
March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

1

Modular Computation for Matrices of Ore Polynomials

Howard Cheng

Department of Mathematics and Computer Science
University of Lethbridge

Lethbridge, Canada
E-mail: howard.cheng@uleth.ca

George Labahn

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Canada
E-mail: glabahn@uwaterloo.ca

We give a modular algorithm to perform row reduction of a matrix of Ore
polynomials with coefficients in Z[t]. Both the transformation matrix and the
transformed matrix are computed. The algorithm can be used for finding the
rank and left nullspace of such matrices. In the special case of shift polynomi-
als, we obtain algorithms for computing a weak Popov form and for computing
a greatest common right divisor (GCRD) and a least common left multiple
(LCLM) of matrices of shift polynomials. Our algorithms improve on existing
fraction-free algorithms and can be viewed as generalizations of the work of Li
and Nemes on GCRDs and LCLMs of Ore polynomials. We define lucky ho-
momorphisms, determine the appropriate normalization, as well as bound the
number of homomorphic images required. Our algorithm is output-sensitive,
such that the number of homomorphic images required depends on the size of
the output. Furthermore, there is no need to verify the result by trial division or
multiplication. When our algorithm is used to compute a GCRD and a LCLM
of shift polynomials, we obtain a new output-sensitive modular algorithm.

1. Introduction

Ore polynomials provide a general setting for describing linear differential,
difference and q-difference operators.15 Systems of equations defined by
these operators can be represented by matrices of Ore polynomials. In this
paper we look at the problem of transforming such matrices into “simpler”
ones using only certain row operations. Examples of such transformations
include conversion to special forms, such as row-reduced and weak Popov
normal forms.3,6,10,14

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

2

Performing row reductions on a matrix of Ore polynomials to these
simpler forms allows one to determine its rank and left nullspace, giving
the minimum number of equations needed to represent the system of equa-
tions.2,6 If the transformation is invertible, the normal form in fact gives
the matrix representing an equivalent system with a minimum number of
equations. When the leading coefficient is triangular (as in the weak Popov
form), the normal form allows one to rewrite high-order operators (e.g.
derivatives) in terms of lower ones (Example 2.1). These transformations
can also be applied to the computation of greatest common right divisors
(GCRDs) and least common left multiples (LCLMs),3,6,11–13 which repre-
sents the intersection and the union of the solution spaces of systems of
equations.

The general problem of row reduction was discussed in Refs. 3 and 6.
The problem of defining and computing Popov forms over non-commutative
valuation domains such as rings of Ore polynomials was considered in Ref. 9,
but efficient computation of Popov forms is not considered. In practice,
row reductions can introduce significant coefficient growth which must be
controlled. This is important in the case of Ore polynomials as coefficient
growth is introduced in two ways—from multiplying on the left by powers
of the indeterminate and from elimination by cross-multiplication.

Fraction-free algorithms were given in Refs. 3 and 6 to compute the rank
and a left nullspace of matrices of Ore polynomials. When the matrix entries
are shift polynomials, we obtained fraction-free algorithms for computing
row-reduced and weak Popov forms, and for computing a greatest common
right divisor (GCRD) or a least common left multiple (LCLM) of matrices
of shift polynomials. It was shown that the fraction-free algorithms can
be viewed as a generalization of the subresultant algorithm of Li11,12 to
the case of matrices. Fraction-free methods allow us to control the growth
of intermediate results at a reasonable cost, leading to polynomial time
algorithms.

Modular computation is generally faster than the corresponding
fraction-free computation in a number of problems.8,17 In this paper we
are interested in modular algorithms for row reduction of matrices of Ore
polynomials, as well as computing the associated transformation matrices.
There are traditionally three major issues that must be addressed: the prob-
lem of “unlucky” homomorphisms, the number of images required for the
reconstruction of the result, and the normalization of the result to compute
consistent images under different homomorphisms.

In the case of polynomial matrices, these issues are overcome by formu-

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

3

lating the row reduction problem as a linear algebra problem. We obtained
a modular algorithm which has a lower complexity than the fraction-free
counterpart.7 The algorithm is output-sensitive, so that the number of ho-
momorphic images required depends on the size of the output. Furthermore,
there is no need to verify the result by trial division or multiplication.
We note that in many modular algorithms, this verification step can be
a significant bottleneck. Experimental results showed that when the ma-
trix entries are the commutative polynomials with coefficients in Z[t], the
output-sensitive modular algorithm is significantly superior to the fraction-
free algorithm. For matrices of Ore polynomials, the obvious modular algo-
rithm consists of two parts. First, the problem in Z[t][Z;σ, δ] are reduced
to problems in Zp[t][Z;σ, δ]. Next, evaluation maps t ← α are applied to
reduce the problems to ones whose coefficients are in Zp. However, such
evaluations are generally not Ore ring homomorphisms. As a result, it is
not possible to apply the same technique used in the polynomial matrix
case.

For the problem of computing GCRDs and LCLMs of Ore polynomials,
Li mapped the problem into a linear algebra problem over Zp by applying
the evaluation map to the entries of the Sylvester matrix of the input poly-
nomials.13 In the case of Ore polynomial matrices, however, the dimensions
and the configuration of the final coefficient matrix (the striped Krylov
matrix3,6) are not known a priori. Thus, the approach of Li13 cannot be
applied directly in our case.

The purpose of this paper is to overcome these difficulties for matrices
of Ore polynomials. We show how these issues are resolved by studying the
linear algebra formulation of the problem. We also extend the approach
of Cabay5 to obtain output-sensitive algorithms which do not require trial
division or multiplication to verify the results. The complexity of the new
modular algorithm improves on the complexity of the fraction-free algo-
rithm. Furthermore, the algorithm can be significantly faster when the size
of output is small. We also obtain a new output-sensitive modular algorithm
for computing GCRDs and LCLMs of shift polynomials. Experimental re-
sults confirm the performance of the modular algorithm as predicted by the
complexity analysis.

The paper is organized as follows. In Sec. 2, we review the relevant defini-
tions of matrices of Ore polynomials as well as the fraction-free elimination
algorithm of Refs. 3 and 6. In Sec. 3, we give a linear algebra formula-
tion of the problem and illustrate the difficulties in obtaining a modular
algorithm. We then discuss the reduction Z[t][Z;σ, δ] → Zp[t][Z;σ, δ]. The

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

4

techniques are then extended to the reduction to linear algebra problems
in Zp in the next section. In Sec. 6 we study the complexity of the algo-
rithms presented. Implementation considerations and experimental results
are discussed in Sec. 7. Concluding remarks are discussed in the closing
section.

