0

W(Z)Jc,J Ir

]

, (17)

where W(Z)J,J ∈ K[Z; σ, δ](m−r)×(m−r) is unimodular.

(b) There exists a unique multiplier U(Z) such that U(Z)J,∗ is a minimal polynomial basis in Popov form
for the left nullspace of F(Z) with pivot set K, and for all k ∈ K, j ∈ Jc:

deg U(Z)j,k < max
ℓ∈J

deg U(Z)ℓ,k (18)

(c) Under all multipliers mentioned in (a), the sum of the row degrees of the unique multiplier U(Z) of
(b) is minimal.

Proof. To prove (a), let U1(Z) and U2(Z) be two such unimodular multipliers for the Popov form of
F(Z). Then U1(Z)J,∗,U2(Z)J,∗, are bases of the left nullspace of F(Z). Thus there exists a unimodular
multiplier W(Z)J,J such that U1(Z)J,∗ = W(Z)J,JU2(Z)J,∗. By the uniqueness of T(Z)Jc,∗, the rows of
U2(Z)Jc,∗−U1(Z)Jc,∗ are in the nullspace of F(Z), so there exists a matrix W(Z)Jc,J such that U2(Z)Jc,∗ =
U1(Z)Jc,∗ + W(Z)Jc,JU1(Z)J,∗.

For (b), assume that U(Z)J,∗ is the unique Popov minimal polynomial basis for the left nullspace
with pivot set K. Given any multiplier U0(Z) we may divide U0(Z)Jc,K on the right by U(Z)J,K to
get U0(Z)Jc,K = W(Z)Jc,JU(Z)J,K + U(Z)Jc,K . By Lemma 5.1, (18) is satisfied. Since U(Z)Jc,K is
the unique matrix such that (18) is satisfied, the generic form of a multiplier given in (a) implies that
U(Z)Jc,∗ = U0(Z)Jc,∗ − W(Z)Jc,JU(Z)J,∗. Thus, the minimal multiplier U(Z) is well defined and unique.
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To prove (c), let U0(Z) be a second unimodular multiplier. From the general form of the multipliers, the
sum of the row degrees of J and Jc can be minimized independently. Since the degrees in J are minimized
by choosing a minimal polynomial basis, we are only concerned about the rows in Jc. We want to show that
|rdeg U0(Z)Jc,∗| ≥ |rdeg U(Z)Jc,∗|. Let ~β = rdeg U(Z)J,∗, ~µ = rdeg U0(Z)Jc,K , and ~γ = rdeg U0(Z)Jc,Kc

.
The degree sum for U0(Z)Jc,∗ is

∑

j max(µj , γj). By Lemma 5.1, we have quotient W(Z)Jc,J such that
U(Z)Jc,∗ = U0(Z)Jc,∗ − W(Z)Jc,JU(Z)J,∗ with degW(Z)i,j ≤ µi − βj . Therefore we have, for 1 ≤ i ≤ m

and j ∈ Jc, degU(Z)i,j ≤ max(max(µi, γi), µi) = max(µi, γi). Thus the degree sum of the Jc rows is not
increased by the normalizing division, and gives (c). �

The unique multiplier given in Theorem 5.2 (b) is called the minimal multiplier.

Theorem 5.3 Let U(Z) ∈ K[Z; σ, δ]m×m be the minimal multiplier for F(Z) ∈ K[Z; σ, δ]m×n as in Theo-
rem 5.2, and ~µ = rdeg F(Z). Then

deg U(Z) ≤ |~µ| − min
j

{µj}. (19)

Proof. Let T(Z), J , and K be defined as in Theorem 5.2. We first note that if ~β is the row degree of the
minimal polynomial basis, we have

deg U(Z)j,k ≤

{

βj if j ∈ J ,

βj − 1 if j ∈ Jc and k ∈ K.
(20)

Since βi ≤ |~µ| − minj{µj}, it remains to obtain a bound for degU(Z)Jc,Kc
.

Let V(Z) = U(Z)−1 with row degree ~γ. Then we have F(Z) = V(Z)·T(Z), or F(Z) = V(Z)∗,Jc
·T(Z)Jc,∗

because T(Z)J,∗ = 0. We wish to obtain a degree bound for V(Z) and relate it to deg U(Z).
Since T(Z)Jc,∗ is in Popov form and hence row-reduced, Lemma 2.4 gives a degree bound on V(Z)∗,Jc

:
deg V(Z)i,j ≤ µi − γj ≤ µi for all 1 ≤ i ≤ m, j ∈ Jc.

Let r = rank F(Z). Since V(Z) ·U(Z) = I, we have

Im−r − V(Z)K,Jc
·U(Z)Jc,K = V(Z)K,J ·U(Z)J,K (21)

−V(Z)Kc,Jc
·U(Z)Jc,K = V(Z)Kc,J · U(Z)J,K . (22)

In each of the above equations, the degree bound of row i on the left-hand side is at most µi + |~µ|−minj{µj}.
On the right-hand side, U(Z)J,K is in Popov form and hence row-reduced. Lemma 2.4 again gives

µi + |~µ| − min
j

{µj} ≥ deg V(Z)i,j + |~µ| − min
j

{µj}, (23)

or
V(Z)i,j ≤ µi (24)

for all 1 ≤ i ≤ m and j ∈ J . Combining with the above, we see that rdeg V(Z) ≤ ~µ.
To obtain a degree bound for U(Z), we observe that the row-reduced form of V(Z) is the identity matrix

and U(Z) is the unique unimodular transformation matrix for V(Z). Applying [1, Theorem 2.2]

rdeg U(Z) ≤ (|~µ| − min
j

{µj}) · ~e, (25)

and the theorem follows. �

Remark 5.4 The degree bound obtained this way is not as accurate as the one in the commutative case in [3].
However, our proofs are simpler and our bounds are not worse than those obtained in [3, Corollary 5.5] in
the worst case when the rank of the input matrix is not known in advance.

Thus, the same value of b is sufficient even when the input matrix does not have full row rank. In
particular, we do not need to know the rank of the input matrix in advance.

Theorem 5.5 Theorem 4.5 is true for any F(Z) ∈ K[Z; σ, δ]m×n.
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6 Conclusion

We have given a bound on the minimal multiplier, which in turn allows us to reduce the problem of computing
the Popov form and the associated unimodular transformation as a left nullspace computation. Thus,
nullspace algorithms which control coefficient growth can be applied.

In practice, the bound on the minimal multiplier may be too pessimistic. Because the complexity of the
nullspace algorithms depend on the degree of the input matrix [1, 5], having a bound that is too large will
decrease the performance of these algorithms. An alternate approach is suggested in [4] in which (8) is solved
with a small starting value of b. The value of b is increased if the matrix T(Z) obtained from the nullspace
is not in Popov form. In the cases where the degree bound on the minimal multiplier is very pessimistic this
will provide a faster algorithm.
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