
Space-Efficient Evaluation of Hypergeometric Series

by

Howard Cheng, Barry Gergel, Ethan Kim, Eugene Zima

Report TR-CS-04-04

September 2004.

COPYRIGHT ( c©) BY HOWARD CHENG, BARRY GERGEL,
ETHAN KIM, EUGENE ZIMA. THIS DOCUMENT MAY
BE SUBMITTED FOR PUBLICATION ELSEWHERE, SO
COPYRIGHT MAY TRANSFER TO ANOTHER SOURCE
WITHOUT NOTICE.

The Department of Mathematics and Computer Science pub-

lishes a technical report series that includes expository and student

works, in addition to research documents. A work appearing in this

report series may not have undergone any prior review, and so the

Department cannot assume any liability stemming from claims made

in this series of reports.

Additional information regarding this report series can be ob-

tained by contacting the Department.



Space-Efficient Evaluation of Hypergeometric Series

Howard Cheng∗ Barry Gergel

Ethan Kim†

Department of Mathematics and Computer Science

University of Lethbridge

Lethbridge, Alberta, Canada

cheng@cs.uleth.ca, barry.gergel@uleth.ca, ethan.kim@uleth.ca

Eugene Zima
Department of Physics and Computer Science

Wilfrid Laurier University

Waterloo, Ontario, Canada

ezima@wlu.ca

Abstract

Hypergeometric series are used to approximate many important constants, such as e and
Apéry’s constant ζ(3). The evaluation of such series to high precision has traditionally been
done by binary splitting followed by integer division. However, the numerator and the de-
nominator computed by binary splitting usually contain a very large common factor. In this
paper, we apply standard computer algebra techniques including modular computation and ra-
tional reconstruction to overcome the shortcomings of the binary splitting method. The space
complexity of our algorithm is the same as a bound on the size of the reduced numerator and de-
nominator of the series. Moreover, if the predicted bound is small, the time complexity is better
than the standard binary splitting approach. Our approach allows a series to be evaluated to
a higher precision without additional memory. We show that when our algorithm is applied to
compute ζ(3), the memory requirement is significantly reduced compared to the binary splitting
approach.

1 Introduction

We consider the evaluation of the hypergeometric series

S(N) =

N−1
∑

n=0

a(n)

b(n)

n
∏

i=0

p(i)

q(i)
(1)

to high precision, where a, b, p, and q are polynomials with integer coefficients, and a(n), b(n),
p(n), q(n) have bit length O(log n). We also assume that the series is linearly convergent, so

∗Supported by Natural Sciences and Engineering Research Council Discovery Grant and Research Tools and

Instruments Grant.
†Supported by a Natural Sciences and Engineering Research Council Undergraduate Student Research Award.

1



that the nth term of (1) is O(c−n) with c > 1. These series are commonly used in the high
precision evaluation of elementary functions and other constants, including the exponential function,
logarithms, trigonometric functions, and constants such as the Apéry’s constant ζ(3) [7, 8].

A widely used approach to the computation of (1) is binary splitting [3, 8], which computes the
numerator and denominator of the rational number S(N). The decimal representation of S(N) is
then computed by fixed-point division of the numerator by the denominator. The binary splitting
approach takes advantage of the special form of the series (1) to obtain a denominator that is
relatively small (of size O(N log N)). It also takes advantage of fast integer multiplication to obtain
a time complexity of O((log N)2

M(N)), where M(N) = O(N log N log log N) is the complexity
of integer multiplication of two N -bit integers [11]. The space complexity of the algorithm is
O(N log N), the size of the computed numerator and denominator.

Typically, the numerator and denominator computed by binary splitting have large common
factors. For example, in the computation of 640000 digits of ζ(3), as much as 86% of the size of the
computed numerator and denominator can be attributed to their common factor [4]. Empirically,
we have observed that the size of the reduced numerator and denominator is O(N) instead of
O(N log N) as computed by binary splitting. The additional digits computed not only slow down
the final division but also require more memory to be used during the computation. For computing
a large number of decimal digits, either the computation cannot be done at all or some data would
have to be swapped to memory, increasing the computation time dramatically.

