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Abstract—Large sets of similar images are produced in many
applications. To store these images more efficiently, redundancy
among similar images need to be exploited. A number of methods
have been proposed to reduce such inter-image redundancy in
lossy image set compression. These methods encode each image
either using a conventional image compression algorithm, or
predicts the image from a similar image already encoded and
encode the prediction residual. Although these methods differ in
the way they determine the prediction structure in the image
set, they do not consider the effect of bit allocation on the
overall quality of the reconstructed images. In this paper, we
show that Lagrangian optimization can be used to determine bit
allocation for each encoded image in order to improve the overall
quality of the reconstructed image set. Furthermore, a model
approximating rate-distortion curves of the residual images can
be used to reduce the encoding time significantly.

I. INTRODUCTION

Large sets of similar images occur in many practical ap-
plications, including medical image databases, satellite re-
mote sensing images, and photo albums [1]–[15]. Instead
of compressing each image independently using conventional
image compression algorithms, inter-image redundancy can be
exploited to compress sets of similar images more efficiently.

A number of different approaches have been proposed to
compress sets of similar images [1]–[10], [13]–[15]. In most of
these works, the focus is on reducing inter-image redundancy
by some variation of predictive coding—in order to compress
an image I in the set, a particular reference image r(I) already
encoded is used to predict I so that only the prediction error
(residual) image needs to be compressed. The residual image
is compressed with conventional image or video compression
algorithms. The main difference among these image set com-
pression algorithms is the way the reference image r(I) is
chosen for each image I in the set. We call this the prediction
structure of the image set compression algorithm. Some of
these methods have a fixed prediction structure that works well
on some image sets but not others, while some have structures
(often based on graphs) that adapt to a particular image set at
the expense of more computation.

Most of these algorithms do not explicitly take bit allocation
into account. That is, in order to achieve an overall target bit
rate for the entire image set, the same bit rate is used to com-
press each residual image. Methods that use video compression
algorithms to encode residual images may implicitly consider

bit allocation because such optimization is performed in some
video compression algorithms, but no explicit consideration
on bit allocation is given. As a result, the overall distortion in
the reconstructed images may be higher than necessary for a
particular bit rate.

In this paper, we consider the bit allocation problem ex-
plicitly in image set compression. Intuitively, if a residual
image is easy to compress (e.g. all zero), we do not need
to allocate many bits to it. The extra bits freed up in the
overall bit budget can be used to encode other residual
images that are more difficult to compress. Our objective is to
achieve a target bit rate while minimizing overall distortion in
the reconstructed images. Bit allocation strategies have been
studied extensively in image and video compression [16].
For image set compression, we will study the bit allocation
problem for the Centroid algorithm [4], [6], the MST and the
MSTa algorithm [17]–[19]. By studying the rate-distortion
curves of the residual images, we can use Lagrangian op-
timization to determine the bit allocation to compress each
individual residual image. Some preliminary feasibility results
have previously been shown [20] but the rate-distortion curves
needed to be computed experimentally by sampling at many
different bit rates for each residual image. This requires
many invocations of the underlying image compression and
decompression algorithms, and can be computationally very
intensive. We show in this paper that the rate-distortion curves
can be approximated in order to reduce the encoding time
significantly. When wavelet packet compression [21] is used
as the underlying image compression algorithm, we find that
the approximations produce a very good result at a fraction of
the computational time compared to our previous work [20].

To the best of our knowledge, the only other work that
considered rate-distortion explicitly is a recent approach by
Ling et al. [15], though they fixed a certain quantization level
and assumed that the distortion is approximately the same
for each residual image in order to simplify the optimization
process. Their work only considered one quantization level
for the image set, and do not consider the possibility of using
different quantization levels for each residual image.