2. Preliminaries

2.1. Notation

For any matrix A, we denote its elements by Ai,j . For any sets of row and
column indices I and J , we denote by AI,J the submatrix of A consisting
of the rows and columns indexed by I and J . For convenience, we use ∗ for
I or J to denote the sets of all rows and columns.

For any vector of integers (also called multi-index) ~ω = (ω1, . . . , ωp),
we denote by |~ω| =

∑p
i=1 ωi. The function max(·, ·) gives the vector whose

components are the maximum of the corresponding components of its input
vectors. We say that ~v ≤lex ~w if ~v = ~w or if the leftmost nonzero entry
in ~v − ~w is negative. The vector ~ei denotes the i-th unit vector (of the
appropriate dimension) such that (ei)j = δij ; we also have ~e = (1, . . . , 1)
(of the appropriate dimension). We denote by Im the m×m identity matrix,
and by Z~ω the diagonal matrix having Zωi on the diagonal.

2.2. Definitions

We first give some definitions on Ore polynomial matrices. These definitions
are similar to those given in our previous work.3,6,7

We denote by Z the ring of integers, Q the field of rational numbers,
and Zp the finite field of p elements where p is prime.

Let k be any field and let σ : k → k be an injective endomorphism of k.
Then, δ : k → k is a derivation with respect to σ is an endomorphism of
the additive group of k satisfying

δ(rs) = σ(r)δ(s) + δ(r)s

for all r, s ∈ k. In this paper, we will examine Ore polynomial rings with
coefficients in Z[t]. That is, the ring Z[t][Z;σ, δ] with σ an automorphism,
δ a derivation and with the multiplication rule

Z · a = σ(a)Z + δ(a)

for all a ∈ Z[t]. When δ = 0, we call the polynomials shift polynomials.
For brevity, we will use Z[t][Z] when the specific choices of σ and δ are not
important.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

5

Let Z[t][Z]m×n be the ring of m× n Ore polynomial matrices over Z[t].
We shall adapt the following conventions for the remainder of this paper.
Let F(Z) ∈ Z[t][Z]m×n, N = deg F(Z), and write

F(Z) =
N∑

j=0

F (j)Zj , with F (j) ∈ Z[t]m×n.

We also write cj (F(Z)) = F (j) to denote the j-th coefficient matrix.
An Ore polynomial matrix F(Z) is said to have row degree ~ν =

rdeg F(Z) if the i-th row has degree νi. The leading row coefficient of F(Z),
denoted LCrow (F(Z)), is the matrix whose entries are the coefficients of ZN

of the corresponding elements of ZN ·~e−~ν ·F(Z). An Ore polynomial matrix
F(Z) is row-reduced if LCrow (F(Z)) has maximal row rank. We also recall
that the rank of F(Z) is the maximum number of Q[t][Z]-linearly indepen-
dent rows of F(Z), and that U(Z) ∈ Z[t][Z]m×m is unimodular if there
exists V(Z) ∈ Q[t][Z]m×m such that V(Z) ·U(Z) = U(Z) · V(Z) = Im.
Some useful properties of matrices of Ore polynomials, such as linear inde-
pendence and rank, can be found in Ref.3

Example 2.1. Consider the differential algebraic system

y′′1 (t) + (t + 2)y1(t) + y′′2 (t) + y2(t) + y′3(t) + y3(t) = 0
y′′1 (t) + y′1(t) + 3y1(t) + y

(3)
2 (t) + 2y′2(t)− y2(t) + y

(3)
3 (t)− 2t2y3(t) = 0

y′1(t) + y1(t) + y
(3)
2 (t) + 2ty′2(t)− y2(t) + y

(4)
3 (t) = 0.

(1)
Let D denote the differential operator on Q(t) such that D · f(t) = d

dtf(t).
Then the matrix form of Eq. (1) is:

D2 + (t + 2) D2 + 1 D + 1
D2 + D + 3 D3 + 2D − 1 D3 − 2t2

D + 1 D3 + 2tD + 1 D4

 ·
y1(t)

y2(t)
y3(t)

 = 0. (2)

The leading row coefficient (matrix of coefficients of the highest power of
the corresponding row) is upper triangular. This allows us to rewrite the
highest derivative in each row as a combination of other derivatives. For

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

6

example, we can eliminate the highest derivatives of y2(t) as follows:

y
(3)
2 (t) =− y′′1 (t)− y′1(t)− 3y1(t)− 2y′2(t) + y2(t)− y

(3)
3 (t) + 2t2y3(t)

=− ((t + 2)y1(t)− y′′2 (t)− y2(t)− y′3(t)− y3(t))− y′1(t)− 3y1(t)

− 2y′2(t) + y2(t)− y
(3)
3 (t) + 2t2y3(t)

=− y′1(t)− (t + 5)y1(t) + y′′2 (t)− 2y′2(t) + 2y2(t)− y
(3)
3 (t) + y′3(t)

+ (2t2 + 1)y3(t).

2.3. The FFreduce Elimination Algorithm

We give a brief description of the FFreduce elimination algorithm3,6 which
forms much of the basis of our work. In this algorithm, we are interested in
applying the following elementary row operations to the matrix F(Z):

(a) interchange two rows;
(b) multiply a row by a nonzero element in Z[t][Z];
(c) add a polynomial multiple of one row to another.

Formally, we may view a sequence of elementary row operations as a trans-
formation matrix U(Z) ∈ Z[t][Z]m×m with the result of these operations
given by T(Z) = U(Z) · F(Z). The application of these row operations do
not change the rank of F(Z).3,6 If the row multiplier of (b) is restricted
to elements of Z[t] then U(Z) is unimodular. By applying these operations
to eliminate low-order coefficients, one can compute the rank and the left
nullspace of F(Z).

The elimination problem can be formalized as follows. An Ore poly-
nomial vector P(Z) ∈ Z[t][Z]1×m is said to have order ~ω with respect to
F(Z)a if

P(Z) · F(Z) = R(Z) · Z~ω (3)

for some residual R(Z). The set of all vectors of a particular order ~ω

forms a Q[t][Z]-module. The FFreduce algorithm computes a basis M(Z) ∈
Z[t][Z]m×m of row degree ~µ for this module, called an order basis, such that

(1) every row, M(Z)i,∗, has order ~ω for all 1 ≤ i ≤ m;

aOrders in this paper will be with respect to F(Z) and it will not be explicitly stated
for the remainder of the paper.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

7

(2) the rows of M(Z) form a basis of the module of all vectors of order
~ω. That is, every P(Z) ∈ Q[t][Z]1×m of order ~ω can be written as
P(Z) = Q(Z) ·M(Z) for some Q(Z) ∈ Q[t][Z]1×m;

(3) the leading column coefficient is normalized. That is, there exists a
nonzero d ∈ Z[t] such that

M(Z) = d · Z~µ + L(Z)

where deg L(Z)k,l ≤ µl − 1.