A different representation for integers was used by Cheng and Zima [4] to help reduce the size
of the computed numerator and denominator. The integers were represented in partially factored
form, so that common factors of small primes are easily removed. Although a completely factored
representation would give the reduced numerator and denominator, addition of integers in factored
form is too costly. By using a moderate number of primes in this representation, it was shown that
the size of the intermediate results can be reduced to about half of those computed by standard
binary splitting and computational time is also reduced by more than half. The asymptotic time
and space complexities are unchanged from that of standard binary splitting.

In this paper, we study the application of well-known techniques in computer algebra to the
evaluation of (1). If a bound on the size of the reduced numerator and denominator is known, we
can compute the image of S(N) in (1) under an appropriately chosen modulus. Rational number
reconstruction can then be applied to recover the reduced numerator and denominator [5, 12, 13].
We show how to apply our techniques to the computation of ζ(3), including the prediction of the
size of the reduced numerator and denominator. In particular, we obtain the desired O(N) bound
on the size of reduced numerator and denominator, which is an interesting result by itself. The
techniques used in the analysis may be applied to similar hypergeometric series.

We can view our approach as an extension of our work in [4]—we obtain the advantage of using a
completely factored form without its drawbacks. The time complexity of our algorithm is no worse
than the binary splitting approach, and can be better if the reduced numerator and denominator
have size significantly less than O(N log N). Furthermore, the space complexity of our algorithm
is the same as the bound on the size of the reduced numerator and denominator. Our approach
is different from that of taken by the PiFast program [7]. PiFast uses “large integers with limited
precision” to reduce the space usage to O(N) but the time complexity remains the same [7, see
“Algorithms”→”Binary splitting method”]. Our approach is sensitive to the size of the reduced
numerator and denominator and can be much faster when the size is predicted to be small.

The paper is organized as follows. Section 2 gives the necessary preliminaries for the rest of the

2



paper. We give the algorithm in Section 3 and a complexity analysis in Section 4. Section 5 shows
the application of our algorithm to the computation of ζ(3). The relationship of our approach
and the partially factored representation introduced in [4] is explained in Section 6. Concluding
remarks are given in Section 7.

2 Preliminaries

In this section, we recall known algorithms that are needed in our new algorithm. We also give the
relevant hypergeometric series representations of ζ(3) that will be used to illustrate the techniques
discussed in this paper.

2.1 Binary Splitting

We give a brief overview of the binary splitting approach for the evaluation of (1) as described
in [8]. Given bounds n1, n2 consider the partial sum

S =

n2
∑

n=n1

a(n)

b(n)

p(n1) · · · p(n)

q(n1) · · · q(n)
. (2)

The algorithm computes the integers P = p(n1) · · · p(n2), Q = q(n1) · · · q(n2), B = b(n1) · · · b(n2)
and T = BQS. If n1 = n2, these values are computed directly. Otherwise, the series is divided into
the left and right halves and the corresponding quantities are computed recursively. The results
from each half are combined by the formulas:

P = PlPr, Q = QlQr, B = BlBr, and T = BrQrTl + BlPlTr, (3)

where the subscripts indicate whether the results are from the left half or the right half. Application
of this algorithm to (1) starts with n1 = 0 and n2 = N − 1. Once these quantities are computed
by binary splitting, a final division S(N) = T

BQ
is performed to obtain the decimal digits.

The success of the application of binary splitting is due to the fact that at each recursive
invocation integers of relatively close sizes are multiplied. This provides a balance of operand sizes
to take advantage of asymptotically fast integer multiplication algorithms. It was shown that the
size of the computed results are O(N log N) bits and that the time complexity of binary splitting
is O((log N)2M(N)) [8]. As we can see from (3), common factors between the numerator and the
denominator are not removed.