The paper is organized as follows. Some of the previous
approaches studied in this paper are briefly reviewed in Sec-
tion II. In Section III, our bit allocation problem is defined
and our approach is described. The experimental results are
shown in Section IV.978-1-4673-7788-1/15/$31.00 c©2015 IEEE



II. IMAGE SET COMPRESSION METHODS

For sets of similar images, a prediction structure is used
to determine which images are encoded directly and which
images are predicted from an already encoded image, so
that the prediction residual images are encoded instead. This
is known as a set mapper [4], [6]. Both the original and
residual images have to be encoded by an image compression
algorithm. A conventional image compression algorithm such
as JPEG2000 [22] is often used, although there are also some
approaches that order these images into a sequence to be
processed by a video compression algorithm (see for example,
[15]). We briefly outline a few set mappers that have been
proposed.

In the centroid method [4], [6], a centroid (average) image
is computed and encoded directly. The remaining images are
predicted from the centroid image, and the residual images are
encoded. If all images are very similar, the residual images
contain mostly zeroes and can be compressed very efficiently.
The centroid method was designed for lossless compression
but has been adapted to lossy compression [17]–[19].

Graph theoretical methods have also been proposed to com-
pute the prediction structure. The vertices represent images
and the edges give a “cost” of encoding the residual image
of one image if it is predicted from the other image on the
edge. For example, this cost may be the quality that can be
achieved when the residual image is encoded at a particular
bit rate, or vice versa. A minimum spanning tree is computed
to represent the optimal prediction structure. This is called the
MST method [17]–[19]. This method is useful when there is
significant similarity between certain pairs of images in the
image set, even if the images entire set is not necessarily
very similar to each other. For certain image sets, it is also
beneficial to add the centroid image before the minimum
spanning tree is computed (called the MSTa method). Ling
et al. [15] also used a graph theoretical approach, though the
prediction structures of interest are depth-limited minimum
spanning forests in order to limit the decompression time for
any particular image in the set.

There are also set mappers designed for specific types of
images. Some of these mappers use additional information to
determine the prediction structure. They may also use more so-
phisticated prediction techniques based on the information. For
example, for satellite images with large overlap of geographic
areas, the geographical location of the image can be used
to determine the prediction structure. In addition, adjustment
for seasonal variations is needed to obtain effective predic-
tion [10]. For multi-view images inter-view dependencies can
be used to obtain better predictions [2], [23]. There are also
special techniques for stereo images [24], [25].

A. Distortion Measures

In lossy image compression, the goal is to achieve the
highest quality possible at a particular bit rate. The quality
is generally measured by a distortion measure indicating how
close the decompressed image is compared to the original

image. One measure we examine in this work is the well-
known Root-Mean-Square-Error (RMSE) measure [26]. Al-
though it does not always correspond to human perception, it
is easy to compute and used by many researchers. Another
measure that can be used, for example, is based on the
Structural Similarity (SSIM) index [27]. It corresponds to
human evaluation better, and a metric (D2) can be derived
based on the SSIM index [28]. We will refer to this metric as
the “SSIM measure” in this paper.

The MST-based algorithms also require edge weights in
order to determine the prediction structure. As in the previous
works [17], [19], we use the distortion between the two images
as the edge weight—if two images are similar, then it should
be easier to encode the corresponding prediction residual
image. It has been shown that the MST-based algorithms are
near-optimal over all algorithms based on pairwise prediction.
This result is valid if the same distortion measure be used for
both edge weights and quality evaluation. Thus, this will be
the case for the remainder of this paper.

III. BIT ALLOCATION

We now formulate the optimization problem considered in
lossy image set compression. We want to minimize the distor-
tions between the decompressed images and the corresponding
original images. In order to arrive at the optimal distortion, the
bit allocation for encoding each residual image is varied in
order to minimize the sum of the total distortions in the entire
set. If a residual image is close to zero, it can be compressed
at a lower bit rate without greatly affecting the distortion of
that image. More bits can then be allocated to other residual
images in order to minimize the sum of distortions.

Let S = {I1, . . . , In} be a set of original or residual images
chosen to be encoded by the prediction structure. We denote by
D(I, b) the distortion between I and the decompressed image
when I is compressed using b bits. The function D(I, b) as b
varies is also called the rate-distortion curve of image I . If B
is the overall bit budget, the optimization problem of interest
is:

minimize
n∑
i=1

D(Ii, bi), (1)

subject to
n∑
i=1

bi ≤ B,

where bi is the number of bits used to encode image Ii. The
distortion measure in our study is the RMSE or the SSIM
measure (Section II). We call the solution to (1) the rate-
distortion based bit allocation. It is common to assume that
the compression of each residual is independent of each other
in order to simplify the computation needed to find a solution
to (1). However, this assumption is false in our setting as each
image is predicted based on a previously encoded image.