If M(Z) is row-reduced, we say that it is a reduced order basis. Condition
(3) implies that the row degree can be viewed as the number of times
each row of F(Z) has been used as a pivot in the elimination process (see
Example 3.2). An order basis of a particular order and degree, if it exists,
is unique up to a constant multiple (see Theorem 4.4 in Ref. 3). In the
FFreduce algorithm, the order is given as input but the degree of the order
basis computed is not known in advance. The final row degree reached
depends on the input and a pivoting scheme (also called a computational
path) to be described later.

Let R(Z) be the residual corresponding to an order basis M(Z) of order
~ω = σ · ~e, such that

M(Z) · F(Z) = R(Z) · Z~ω (4)

If σ = mN + 1, then the number of nonzero rows in R(Z) is rank F(Z),
and the rows in M(Z) corresponding to the zero rows in the residual gives
a basis of the left nullspace of F(Z).3,6 The order basis computed has row
degree ~µ such that µi ≤ (mN + 1)n. For the remainder of this paper, we
only consider the order basis problem in Eq. (4) with ~ω = σ · ~e.

If F(Z) is a matrix of shift polynomials, we have |~µ| ≤ σ min(m,n),
µi ≤ σ, and the trailing coefficient of R(Z) has rank F(Z) nonzero rows.
In fact, the reduction can be terminated as soon as there are “enough”
zero rows in R(Z).2,3,6 In this case, one may perform row reduction on
F(Z) · Z−N using Z−1 as the indeterminate. Reversing the coefficients of
M(Z−1) and R(Z−1), we get

U(Z) ·A(Z) = T(Z) (5)

with U(Z) unimodular and T(Z) in row-reduced form. We can also choose
the pivot rows used in the last n steps of the algorithm to construct M̂(Z−1)
and R̂(Z−1) satisfying Eq. (4) with the trailing coefficient of R̂(Z−1) in
upper echelon form.3,6 Reversing the coefficients in this case yields a weak
Popov form.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

8

Starting from M(Z) = Im and ~ω = ~0, the FFreduce algorithm computes
order bases for increasing ~ω until the desired order is reached. The recursion
formulas to increase the order of an order basis from ~ω to ~ω + ~ej are given
by the following theorem (see Theorem 6.1 in Ref. 3):

Theorem 2.1. Let M(Z) be an order basis of order ~ω and degree ~µ, and
r` = cωj

((M(Z) · F(Z))`,j). If r` = 0 for all ` = 1, . . . ,m, then M(Z) is
an order basis of order ~ω + ~ej and degree ~µ. Otherwise, we choose a pivot
π such that

π = min
1≤`≤m

{
` : r` 6= 0, µ` = min

1≤j≤m
{µj : rj 6= 0}

}
, (6)

and let p` = cµ`−1+δπ,`
(M(Z)π,`). Then an order basis M̃(Z) of order

~ω + ~ej and degree ~µ + ~eπ can be computed by

pπ · M̃(Z)`,∗ = rπ ·M(Z)`,∗ − r` ·M(Z)π,∗ for ` 6= π; (7)

σ (pπ) · M̃(Z)π,∗ = (rπ · Z − δ (rπ)) ·M(Z)π,∗ −
∑
` 6=π

σ (p`) ·M(z)`,∗. (8)

When the coefficients of the Ore polynomials come from an integral domain
such as Z[t], no fraction is introduced while applying Eq. (7) and Eq. (8).
We also note that the degree of the order basis computed depends on the
pivot choices in Eq. (6) and cannot be predicted in advance.

3. Linear Algebra Formulation

Given row degree ~µ and order ~ω, the coefficients in the order basis M(Z) can
be viewed as a solution to a linear system of equations over the coefficient
ring. By equating the coefficients of like powers, each row of the order basis
satisfies a system of equations of the form

Z0 · · · Zµk−1+δ1,k[
· · · p(0)

kp
(0)
k · · · p(µk−1+δ1,k)

k · · · p(0)
k

]
·

Z0 · · · Z~ω−~e

...
· · · Z0 · Fk,·(Z) · · ·

...
· · · Zµk−1+δ1,k · Fk,·(Z) · · ·

...

= 0.

(9)
More formally, for any P(Z) ∈ Q[t][Z]m×n we define

P~v =
[
P

(0)
∗,1 · · · P

(v1)
∗,1 | · · · |P

(0)
∗,n · · · P (vn)

∗,n

]
. (10)

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

9

We also define (recall that ~ω = σ · ~e)

K(~µ, ~ω) =

c0(F(Z)1,∗) · · · cσ−1(F(Z)1,∗)
...

...
c0(Zµ1 · F(Z)1,∗) · · · cσ−1(Zµ1 · F(Z)1,∗)

...
...

c0(F(Z)m,∗) · · · cσ−1(F(Z)m,∗)
...

...
c0(Zµm · F(Z)m,∗) · · · cσ−1(Zµm · F(Z)m,∗)

. (11)

Then the i-th row of the order basis satisfies

(Mi,∗)~µ−~e+~ei
·K(~µ− ~e + ~ei, ~ω) = 0. (12)

The matrix K(~µ, ~ω) has dimensions |~µ + ~e| × |~ω|, and is called a striped
Krylov matrix (with m stripes). This is a generalization of the well-known
Sylvester matrix when m = 2 and n = 1.

Example 3.1. Let ~µ = (2, 2), ~ω = (3, 3), and

F(Z) =
[
2Z2 + 3tZ + 6t2 Z2 − Z + 2
(t− 1)Z + 3t3 3tZ + t

]
∈ Z[t][Z;σ, δ]2×2, (13)

with σ(a(t)) = a(t) and δ(a(t)) = d
dta(t). Then

K(~µ, ~ω) =

6t2 2 3t −1 2 1
12t 0 6t2 + 3 2 3t −1
12 0 24t 0 6t2 + 6 2
3t3 t t− 1 3t 0 0
9t2 1 3t3 + 1 t + 3 t− 1 3t

18t 0 18t2 2 3t3 + 2 t + 6

. (14)

We also define the matrix K∗(~µ, ~ω) = K(~µ, ~ω)∗,J where J is the lexi-
cographically smallest set of column indices such that K∗(σn · ~e, ~ω)∗,J has
full column rank (this is called the rank profile in Ref. 16). An order basis
of degree ~µ and order ~ω exists if K∗(~µ− ~e, ~ω) is nonsingular,4 and in that
case, Eq. (12) has a solution space of dimension one. The system can be
transformed into the following system with a unique solution:

(Mi,∗)~µ−~e ·K∗(~µ− ~e, ~ω) = d ·
[
c0 (Zµi · F(Z)i,∗) · · · cσ−1 (Zµi · F(Z)i,∗)

]
(15)

where d = ±det K∗(~µ − ~e, ~ω). In other words, we are interested in the
Cramer solution of Eq. (15). Thus, the elements of the solution can be

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

10

written as determinants of submatrices of K(~µ, ~ω). If F(Z) ∈ Z[t][Z]m×n,
then the solution has entries in Z[t][Z] as well.