In practice it is often the case that b(n) = 1 and hence B = 1. For the remainder of this paper, we
will assume that b(n) = 1 to simplify the presentation of our algorithm. The algorithm and analysis
given can easily be modified for b(n) 6= 1. We also note that by defining ã(n) = a(n), b̃(n) = 1,
p̃(0) = p(0), p̃(n) = p(n)b(n− 1) for n > 0, and q̃(n) = q(n)b(n), we obtain a hypergeometric series
of the desired form. Although the sizes of P̃ and Q̃ computed from the transformed series will be
doubled due to additional common factors, the sizes of the reduced T̃ and Q̃ remain the same.

2.2 Rational Number Reconstruction

Given positive integers g and m, the rational number reconstruction problem is to find a and b
such that g ≡ ab−1 mod m, gcd(b,m) = 1, |a| <

√
m/2 and 0 < b ≤ √

m. An algorithm based

3



on the Euclidean algorithm was first given by Wang, Guy, and Davenport [12]. It has quadratic
time complexity but linear space complexity. Collins and Encarnación provided an algorithm which
has the same complexity but is faster in practice [5]. Recently, Pan and Wang gave an algorithm
which has time complexity O((log log m)M(log m)) [13]. Most current practical implementations
are quadratic.

2.3 Computation of ζ(3)

To illustrate our approach in this paper, we consider the following formula for computing ζ(3) to
high precision [8]

ζ(3) ≈ 1

2

N−1
∑

n=0

(−1)n
(

205n2 + 250n + 77
)

((n + 1)!)5 (n!)5

((2n + 2)!)5
. (4)

Here, a(n) = 205n2 +250n+77, b(n) = 1, p(0) = 1, p(n) = −n5 for n > 0, and q(n) = 32(2n+1)5.
This series gives approximately 3.01 decimal digits of accuracy for each extra term.

We note that another formula obtained by creative telescoping [1, 2] has also been used for the
computation of ζ(3):

ζ(3) ≈ 1

24

N−1
∑

n=0

(−1)na(n)((2n + 1)!(2n)!n!)3

(3n + 2)!((4n + 3)!)3
, (5)

where a(n) = 126392n5 + 412708n4 + 531578n3 + 336367n2 + 104000n + 12463. We will only use
(4) because it is simpler to analyze. Although formula (5) converges faster than formula (4), it
has been observed that the reduced numerators and denominators computed by the two series are
similar for the same number of digits of accuracy [4, Table 1]. It has also been shown that the
partially factored form was more successful in removing common factors from the results computed
by (4) than from those computed by (5) [4, Table 6].

3 Algorithm

We now give an overview of the algorithm. Let T̂ and Q̂ be the reduced numerator and denominator
of S(N). We assume that a bound κ on the bit lengths (and hence the magnitudes) of T̂ and Q̂ is
given to the algorithm.

Algorithm 1 Computation of the decimal expansion of S(N).

1: Choose a sufficiently large modulus m such that gcd(m, Q̂) = 1
2: Compute the image g such that g ≡ T̂ Q̂−1 mod m.
3: Apply rational number reconstruction on g and m to obtain T̂ and Q̂.
4: Perform fixed-point division on T̂ and Q̂ to obtain the decimal expansion of S(N).

Step 3 makes use of standard rational number reconstruction algorithms as discussed in Sec-
tion 2.2. Step 4 is the same as that of the standard binary splitting approach in Section 2.1. In the
following subsections we describe the first two steps in more detail.

4



3.1 Choice of Modulus

In order to perform the computation successfully, we must ensure that the chosen modulus m is
sufficiently large. In particular, we must ensure that

2T̂ Q̂ < m. (6)

In other words, the bit length of m should be at least 2κ+3. Furthermore, we must ensure that m
is relatively prime to Q̂. We note that any prime larger than q(n) for 0 ≤ n < N is relatively prime
to Q. With our assumption that q(n) has size O(log n) bits, it suffices to find primes which have
size O(log N) bits. Finding such primes is generally feasible computationally, and we will assume
that such a list of primes have been precomputed. The product of sufficiently many such primes
serves as a suitable modulus. The product of primes should be computed by a form of binary
splitting to take advantage of fast integer multiplication algorithms.

3.2 Computation of Image

We now discuss how to compute the image g ≡ T̂ Q̂−1 mod m. First, since g ≡ TQ−1 mod m, we
may in fact compute the values of T and Q as computed by standard binary splitting modulo m.
By first computing T and Q modulo m and then computing g ≡ TQ−1 mod m, we only need to
compute modular inverses once.