There are a number of methods to obtain the solution of
the optimization problem (1) [16]. In our work, we choose
the commonly used method of Lagrangian optimization [29].



For each residual image, we minimize

D(Ii, bi) + λbi, (2)

for some λ ≥ 0. The point on the rate-distortion curve
D(Ii, bi) with slope −λ gives the bit rate bi minimizing (2).
For a fixed λ, this gives the optimal bit allocation for the
overall bit budget B =

∑n
i=1 bi. Since the overall bit budget

is not known a priori, one typically use binary search on λ to
solve (1) for a specific value of B.

In order to perform the Lagrangian optimization (2), the
rate-disortion curve D(Ii, bi) must be known for each residual
image. A simple approach is to simply invoke the chosen
image compression algorithm on each residual image at vari-
ous bit rates and record the distortions. In order to accurately
solve the optimization problem (1), a large number of points
on the rate-distortion curve are required. For example, each
rate-distortion curve used in [20] were obtained using 15
different bit rates. This is computationally very intensive and
impractical, especially if the underlying image compression
algorithm is computationally intensive. This can be sped up
by invoking the image compression algorithm on downscaled
residual images [15] but that approach fixes a quantization
setting and obtains only one point on the rate-distortion curve.

Mallat and Falzon [30] noted that for transform coding
at low bit rate (b < 1 bit/pixel), the rate-distortion varies
like b1−2γ . Following this model, we approximate the rate-
distortion curve of each residual image as

D(Ii, bi) = cib
ei
i (3)

for some constants ci and ei. In order to determine the
constants for each residual image, the image compression
algorithm is invoked on the residual image at a few bit rates.
The distortion obtained at these bit rates are used to compute
these constants with linear regression, by taking logarithms of
(3):

logD(Ii, bi) = ei log bi + log ci. (4)

The number of invocations of the image compression and
decompression algorithm can be reduced signifcantly by using
this model. An additional benefit is that there is no need to
use binary search to find the point on D(Ii, bi) with slope −λ
during the Lagrangian optimization process. The point bi can
be determined analytically as

bi =
(
−λ
ciei

) 1
ei−1

. (5)

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We performed our experiments using the centroid
method [4], [6], the MST and MSTa methods [17]–[19]. In
previous works, these methods have been shown to perform
better than the “traditional” method of simply compressing
each image independently of each other, even when each
residual image is compressed at the same bit rate. The image
compression algorithms used in this study are JPEG2000 [22]

and wavelet packet compression [21]. We perform the exper-
iments with both RMSE and the D2 SSIM measure as the
distortion measure.

Our approach is tested on four image sets that have been
used in previous works [8], [9], [17], [19]. Figure 1 shows
a typical image from the four image sets. The Joe set is a
webcam image set taken from a camera directed at a beach in
Victoria, British Columbia [31]. The Pig set is composed of
ultrasound images of pig rib cages. The Galway set contains
webcam images from a street in Galway City, Ireland [32].
Satellite images from the GOES project [33] make up the
GOES set.

(a) Joe (162 images) (b) Pig (304 images)

(c) Galway (28 images) (d) GOES (128 images)

Fig. 1. Typical images from each set.

B. Approximation of Rate-Distortion Curves

We first present some evidence on the accuracy of the
approximation (3) to the rate distortion curves. We invoked
the compression algorithm at only 4 bit rates from 0.08bpp to
0.96bpp and obtained the model using linear regression. The
model was then compared to distortion obtained at the 15 bit
rates from 0.08, 0.12, 0.16, . . . , 0.96bpp [20] to compute the
coefficient of determination r2. For brevity only the results
for the Centroid method and the MST method using the
RMSE distortion measure are shown in Table I, but the other
methods gave similar results. It can be seen that the minimum
r2 values obtained are remarkably close to 1, indicating
that the approximations were very close to the acutal rate-
distortion curves. Thus, using (3) as an approximation to the
rate-distortion curve is acceptable and provides a significant
reduction in computational time.