The FFreduce algorithm performs fraction-free elimination of the matrix
K(~µ, ~ω) efficiently by taking advantage of the inherent structure in the
matrix K(~µ, ~ω). Indeed the algorithm has the effect of maintaining only
one row in each of the m stripes. It can be shown that pπ is the pivot in the
previous step in computing M(Z), in a way similar to fraction-free Gaussian
elimination of Bareiss.1 The elements of M(Z) are Cramer solutions to
Eq. (15). The order basis M(Z) can be viewed as the transformation matrix
representing the row operations performed during fraction-free Gaussian
elimination.

Example 3.2. Let F(Z) be defined as in Example 3.1, so that we are
performing Gaussian elimination on K(·, ·). In the first step of FFreduce,
we choose π = 1 to eliminate the first column so that the row considered
in the first stripe is advanced to the second row of the stripe. This gives

M(Z) =
[
6t2Z − 12t 0
−3t3 6t2

]
. (16)

We omit giving the residual explicitly due to coefficient growth. In the
second step, we again choose π = 1 to eliminate the second column. Note
that here, the first row in the second stripe is zero in the second column,
even though the remaining rows in the stripe have nonzero entries in the
column. The choice of pivot depends only on the current row of each stripe.
This gives an order basis of order (1, 1) and degree (2, 0):

M(Z) =
[
−24tZ2 + 24Z 0

12t2 −24t

]
. (17)

For the third column, the entry of the current row in the second stripe is
nonzero, so that we choose π = 2 as the pivot and obtain an order basis
of order (2, 1) and degree (2, 1). Thus, the first three elements of J are
1, 2, and 3. Note that at each step, we are solving a linear system whose
coefficient matrix grows column-wise (as the order increases) and row-wise
(as the degree of the order bases increases).

As we can see, the row degrees of the order bases computed correspond
to the number of times a row in each stripe is used as a pivot in the elimina-
tion process. The column indices in J give the columns in which elimination
is performed (i.e. there is a nonzero entry in the current row of one of the
stripes).

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

11

If we perform the same computation in Z3, we see that the first column
is zero and we will reach an order basis of order (2, 1) and degree (1, 1).
Here, the first two elements of J are 2 and 3. On the other hand, performing
the computation in Z2 results in an order basis of order (2, 1) and degree
(1, 1), with the first two elements of J being 1 and 3. This shows that when
a prime is “unlucky”, the rank profile (and hence the set of column indices
J) as well as the sequence of row degrees of order bases constructed (the
computational path) can be different from the correct ones.

4. Reduction to Zp[t][Z]

In this section, we show how techniques used in modular algorithms for
polynomial matrices7 can be extended to Ore polynomial matrices for the
reduction of Z[t][Z] to Zp[t][Z]. We omit proofs which are similar to the
polynomial matrix case and instead only highlight the differences. We refer
the reader to Ref. 7 for more details.

Given the Ore polynomial ring Z[t][Z;σ, δ] and a prime p, we define the
modular homomorphism φp by

φp(A) = A mod p, for A ∈ Z[t][Z;σ, δ]. (18)

This gives a mapping from the Ore polynomial ring Z[t][Z;σ, δ] to the ring
Zp[t][Z;σp, δp], where

σp(φp(f)) = φp(σ(f)) and δp(φp(f)) = φp(δ(f)) for f ∈ Z[t] . (19)

We are interested in reducing the computation over Z[t][Z;σ, δ] to com-
putations over Zp[t][Z;σp, δp] for a certain number of primes p. The results
are then combined using Chinese remaindering to obtain the desired result
in Z[t][Z;σ, δ]. Three issues need to be addressed: normalization of the re-
sults in Zp[t][Z;σp, δp], the detection of unlucky primes, and a termination
criteria.

The main idea is that the computation of an order basis can be viewed
as the computation of solutions to linear systems of the form in Eq. (15). As
illustrated in Example 3.2, r` = 0 for all ` = 1, . . . ,m in any one step implies
that the corresponding column in the matrix K(·, ·) is linearly dependent.
Otherwise, the choice of π refers to pivot row used in the elimination.
Therefore, in order to be sure that the results computed in Zp[t][Z;σp, δp] is
the same as those computed in Z[t][Z;σ, δ], we need to ensure that the same
systems of equations are solved (i.e. the rows and columns appearing in
K∗(·, ·) is the same) and that the sign of d in Eq. (15) is chosen consistently
across all primes p.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

12

The sign of d can be computed consistently by applying the following
formula together with the recursion formulas in Eq. (7) and Eq. (8):

ε0 = 1

εk+1 =

{
εk if r` = 0 for all `,

εk · (−1)
Pm

i=πk+1(µk)i otherwise,
(20)

where πk and ~µk are the values of π and ~µ at the k-th step of the algorithm
(Lemma 5.1(c) in Ref. 4). Multiplying the results obtained using Eq. (7) and
Eq. (8) by εk at each step, this normalization ensures that d = detK∗(~µ−
~e, ~ω). If the results in Zp[t][Z;σp, δp] are computed by some other means (see
Sec. 5), we simply need to ensure that the sign is consistent with Eq. (20).

4.1. Lucky Homomorphisms

Let hc(f) be the leading coefficient of f ∈ Z[t][Z;σ, δ] in t (the head co-
efficient). If φp(hc(σ(t))) 6= 0, then σp is an Ore ring homomorphism and
Zp[t][Z;σp, δp] is an Ore polynomial ring.11,13 Thus, all primes p such that
φp(hc(σ(t))) = 0 are immediately discarded.

Let ~µ and J be the degrees and index set computed for an order basis of
order ~ω in Z[t][Z;σ, δ], and ~µp and Jp be those computed in Zp[t][Z;σp, δp].
Also, let d be the constant in Eq. (15) computed in Z[t][Z;σ, δ]. To ensure
that the same systems of equations is solved in Eq. (15), we must ensure
that (~µ, J) = (~µp, Jp). This can be defined formally as follows.

Definition 4.1. The homomorphism φp is lucky if

(1) φp(d) 6= 0;
(2) |~µ| = |~µp|; and
(3) φp(hc(σ(t))) 6= 0.

Otherwise, it is unlucky.