Computing T and Q modulo m in a straightforward manner is inefficient (e.g. by adding one
term at a time from n = 0, . . . , N − 1) because modulo m reductions have to be performed after
almost every step. To perform the computation efficiently we must take care to perform modulo
m reductions only when necessary. Thus, we will take the following approach.

Algorithm 2 Computation of g ≡ TQ−1 mod m

1: Determine the largest grouping factor G such that the values T , P , and Q for the partial sum
in the range [n1, n1 + G) satisfy T, P,Q < m for any n1.

2: Divide the range [0, N) into bN/Gc groups of size G and possibly one additional group of size
N mod G.

3: For each group, compute the values of T , P , and Q using binary splitting.
4: Combine the values computed above using (3) modulo m.
5: Compute g ≡ TQ−1 mod m.

Steps 3 and 4 can be interleaved by using three variables to accumulate the current values of
T , P , and Q as we process each group, so we do not need to store the computed values for each
group separately.

We also note that an optimization can be made by combining the values from each group
backwards—from the last group to the first group. The value of P is not needed in the final
division, and when the groups are combined from right to left by (3) we do not need the value of
Pr. Therefore, it is not necessary to compute P and we may eliminate one multiplication. However,
if one wishes to extend the results to more terms (in order to compute additional digits), the value
of P is required.

One needs to study the particular choices of the polynomials a(n), p(n), and q(n) in order to
determine the grouping factor G. Let amax, pmax, and qmax be the maximum values attained by
the three polynomials in the interval n ∈ [0, N), respectively. Such values can easily be computed

5



(e.g. using calculus). It is easy to see that the values T , P , and Q computed by binary splitting in
the range [n1, n1 + G) satisfy

T ≤ G · amax · max(pmax, qmax)G

P ≤ pG
max

Q ≤ qG
max.

Therefore, G is the largest integer satisfying

G · max(pmax, qmax)G < m/amax

G < min(logpmax
m, logqmax

m).
(7)

The appropriate value of G can be found quickly by numerical methods. We also note that the
first inequality can be solved using the Lambert W function [6]. In practice, the values of the
polynomials a(n), p(n), and q(n) are often smaller when n is small, so it may be possible to use
larger groups for smaller values of n.

Finally, we note that the values of a(n), p(n), and q(n) can be computed using chains of
recurrences as was done in [4, 14]. Since amax, pmax, qmax have size O(log N), it is likely that
amax, pmax, qmax < m. Thus, the polynomials can be evaluated efficiently as modular reductions
are not required.

4 Time and Space Complexity

In this section, we give both time and space complexity analysis of Algorithm 1. In the first step, we
compute a modulus m of size O(κ) bits using procedure similar to binary splitting. Using a similar
analysis as in [8], one sees that this step has time complexity O((log κ)M(κ)) and space complexity
O(κ). The rational number reconstruction in step 3 also has time complexity O((log κ)M(κ)) and
space complexity O(κ) [13]. The division in the last step can be computed in O(M(κ + N)) time
and requires space O(κ + N).

We now examine the complexity of computing the image g modulo m in Algorithm 2. The
computation of the grouping factor G in the first step is fast and negligible compared to the
remainder of the computation. In step 3, binary splitting is applied to each group to compute
results of size O(κ), so that the time complexity is O((log G)M(κ)) and the space complexity is
O(κ). Note that the size assumption on the polynomials a(n), p(n), q(n) implies that they can be
evaluated in O(log N) time at each point. Thus, the total time complexity due to binary splitting
is O((N/G)(log G)M(κ)+N log N). Finally, combining the results of the groups in step 4 has time
complexity O((N/G)M(κ)). From (7) and properties of the Lambert W function [6], we see that
G = Θ(κ/ log N) and hence N/G = Θ((N log N)/κ). Therefore, the total time complexity is

O(((N log N)/κ)(log κ − log log N)M(κ) + N log N).