C. Image Set Compression Results

The proposed method is tested on the four image sets. First,
we summarize the improvement in overall distortion using
rate-distortion based bit allocation over equal allocation, when
the overall bit budget are the same in both cases (Tables II, III,
IV, and V). The target bit rates tested were 0.08, 0.12, 0.16,



TABLE I
MINIMUM r2 VALUE OF RATE-DISTORTION CURVES APPROXIMATION. THE

RMSE DISTORTION MEASURE IS USED.

JPEG2000 Wavelet Packet
Centroid MST Centroid MST

Joe 0.971 0.927 0.958 0.973
Pig 0.956 0.871 0.907 0.934

Galway 0.992 0.971 0.993 0.992
GOES 0.962 0.860 0.969 0.956

TABLE II
IMPROVEMENT IN RMSE USING RATE-DISTORTION BASED BIT

ALLOCATION OVER EQUAL ALLOCATION. JPEG2000 WAS USED TO
COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) 1.45 1.90 1.87
best (%) 7.34 4.09 4.31

Pig avg (%) -0.37 0.50 -0.89
best (%) 11.25 2.78 1.43

Galway avg (%) 2.46 1.14 0.34
best (%) 9.18 4.32 7.03

GOES avg (%) 0.83 2.41 2.66
best (%) 3.46 5.39 5.27

. . . , 0.96 bpp, and the rate-distortion curve for each residual
image is obtained by sampling at these bit rates. From these
tables, we see that important improvements were achieved in
many cases. Generally, there is less improvement in the Pig set
than the other sets, because most of the images in the Pig set
are very similar. As a result, the rate-distortion curves for the
residual images are all very similar, and equal bit allocation
already achieves good results. Also, the Centroid method often
benefits more from our bit allocation approach, because the
centroid image needs to be more accurately encoded than
others. In most cases, the improvement is more significant at
lower target bit rates (< 0.40 bpp), because the allocation of
each bit will have a more significant in the overall distortion
when fewer bits are available.

We now examine the results when (3) is used to approximate
the rate-distortion curves. Since the approximation is obtained
using 4 bit rates, the time to compute the rate-distortion curves
is significantly reduced by a factor of about 4. The com-
pression results showing the improvements of this approach
compared to equal allocation are shown in Tables VI, VII,
VIII, and IX.

TABLE III
IMPROVEMENT IN SSIM USING RATE-DISTORTION BASED BIT

ALLOCATION OVER EQUAL ALLOCATION. JPEG2000 WAS USED TO
COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) -0.97 0.59 0.53
best (%) 4.84 4.83 4.80

Pig avg (%) 0.73 1.18 1.04
best (%) 5.02 3.84 2.93

Galway avg (%) 1.86 0.75 0.83
best (%) 7.00 3.50 4.74

GOES avg (%) 0.22 1.75 1.73
best (%) 4.38 4.69 4.60

TABLE IV
IMPROVEMENT IN RMSE USING RATE-DISTORTION BASED BIT

ALLOCATION OVER EQUAL ALLOCATION. WAVELET PACKET
COMPRESSION WAS USED TO COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) -0.79 0.45 0.23
best (%) 3.08 1.84 2.16

Pig avg (%) -1.69 -0.31 -1.72
best (%) 1.96 1.68 0.90

Galway avg (%) 1.97 2.03 2.51
best (%) 9.27 6.85 11.57

GOES avg (%) 2.26 4.28 4.98
best (%) 13.11 8.36 8.15

TABLE V
IMPROVEMENT IN SSIM USING RATE-DISTORTION BASED BIT
ALLOCATION OVER EQUAL ALLOCATION. WAVELET PACKET
COMPRESSION WAS USED TO COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) -0.54 -0.10 -0.07
best (%) 3.67 1.92 1.97