It can be shown that if φp is lucky, then (~µ, J) = (~µp, Jp).7 In that case,
the order basis and residual computed in Zp[t][Z;σp, δp] are images of the
desired results under φp. Moreover, if p is unlucky then it must divide
hc(σ(t)) or a minor of K(~µ, ~ω), so the number of unlucky homomorphisms
is finite.7 More precisely, if κ is a bound on the coefficients of Z` ·F(i, j) for
0 ≤ ` ≤ mN + 1, then the number of unlucky homomorphisms is at most

max
(
log2 hc(σ(t)), (mN + 1)2n2 log2

(
κ
√

(mN + 1)n
))

(21)

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

13

as we are only interested in minors of size up to (mN + 1)n. In practice,
however, this is a very pessimistic estimate and unlucky homomorphisms
are rarely encountered.

We note that the sequence of row degrees of the order bases constructed
during the FFreduce algorithm represents the choice of pivots (see Exam-
ple 3.2). We call this sequence a computational path. If we define the path
W = {~wk}k=0,1,2,... by ~w0 = ~0 and ~wk+1 = ~wk + ~ek mod m+1, then W is
the sequence of degrees followed by the FFreduce algorithm if r` 6= 0 for all
` at every step. It was shown that the final degree ~µ is the unique closest
normal point to w (see Theorem 7.3 in Ref. 4). That is, if K∗(~v − ~e, ~ω) is
nonsingular for some ~v such that |~v| = |~µ|, then

|max(~0, ~wk − ~µ)| ≤ |max(~0, ~wk − ~v)| for all k ≥ 0. (22)

Since ~µ and J are not known a priori, we need criteria to compare the
results computed under two homomorphisms and determine if one of them
is unlucky. This is similar to the case for polynomial matrices.7 This allows
one to incrementally compute homomorphic images and detect unlucky
homomorphisms by comparing the current image against the previous ones.

Theorem 4.1. Suppose φp(hc(σ(t))) 6= 0, φp(F (0)) 6= 0, and φq(F (0)) 6= 0.
Then φp is unlucky if one of the following holds:

(1) |~µp| = |~µq| and Jp >lex Jq;
(2) |~µp| = |~µq|, Jp = Jq, and ~µq is closer to W than ~µp;
(3) |~µp| < |~µq|.

We remark that this theorem is used only to detect unlucky homomorphisms
and cannot be used to detect lucky ones.

Assuming that we can compute the order basis Mp(Z) (and the cor-
responding row degree ~µp and column index set Jp) for φp(F (Z)) over
Zp[t][Z;σp, δp], Theorem 4.1 allows the results computed under two differ-
ent homomorphisms be compared to detect unlucky homomorphisms.

4.2. Termination

As all coefficients in M(Z) are Cramer solutions of the linear systems in
Eq. (15), they can be written as determinants of the coefficient matrices.4

Using Hadamard’s inequality, we can bound the size of the coefficients and
terminate the modular algorithm when the product of the moduli exceeds
this bound. Unfortunately, the Hadamard bound can be extremely pes-
simistic. A common approach is to reconstruct the results incrementally one

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

14

prime at a time using Garner’s algorithm,8 and verify the results when they
do not change for a certain number (e.g. one) of additional homomorphisms.
The verification step typically involves trial division or multiplication.

An approach of Cabay5 was first used for solving systems of linear equa-
tions with a modular algorithm without the need for verification. This was
extended to the case of polynomial matrix normal form computations.7

This technique can be extended to Ore polynomial matrices.

Theorem 4.2. Let ‖f(t)‖∞ = maxi |f (i)| where f(t) =
∑

i f (i)ti. Suppose
that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ k < mN + 1, and 0 ≤ ` ≤ mN + 1,
we have

degt

(
ck

(
Z` · F(Z)i,j

))
≤ T ; (23)∥∥ck

(
Z` · F(Z)i,j

)∥∥
∞ ≤ κ. (24)

Suppose the primes are ordered such that p1 < p2 < · · · , and that

((mN + 1)n)κ(T + 1) ≤ p1 · · · pτ (25)

for all j = 1, . . . , n. If M̃(Z) and R̃(Z) are the reconstructed results in
the modular algorithm and have not changed for τ additional primes, then
M̃(Z) and R̃(Z) give a solution to Eq. (4).

Proof. The proof of this theorem follows that of Theorem 6.1 in Ref. 7.
We note that the coefficients of M(Z) are solutions to the linear systems of
equations in Eq. (15), where the size of the matrix K∗(~µ− ~e, ~ω) is (mN +
1)n. The only difference here is that we need to note that by Hadamard’s
inequality, degt(f) ≤ (mN + 1)nT where f is a coefficient in M(Z), and
that ‖fg‖∞ ≤ (min(degt(f),degt(g)) + 1)‖f‖∞‖g‖∞.

The early termination criteria is most useful if τ is small. In particu-
lar, if τ = 1 then the proposed criteria is clearly an improvement over a
traditional modular algorithm. This is often true in practical cases.7 In the
worst case, the termination condition of Eq. (25) is satisfied when the tra-
ditional Hadamard bound is reached. Thus, the early termination strategy
is no worse than the traditional one.

Remark 4.1. The bound in Eq. (25) is based on the norm of a column in
K∗(~µ− ~e, ~ω). In specific cases where σ and δ are known, the bound can be
refined.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

15

5. Reduction to Zp

While we do not suffer coefficient growth in the size of the integer coeffi-
cients when solving the problems in Zp[t][Z;σp, δp], the growth of the de-
grees of the coefficients with respect to t still needs to be controlled. In this
section, we show how the computation of an order basis in Zp[t][Z;σp, δp]
can be transformed into a number of linear algebra problems over Zp.

It has been shown that the evaluation homomorphisms t← α are usually
not Ore ring homomorphisms because Ore polynomial rings over Zp must be
commutative.11,13 As a result, it is not possible to apply the same technique
in the previous section to obtain a modular algorithm to compute order
bases in Zp[t][Z;σp, δp] by reducing the problem into ones with coefficients
in Zp[Z]. However, when the problem in Zp[t][Z;σp, δp] is viewed as the
linear algebra problem in Eq. (15) over Zp[t], each entry in the striped
Krylov matrix can be reduced by an evaluation homomorphism to obtain
a number of linear algebra problems in Zp. This is essentially the approach
taken to compute a GCRD and a LCLM of Ore polynomials11,13—the image
of the coefficient matrix over Zp is constructed and Gaussian elimination is
performed on this matrix over Zp.

In the Ore polynomial case, the coefficient matrix in Eq. (15) is the well-
known Sylvester matrix and the computational path corresponds directly
to the degree sequence of the polynomial remainder sequence.8 In the Ore
polynomial matrix case, however, we do not know of such a correspondence
and neither the computational path nor the final configuration of the striped
Krylov matrix is known a priori. Thus, it is not sufficient to simply construct
the coefficient matrix and then operate on it.