Finally, since binary splitting and combination of results from each group can be interleaved, the
amount of space required is O(κ).

We summarize the complexity result below. We note that above analysis is only valid if κ =
O(N) because the number of groups N/G would be less than one otherwise.

6



Theorem 1 Let κ = O(N) be a bound on the bit length of the reduced numerator and denominator
of S(N) in (1). Our algorithm has time complexity O(((N log N)/κ)(log κ − log log N)M(κ) +
N log N + M(κ + N)) and space complexity O(κ). �

If κ = O(N), we have a time complexity of O((log N)2
M(N)), which is the same as that of binary

splitting. If κ = O(log N), then the complexity reduces to O(N(log log N)M(log N)). Again,
we emphasize that κ is a bound on the reduced numerator and denominator of S(N) and can
be significantly smaller than the O(N log N) numerator and denominator computed by binary
splitting.

5 Application to ζ(3)

In this section, we showed how to compute the bound κ on the size of the reduced numerator T̂
and denominator Q̂ in formula (4) for the computation of ζ(3).

We note that since ζ(3) = 1.202 . . ., the size of T and Q (and also T̂ and Q̂) cannot differ by
more than 1 decimal digit. As a result, we will concentrate on computing a bound on Q̂ only.

We first show how we can obtain the size of Q computed by standard binary splitting. From
the formulas Q = q(0) · · · q(N − 1) and q(n) = 32(2n + 1)5, we see that

Q = 25N

N−1
∏

i=0

(2i + 1)5 =
(2N)!5

N !5
. (8)

Therefore, the size of Q can easily be computed by taking the logarithm of the Gamma function,
for example.

Our approach to determine a bound on the size of Q̂ is to determine a lower bound on the
number of times each prime p divides into T and Q as computed by binary splitting. The minimum
of the two quantities gives a lower bound on the size of the common factor, and removing this
from the size of T and Q gives an upper bound on the size of T̂ and Q̂. In our analysis, it will be
convenient to write T as

T =
N−1
∑

n=0

a(n)p(0) · · · p(n)q(n + 1) · · · q(N − 1), (9)

where it is understood that the term contains no q(k) part when n = N − 1. We will also make use
of the well-known fact [9] that the number of times a prime p divides into n! is

blogp nc
∑

i=1

⌊

n

pi

⌋

. (10)

For p = 2, we see from (8) that p divides into Q exactly 5N times. Now, each term in T can be
written as

a(n)n!525(N−n−1)
N−1
∏

i=n+1

(2i + 1)5 (11)

7



Ignoring the factors of 2 in a(n), the number of times 2 divides into each term of T is bounded
below by

5





blog
2

nc
∑

i=1

⌊ n

2i

⌋

+ N − n − 1



 ≥ 5



N − n − 1 +

blog
2

nc
∑

i=1

( n

2i
− 1
)





≥5
(

N − n − 1 +
(

n − n

2blog2
nc

)

− blog2 nc
)

≥ 5(N − 3 − blog2 nc).

The minimum is obtained when n = N − 1, and hence 2 divides into T at least 5(N − 3 −
blog2(N − 1)c) times. Thus, 2 divides into Q̂ at most 15 + 5 blog2(N − 1)c times.

For all other primes p, a similar technique can be used to obtain a lower bound for the number
of times p divides into T and Q. We can see from (8) that p divides into Q

5

blogp 2Nc
∑

i=1

⌊

2N

pi

⌋

−
⌊

N

pi

⌋

(12)

times. From (9), the number of times p divides into each term of T is at least

5







blogp 2Nc
∑

i=1

⌊

n

pi

⌋

+

blogp 2Nc
∑

i=1

(⌊

2N

pi

⌋

+

⌊

N

pi

⌋)

−
blogp 2Nc
∑

i=1

(⌊

2n

pi

⌋

−
⌊

n

pi

⌋)







≥ 5







blogp 2Nc
∑

i=1

(⌊

2N

pi

⌋

−
⌊

N

pi

⌋)

− logp 2n






.