Pig avg (%) -1.06 -0.12 -0.15
best (%) 1.72 0.62 1.24

Galway avg (%) 1.36 0.84 0.62
best (%) 6.66 3.89 6.16

GOES avg (%) 1.23 0.58 0.89
best (%) 11.91 2.33 2.10

TABLE VI
IMPROVEMENT IN RMSE USING APPROXIMATED RATE-DISTORTION

BASED BIT ALLOCATION OVER EQUAL ALLOCATION. JPEG2000 WAS
USED TO COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) 1.93 -0.16 0.13
best (%) 8.14 1.61 1.75

Pig avg (%) -3.53 0.23 -1.72
best (%) -0.59 3.38 0.14

Galway avg (%) 0.84 0.01 -1.09
best (%) 5.21 3.62 2.99

GOES avg (%) 1.28 0.46 0.96
best (%) 2.76 5.41 5.38

TABLE VII
IMPROVEMENT IN SSIM USING APPROXIMATED RATE-DISTORTION BASED

BIT ALLOCATION OVER EQUAL ALLOCATION. JPEG2000 WAS USED TO
COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) 0.69 -0.20 -0.20
best (%) 4.64 0.97 1.03

Pig avg (%) -1.89 -0.62 -0.63
best (%) -0.41 0.92 0.70

Galway avg (%) 0.59 -0.30 -1.18
best (%) 4.11 0.45 0.15

GOES avg (%) -0.04 -0.66 -0.71
best (%) 3.51 1.13 1.10



TABLE VIII
IMPROVEMENT IN RMSE USING APPROXIMATED RATE-DISTORTION

BASED BIT ALLOCATION OVER EQUAL ALLOCATION. WAVELET PACKET
COMPRESSION WAS USED TO COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) 0.90 0.54 0.47
best (%) 3.25 2.29 2.20

Pig avg (%) -0.78 0.09 -1.12
best (%) 9.76 3.35 4.73

Galway avg (%) 1.31 0.76 0.62
best (%) 5.99 5.67 6.57

GOES avg (%) 4.37 3.01 3.57
best (%) 13.40 9.22 9.85

TABLE IX
IMPROVEMENT IN SSIM USING APPROXIMATED RATE-DISTORTION BASED

BIT ALLOCATION OVER EQUAL ALLOCATION. WAVELET PACKET
COMPRESSION WAS USED TO COMPRESS RESIDUAL IMAGES.

Centroid MST MSTa

Joe avg (%) 0.29 0.21 0.17
best (%) 1.64 1.84 1.54

Pig avg (%) -1.81 -0.22 -0.49
best (%) 0.41 0.16 0.16

Galway avg (%) 0.84 0.34 -0.04
best (%) 3.79 2.86 2.24

GOES avg (%) 2.79 0.65 0.64
best (%) 12.88 3.30 2.97

The compression results are usually worse than those ob-
tained when the rate-distortion curve is sampled at more
bit rates, especially when the SSIM distortion mesaure and
JPEG2000 is used. On the other hand, the approximated rate-
distortion curve is considerably faster to compute. The general
trend is the same whether the approximated rate-distortion
curve is used—the improvement is higher at lower bit rates
than at higher bit rates. When the RMSE and wavelet packet
compression is used as a distortion measure, we see that the
improvements are often comparable to those obtained without
the approximated rate-distortion curve. This also agrees with
previous works on image set compression that wavelet packet
compression often performs better than JPEG2000 in image
set compression [17].

The approximated rate-distortion curve can be obtained
using a smaller number of invocations of the image com-
pression and decompression algorithm, leading to a reduc-
tion of encoding time by approximately a factor of 4. This
improvement is particularly significant when wavelet packet
compression is used, because the wavelet packet compression
algorithm is more computationally intensive than JPEG2000.
Thus, reducing the number of invocations to the compression
algorithm is important.

V. CONCLUSIONS

In this paper, we showed that a rate-distortion approach
to optimize bit allocation can improve the performance of
image set compression algorithms. While it is computationally
intensive to obtain the rate-distortion curve for each residual
image, we show that these curves can be approximated easily
and still obtain a reasonable improvement in compression

performance.
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