Our modular algorithm to compute order bases in Zp[t][Z;σp, δp] con-
sists of the following steps:

(1) Choose a number of evaluation points α.
(2) For each evaluation point, apply the evaluation homomorphism t← α

and solve the reduced linear algebra problem over Zp.
(3) Combine the results obtained from lucky evaluation points by polyno-

mial interpolation.

This is the traditional framework for modular algorithm. However, the ap-
plication of the evaluation homomorphism and solution to the linear algebra
problem is non-trivial.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

16

5.1. Applying Evaluation Homomorphisms and

Computation in Zp

Our approach can be seen as a generalization of the modular algorithm for
Ore polynomials.11,13 Instead of constructing the entire coefficient matrix
K(·, ~ω) in Zp and performing Gaussian elimination on this matrix, we will
incrementally construct the striped Krylov matrix. Whenever we choose the
pivot π in an elimination step, the row corresponding to Zµπ+1 · F(Z)π,∗
needs to be added to the striped Krylov matrix. Once the row is added,
elimination must be performed so that the new row also has the required
order. However, this is not completely straightforward as the next example
shows.

Example 5.1. Let F(Z) be defined as in Example 3.1. Applying the eval-
uation t ← 0, the image of the striped Krylov matrix K(~µ, ~ω) over Z5

is

K =

0 2 0 4 2 1
0 0 3 2 0 4
2 0 0 0 1 2
0 0 4 0 0 0
0 1 1 3 4 0
0 0 0 2 2 1

. (26)

When the third row in the first stripe is finally added to the matrix, we
notice that the first column is linearly independent. In fact, there is no need
to perform elimination on the added row.

The sequences of pivot rows and columns over Z5 is different from those
over Z5[t], but the set of pivot rows and columns used at the end are the
same in this case as K has full rank. After appropriate normalization, the
solutions computed over Z5 are images of the corresponding solutions in
Z5[t].

We now describe the process by which the elimination is performed.
The computation of quantities such as ~µ and π are similar to the FFreduce
algorithm; they will not be given explicitly here. We will keep the striped
Krylov matrix K in the form of matrix of coefficients in Zp. The entries in
the transformation matrix T(Z) will be kept in polynomial form to simplify
the manipulations required when a new row is added. In addition, we main-
tain a matrix C(Z) where C(Z)i,∗ = Zµi ·F(Z)i,∗ ∈ Zp[t][Z;σp, δp]1×n. The
vector C(Z)i,∗ represents the last row of stripe i added to K and allows us
to quickly add the next row.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

17

The algorithm proceeds as follows.

(1) Initially, set C(Z) = F(Z). Also initialize K to include the m rows
consisting of coefficients of F(Z)i,∗ up to order ~ω evaluated at t = α,
and a transformation matrix T(Z) = Im.

(2) For each elimination step, the residuals ri in Theorem 2.1 can be ob-
tained by examining the appropriate row and column in K based on ~µ

and σ and the form of the striped Krylov matrix in Eq. (11). If ri 6= 0
for some 1 ≤ i ≤ m, add the step number j to set of column indices J .
Once the pivot row is chosen, we apply standard row operations in Zp

(non-fraction-free) to eliminate all other rows of K for that column. We
also need to add the next row for stripe π:

(a) C(Z)π,∗ ← Z · C(Z)π,∗. This operation is performed in
Zp[t][Z;σp, δp].

(b) Evaluate C(Z)π,∗ at t = α. Add the coefficients as a new row to
K, and perform row interchanges so that the stripes in K are in
the form in Eq. (11). Add a corresponding row to T(Z), whose only
nonzero entry is Zµπ+1 in column π.

(c) Perform row operations to eliminate the added row up to column j

using all rows that have previously been used as pivots. The same
row operations are applied to T(Z). During the reduction, if the
added row introduces a new linearly independent column, add the
column index to J and repeat steps 2a to 2c.

(3) When the row reductions are complete, let K∗ be the triangular sub-
matrix of K∗,J consisting of all but the last added row for each stripe.
Compute the determinant d = detK∗ as a product of the diagonal el-
ements. Adjust the sign of d based on the row interchanges performed
(see Eq. (20)).

(4) The i-th row of the order basis M(Z) and the residual R(Z) can be
extracted from the rows corresponding to Zµi ·F(Z)i,∗ in d ·T(Z) and
d ·K.

Although we have lost the ability of FFreduce to take advantage of the
structure of the striped Krylov matrix, we gained the ability to control co-
efficient growth. Note that coefficient growth is not completely eliminated,
since the computation of C(Z) may introduce growth in the degree in t

when Zk ·F(Z). However, the growth arising from Gaussian elimination is
eliminated. Furthermore, the degree in t does not grow when multiplying
by Z in many practical cases (see Remark 6.3).

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

18

Example 5.2. Continuing from Example 5.1, we first start with

K =
[

0 2 0 4 2 1
0 0 4 0 0 0

]
. (27)

Eliminating the second column with pivot π = 1 requires no row operation.
The next row for the first stripe is added to obtain

K =

0 2 0 4 2 1
0 0 3 2 0 4
0 0 4 0 0 0

 . (28)

In the next step, we choose π = 2 to eliminate the third column. Adding
the next row and eliminating gives

K =

0 2 0 4 2 1
0 0 0 2 0 4
0 0 4 0 0 0
0 0 0 1 3 2

 . (29)

Next, we choose π = 1 to eliminate the fourth column. After adding the
next row for the first stripe, we get:

K =

0 2 0 4 2 1
0 0 0 2 0 4
2 0 0 0 1 2
0 0 4 0 0 0
0 0 0 0 3 0

 . (30)

The new row introduces a new linearly independent column. The next row
for the first stripe will be added immediately. Continuing in this manner
gives the coefficients of the residual R(Z) as the last row of each stripe.

5.2. Lucky Homomorphisms and Termination

Since our definition of lucky homomorphisms is originally based on the lin-
ear algebra formulation of the order basis problem, the same definition can
be easily applied to the reduction of the linear algebra problem from Zp[t]
to Zp. In particular, Definition 4.1 and Theorem 4.1 can be applied simply
by changing φp and φq to the appropriate evaluation homomorphisms.

Similarly, the termination criteria is also originally based on the linear
algebra formulation in Eq. (15). Again, we may apply Hadamard’s inequal-
ity to obtain bounds on the size (degrees in t) of the coefficients in the
solutions, but we prefer to have an early termination condition that is sen-
sitive to the size of the output. Since we are now dealing with linear systems

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

19

of equations, we can apply the technique of Cabay5 directly after modifying
the theorem to use the degree measure as the coefficient norm.