Again, the minimum is obtained when n = N − 1, so that each prime up to 2N divides into T̂ at
most 5 logp(2N − 2) times. Therefore,

Q̂ ≤ 215+5blog
2
(N−1)c ·

∏

p≤2N

p5 logp(2N−2). (13)

From the prime number theorem [9], we know that the number of prime numbers up to n, π(n), is
O(n/ log n). Thus,

log2 Q̂ ≤ 15 + 5 blog2(N − 1)c +
∑

p≤2N

5 log2(2N − 2)

= O

(

15 + 5 log(N − 1) + 5 log(2N − 2) · 2N

log 2N

)

= O(N).

Thus we have the following result.

Theorem 2 The size of the reduced numerator T̂ and denominator Q̂ computed by formula (4) is
O(N). �

8



Digits Terms (N) Bound on Q̂ (digits) Size of Q (digits)

1000 333 1189 4481
5000 1661 6493 28140

10000 3322 12722 61279
50000 16610 67242 364436

100000 33220 130729 778872
500000 166100 679761 4474848

1000000 332200 1327237 9449705
10000000 3322000 13401351 111107033

Table 1: Bounds on the size of Q̂ (in decimal digits) for various digits of ζ(3) in (4). Also shown is
the size of Q as computed by binary splitting.

Table 1 shows the size of the bound on Q̂ as computed by (13). We observed experimentally
that the bounds are less than 10% of the size T̂ and Q̂ (up to 500000 digits). If the values of
π(n) are precomputed up to n = 2N , the computation of the bound can be done in constant
time. A slightly less accurate bound can also be computed in constant time using the bound
π(n) < 1.25506n/ log n [10].

We remark the analysis above can be applied to other hypergeometric series which have a similar
form as (4). For example, it is easy to analyze the prime divisors of the numerator and denominator
of series in which each term can be expressed in factorials, binomial coefficients, or integer powers.
Examples of such series can be found in [8].

6 Relationship to Partially Factored Representation

The partially factored representation of integers were used previously in order to reduce the size of
the intermediate results in binary splitting [4]. Let p1, . . . , pm be the first m primes. An integer X
is represented as

X =

(

m
∏

i=1

pαi

i

)

x, (14)

where αi ≥ 0, and x, called the standard component, is in standard base-b representation. In this
representation, it is easy to multiply and remove common small prime factors. However, addition
and subtraction can be costly because any small prime factor that is not common to both operands
must be multiplied into the standard component. No trial division or factoring is performed after
addition to ensure that gcd(pi, x) = 1, so that only the small common prime factors remain in the
exponent part of the representation (14). The values of a(n), p(n), and q(n) are converted into
partially factored representation such that gcd(pi, x) = 1.

It was shown that the partially factored representation was successful in the computation of
ζ(3) because the numerator and the denominator have many small prime factors in common, so
that many of these factors are preserved in the exponent part [4]. By using a moderate number of
primes (m ≈ 500), it was shown that binary splitting using partially factored representation was
about 2.65 times faster than binary splitting, and the size of the final numerator and denominator
computed have size slightly less than half of those obtained by standard binary splitting. Although

9



one may increase the number of primes used in order to reduce the size of the final results, the cost
of additions and subtractions dominates and the resulting algorithm becomes slower. It was shown
that for computing 1 million digits of ζ(3), approximately 60% of the computation time was spent
multiplying prime factors into the standard component during additions [4].

In Section 5, our analysis of the size of T̂ and Q̂ for ζ(3) was done by examining the number of
times each prime p divides into T and Q as computed by binary splitting. Although our analysis is
similar to the idea of partially factored representation, our analysis in fact produces a better bound
than the actual size of the numerator and denominator computed by binary splitting using partially
factored representation. The reason is that our analysis was performed on the entire series, while
binary splitting with partially factored integers are performed only on a portion of the series at any
recursive invocation. It is possible that some prime factors in one portion is not a common factor
until a large enough portion is considered. For example, consider the case when only two terms i
and i + 1 are combined, so that the computation of T is performed by (3) as

T = q(i + 1)p(i)a(i) + p(i)p(i + 1)a(i + 1). (15)