Theorem 5.1. Suppose that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ k < mN+1,
and 0 ≤ ` ≤ mN + 1, we have

degt

(
ck

(
Z` · F(Z)i,j

))
≤ T. (31)

Suppose that M̃(Z) and R̃(Z) are the reconstructed results in the modular
algorithm and have not changed for T additional evaluation points. Then
M̃(Z) and R̃(Z) give a solution to Eq. (4) in Zp[t][Z;σ, δ].

6. Complexity Analysis

To compare the new modular algorithm against the fraction-free FFreduce
algorithm, we need to give the complexity of FFreduce in our context, as
the analysis in our previous work3,6 are for general coefficient domains and
can be refined. The proof is similar to the ones in our previous work and is
omitted.

Theorem 6.1. Suppose that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ k < mN+1,
and 0 ≤ ` ≤ mN + 1, we have

degt

(
ck

(
Z` · F(Z)i,j

))
≤ T ; (32)∥∥ck

(
Z` · F(Z)i,j

)∥∥
∞ ≤ κ. (33)

Then an order basis and a residual of order ~ω = (mN+1)·~e over Z[t][Z;σ, δ]
can be computed in O((m+n)(mnN)4T 2M(mnN(log(Tκ)))) bit operations
by the FFreduce algorithm, where O(M(k)) is the complexity of multiply two
k-bit integers.

We now analyze the complexity of our algorithm. We first examine the
complexity of the computation of the order basis over Zp[t][Z;σp, δp].

Theorem 6.2. Let T be a bound on the degree of the coefficients in t, such
that

degt

(
ck

(
Z` · F(Z)i,j

))
≤ T (34)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ k < mN + 1, and 0 ≤ ` ≤ mN + 1. We
also assume that two polynomials in Zp[t] of degree d can be multiplied in
O(d log d) operations in Zp. Then an order basis and a residual of order ~ω =
(mN + 1) · ~e over Zp[t][Z;σp, δp] can be computed in O((mnN)3mT (nN +
T (log mnNT)2)) operations in Zp.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

20

Proof. Since the dimensions of the coefficient matrix in the system of
equations in Eq. (15) is (mN +1)n×(mN +1)n, it follows that the entries of
the order basis and the residual have degrees in t bounded by (mN+1)nT as
they can be written as determinants of submatrices of the coefficient matrix.
This implies that O(mnNT) lucky evaluation points are needed. For each
evaluation point, the evaluation can be done in O((mnN)2T) operations in
Zp. The elimination can be done in O((mnN)3) operations. Finally, each
coefficient can be interpolated in O(PM(mnNT) log(mnNT)) operations,17

and we have O(m2nN) nonzero coefficients in M(Z) and O(mnN) nonzero
coefficients in R(Z), where PM(d) is the complexity for multiplying two
degree d polynomials. The desired result now follows from the assumption
on polynomial multiplication.

Remark 6.1. In the analysis we have ignored the occurrences of unlucky
homomorphisms as they rarely occur in practice. Also, we assumed that
p is chosen large enough such that polynomial multiplication for degree d

polynomials can be performed in O(d log d) operations.

We are now ready to give the complexity of the complete algorithm.

Theorem 6.3. Suppose that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ k < mN+1,
and 0 ≤ ` ≤ mN + 1, we have

degt

(
ck

(
Z` · F(Z)i,j

))
≤ T ; (35)∥∥ck

(
Z` · F(Z)i,j

)∥∥
∞ ≤ κ. (36)

Then an order basis and a residual of order ~ω = (mN+1)·~e over Z[t][Z;σ, δ]
can be computed in

O(m(mnN)3T (nN + T (log mnNT)2 + log log Tκ)M(mnN log Tκ))

bit operations by our modular algorithm.

Proof. By Hadamard’s inequality, Eq. (15), and the inequality ‖fg‖∞ ≤
(min(degt(f),degt(g))+1)T‖f‖∞‖g‖∞, we see that

∥∥∥ck

(
M(Z)i,j

)∥∥∥
∞

and∥∥∥ck

(
R(Z)i,j

)∥∥∥
∞

have O(mnN log Tκ)) bit length. Choosing primes of size

O(log Tκ), it follows that O(mnN) lucky primes are needed. For each prime,
the reduction modulo p can be done in O(mnNT) operations in Zp, and the
computation of the order basis and residual in Zp[t][Z;σ, δ] can be done in
O((mnN)3mT (nN+T (log mnNT)2)) operations in Zp by Theorem 6.2. We
note that each operation can be performed in O(M(log Tκ)) bit operations.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

21

Finally, there are O(m2nN) nonzero coefficients in M(Z) and O(mnN)
nonzero coefficients in R(Z), each of which has degree O(mnNT) in t. Each
coefficient can be reconstructed in O(M(mnN log Tκ) log(mnN log Tκ)) bit
operations by Chinese remaindering.17

Remark 6.2. We see that the complexity of the modular algorithm im-
proves on the complexity of the fraction-free algorithm, but the advantage
of the reduced coefficient growth is offset by the use of a larger striped
Krylov matrix. In the analysis we have used the worst case bound that
the number of rows in the striped Krylov matrix can be a factor of nN

greater than that of R(Z) and M(Z) in Ore polynomial matrix form. In
practice, however, the striped Krylov matrix usually never grows to its full
size because there can be many zero rows, or because we can terminate
the elimination earlier in the case of matrices of shift polynomials. The
advantage of the modular algorithm is more significant in these cases.

Remark 6.3. In many practical applications, degt(σ(a)),degt(δ(a)) ≤
degt(a) for all a ∈ Z[t]. In these cases, one can simplify Eq. (35) to

degt (ck (F(Z)i,j)) ≤ T. (37)

7. Implementation Considerations and Experimental
Results

The modular algorithm has been implemented in Maple 9.5. Although the
modular algorithm has a better complexity than the fraction-free algorithm,
the modular algorithm has a larger overhead especially for small inputs. As
a result, a careful implementation is needed for the modular algorithm to
perform better than the fraction-free algorithm on inputs of reasonable size.
We list below some optimizations used. Although they are straightforward,
these optimizations have significant effect on the running time of the algo-
rithm.

• Memory allocation and deallocation can be a significant overhead in
the algorithm. To minimize memory management, we allocate one large
matrix K for each prime p and use the same matrix for different eval-
uation points. There is also no need to reallocate the matrix when a
new row is added, as long as the original matrix is large enough. In
addition, we may augment the matrix K with the identity matrix to
represent the coefficients of the order basis.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

22

• When a new row is added to K, we do not perform row interchanges
to maintain the coefficient matrix K in striped Krylov matrix form.
Instead, we simply add the new row to the bottom and maintain a list
of row indices to refer to the correct row. This reduces data movements
in the algorithm.

• The computations on C(Z) for keeping track of the next row to be
added to K are identical for all evaluation points α under Zp. Therefore,
we compute the sequence of C(Z) only once for each prime p and reuse
the results for all evaluation points.

• The LinearAlgebra:-Modular package is used to efficiently perform
linear algebra operations in Zp.

We compare the performance of the modular algorithm and the fraction-
free algorithm (FFreduce) below. The experiments were performed on a
computer with a Xeon 2.70GHz processor and 16GB of RAM. In the ex-
periments, we generated random matrices of Ore polynomials such that
σ(a(t)) = a(t) and δ(a(t)) = d

dta(t). The results are given in Table 1 and
Table 2. As expected, we see that the modular algorithm performs better
than the fraction-free algorithm as the input size increases. Also, we show
that using rational arithmetic in Q[t] to perform row reduction is imprac-
tical.

Table 1. Comparison between modular and fraction-free algorithms
for various input sizes (κ = 5, T = 1). Also shown are timings when
the rational arithmetic in Q[t] is used (n/a means no result is com-
puted after 7200 seconds).

m, n N FFreduce (s) Modular (s) Ratio Rational (s)

2 1 0.037 0.178 0.208 3.073
2 2 0.089 0.278 0.320 n/a
2 4 1.453 3.226 0.449 n/a
2 8 21.984 26.789 0.821 n/a
2 16 75.048 118.796 0.630 n/a

3 1 0.564 1.150 0.490 n/a
3 2 3.928 6.032 0.652 n/a
3 4 64.498 55.991 1.150 n/a
3 8 401.708 339.383 1.190 n/a

4 2 54.213 46.776 1.160 n/a
4 4 1018.963 589.687 1.730 n/a
4 6 5107.881 3123.530 1.640 n/a

5 2 564.498 289.937 1.940 n/a
5 4 7770.646 4554.689 1.710 n/a

8 1 2434.662 1182.519 2.060 n/a

10 1 17124.143 11146.557 1.540 n/a

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

23

Table 2. Comparison between modular and frac-
tion-free algorithms for various input sizes (κ = 5,
T = 2).

m, n N FFreduce (s) Modular (s) Ratio

2 2 0.496 1.848 0.268
2 4 5.618 11.368 0.493
2 8 95.759 111.925 0.855
2 16 1723.170 1709.175 1.010

3 2 16.488 24.198 0.682
3 4 330.956 291.985 1.130
3 6 1373.799 1225.103 1.110

Although the modular algorithms is faster than the fraction-free algo-
rithm for larger inputs, there were instances where the ratio between the
running times of the fraction-free algorithm and the modular algorithm de-
creases slightly when the input size is increased. In these cases, the larger
inputs actually gave output that are smaller than expected because the rank
of the striped Krylov matrix is not full. Hence, the recurrence formulas in
Eq. (7) and Eq. (8) are not applied as often, resulting in less coefficient
growth in the output. Also, for larger inputs the overhead of garbage col-
lection for the results computed under different evaluation points and dif-
ferent primes become more important. This is confirmed by observing that
the running time for the modular algorithm improves significantly when
the frequency of garbage collection is reducedb. A decision has to be made
based on available memory in order to reduce running time while using a
reasonable amount of memory.

8. Concluding Remarks

In this paper, we showed how to design an output-sensitive modular algo-
rithm for performing row reductions on matrices of Ore polynomials. By
examining the problem as a linear algebra problem in Zp[t] and subsequently
in Zp, we overcome the various issues in designing a modular algorithm—
detection of unlucky homomorphisms, normalization, and termination. We
have also shown that the modular algorithm is faster than the fraction-free
algorithm for larger inputs both theoretically and experimentally.

A limitation in both the fraction-free and modular algorithms is that
row reduction is performed on the low order terms. When the elements of

bChanging the kernel variable gcfreq to 5000000 from the default value of 1000000
reduces the running times by as much as 3 times in some cases.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

24

the input matrix are shift polynomials, one may perform substitution to
reverse the coefficients. However, this cannot be done for general Ore poly-
nomials. We believe that it is possible to formulate row reduction based
on high order terms as a nullspace computation, so that the modular al-
gorithm described here can be applied to control coefficient growth for the
computation of normal forms that are defined by leading coefficients such
as the row-reduced form.

References

1. E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Math. Comp., 22:565–578, 1968.

2. B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of
matrices of skew polynomials. In Proceedings of the 2002 International Sym-
posium on Symbolic and Algebraic Computation, pages 8–15. ACM, 2002.

3. B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of
matrices of Ore polynomials. Journal of Symbolic Computation, 41(5):513–
543, 2006.

4. B. Beckermann and G. Labahn. Fraction-free computation of matrix rational
interpolants and matrix GCDs. SIAM J. Matrix Anal. and Appl., 22(1):114–
144, 2000.

5. S. Cabay. Exact solution of linear equations. In Proceedings of the Second
Symposium on Symbolic and Algebraic Manipulation, pages 392–398, 1971.

6. H. Cheng. Algorithms for Normal Forms for Matrices of Polynomials and
Ore Polynomials. PhD thesis, University of Waterloo, 2003.

7. H. Cheng and G. Labahn. Output-sensitive modular algorithms for polyno-
mial matrix normal forms. To appear in Journal of Symbolic Computation.

8. K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Al-
gebra. Kluwer Academic Publishers, 1992.

9. M. Giesbrecht, G. Labahn, and Y. Zhang. Computing valuation popov
forms. In Workshop on Computer Algebra Systems and their Applications
(CASA’05), 2005.

10. T. Kailath. Linear Systems. Prentice-Hall, 1980.
11. Z. Li. A Subresultant Theory for Linear Differential, Linear Difference and

Ore Polynomials, with Applications. PhD thesis, RISC-Linz, Johannes Kepler
University, Linz, Austria, 1996.

12. Z. Li. A subresultant theory for ore polynomials with applications. In Pro-
ceedings of the 1998 International Symposium on Symbolic and Algebraic
Computation, pages 132–139. ACM, 1998.

13. Z. Li and I. Nemes. A modular algorithm for computing greatest common
right divisors of ore polynomials. In Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, pages 282–289. ACM,
1997.

14. T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices.
Journal of Symbolic Computation, 35(4):377–401, 2003.

March 4, 2007 16:10 WSPC - Proceedings Trim Size: 9in x 6in paper

25

15. O. Ore. Theory of non-commutative polynomials. Annals of Mathematics,
34:480–508, 1933.

16. A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Depart-
ment of Computer Science, Swiss Federal Institute of Technology—ETH,
2000.

17. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, second edition, 2002.