Small prime factors in q(i + 1) may not occur in p(i + 1), but may occur at p(k) or q(k) for some
other k. These small prime factors will be multiplied into the standard component and never be
removed. Since our analysis in Section 5 consider the whole series, each term of the final value of
T has the form

a(i)p(0) · · · p(i)q(i + 1) · · · q(N − 1). (16)

Thus, there is more opportunity to detect common factors.
Because we are performing the analysis on p(n) and q(n) symbolically only once at the beginning

of computation, we do not incur any penalty on additions and subtractions as we did with the
partially factored representation. Thus, it is feasible to examine all possible prime factors of T
and Q in order to obtain a smaller bound on the size of T̂ and Q̂. Although our analysis can
also be used to compute a large common factor at each step of binary splitting, it was shown that
removing the common factor at each step in standard binary splitting does not provide significant
improvement even if the common factor is given to the algorithm by an oracle at no cost [4, Table 4].
The improvement obtained from the reduced operands was offset by the cost of divisions of large
integers.

7 Concluding Remarks

In this paper, we gave an algorithm that requires the same amount (up to a constant factor) of
space as the bound on the size of the reduced numerator and denominator. When the bound is
O(N), the algorithm has the same time complexity as binary splitting but the space complexity is
reduced. We showed how our techniques can be applied to the computation of ζ(3), including a
derivation of an O(N) bound on the size of the reduced numerator and denominator. Our algorithm
makes it possible to evaluate ζ(3) and other similar hypergeometric series to a high precision with
a reasonable amount of memory.

The use of modular computation offers some opportunity to parallelize the computation. Instead
of multiplying the appropriate primes to obtain the modulus m and computing the image g modulo
m as we have done, we may in fact compute the images under the different primes in parallel and
apply Chinese remaindering to give the image modulo m. The latter can also be parallelized to

10



some extent. Chinese remaindering can also be used for “checkpointing”—if we wish to compute
additional digits based on previously computed results g1 and m1, we may compute the new image
modulo m1 by adding more terms to g1. In addition, an image g2 may be computed under a
modulus m2, such that m = m1m2 is the required new modulus. Chinese remaindering can then
be used to combine the two results to obtain the image g modulo m.

References

[1] T. Amdeberhan. Faster and faster convergent series for ζ(3). Electronic Journal of Combina-
torics, 3, 1996.

[2] T. Amdeberhan and D. Zeilberger. Hypergeometric series acceleration via the WZ method.
Electronic Journal of Combinatorics, 4, 1997.

[3] J. Borwein and P. Borwein. Pi and the AGM. John Wiley and Sons, 1987.

[4] H. Cheng and E. V. Zima. On accelerated methods to evaluate sums of products of rational
numbers. In Proceedings of the 2000 International Symposium on Symbolic and Algebraic
Computation, pages 54–61, 2000.

[5] G. E. Collins and M. J. Encarnación. Efficient rational number reconstruction. Journal of
Symbolic Computation, 20(3):287–297, 1995.

[6] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert
W function. Advances in Computational Mathematics, 5:329–359, 1996.

[7] X. Gourdon and P. Sebah. Numbers, constants and computation.
http://numbers.computation.free.fr/Constants/constants.html.

[8] B. Haible and T. Papanikolaou. Fast multiprecision evaluation of series of rational numbers.
Technical Report TI–97/7, University of Darmstadt, 1997.

[9] K. H. Rosen. Elementary Number Theory and Its Applications. Addison-Wesley, 1992.

[10] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.
Illinois Journal of Mathematics, 6:64–94, 1962.

[11] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Computing, 7:281–292,
1971.

[12] P. S. Wang, M. J. T. Guy, and J. H. Davenport. p-adic reconstruction of rational numbers.
SIGSAM Bulletin, 16(2):2–3, 1982.

[13] X. Wang and V. Y. Pan. Acceleration of euclidean algorithm and rational number reconstruc-
tion. SIAM Journal on Computing, 32(2):548–556, 2003.

[14] E. V. Zima. Simplification and optimization transformations of chains of recurrences. In
Proceedings of the 1995 International Symposium on Algebraic Computation, pages 42–50,
1995.

11


