
1. Chow Rings

Let R be a ring with fraction field k. Let S = Spec(R) be the base scheme. Let X be a scheme
over S. Let Ui = Spec(Ai) be an open affine cover of X. For a point x ∈ Ui let px be the associated
ideal. Define k(x) to be the fraction field of Ai/px.

For this section, assume X is regular noetherian separated finite dimensional.
Let Zp(X) be the free abelian group on points x ∈ X of co-dimension p. Note that Zp(X) is the

same as free abelian group on closed sub-schemes of co-dimension p, via the association between
generic points and their closures.

For f ∈ k(x) define div(f) =
∑

y∈x ordy(f)y. This makes sense either in Z1(x) or Zp+1(X).

Let Bp(X) be the free abelian group generated by div(f) for f ∈ k(x), x of co-dimension p− 1.
Finally, define CHp(X) = Zp(X)/Bp(X).
Notice that CH0(X) is generated by the irreducible components of X. Notice that CH1(X) is

the usual divisor class group or Picard group. Notice that CHdim(X)(X) come from points.
Notice that we really want to only every be considering pieces of constant dimension at any

given time.
Finally, notice we have made little fuss about fields or rings of definition for things. It is implicit

that all of our objects are defined over the base ring, the whole theory should be functorial with
respect to base extension.

1.1. Chow Rings with Support. Let Y ⊂ X be a closed subscheme, we define Zp
Y (X) to be the

subgroup of Zp(X) generated by those elements contained in Y . We let Bp
Y (X) be the subgroup

of Zp
Y (X) generated by principal divisors on Zp−1

Y (X). We then naturally have:

CHp
Y (X) = Zp

Y (X)/Bp
Y (X)

This is functorial in Y , but is not by definition injective as Y is enlarged.

2. Intersection Theory

Given x, y ∈ X it makes sense to ask about x ∩ y ⊂ X. One naturally may think of the
intersection scheme theoretically as being x ×X y. These two notions agree scheme theoretically
pointwise.

However, when considering this intersection, one loses track of where it came from. A slightly
more refined notion of intersection can try to keep track of information about the varieties being
intersected in a neighborhood of the intersection. For example, we might be interested in knowing
about the order of vanishing of functions on the defining varieties at the point of intersection. The
intersection multiplicity doesn’t give us quite this, but it is a step in this direction.

2.1. Desired Properties. One expects that if x, y ∈ X have codimensions p, q respectively then
x ∩ y will have codimension p+ q. Thus we would like to define an intersection pairing:

Zp(X)× Zq(X)→ Zp+q(X)

With the property that (x, y) 7→
∑

z∈x∩y iz(x, y)z, and the numbers iz(x, y) have something to do
with orders of vanishing of x, y at z.

We would like for this pairing to descend to a map:

CHp(X)× CHq(X)→ CHp+q(X)

We would like such a pairing to be natural and functorial.
1
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There are of course several non-obvious steps. Firstly, how to handle x, y which have intersections
in co-dimension less than p+ q. Equally importantly, what iz(x, y) should actually be.

2.2. Definitions and Existence Theorems.

Definition 2.1. Let M be a finitely generated R module, then there exists a filtration:

M = M0 ⊃M1 ⊃ · · · ⊃Ml = 0

such that Mi−1/Mi ' R/Pi where Pi are prime ideal of R.
M has finite length if Pi are all maximal, in which case l = lR(M) is independent of the choices.

(This occurs if and only if the M is supported on maximal ideals).

Definition 2.2. For a/b in the fraction field of R define ordR(a/b) = lR(R/a)− lR(R/b).
Notice, that this generalizes the valuation of an element for a regular local ring.

Definition 2.3. If x, y intersect properly, we define:

iz(x, y) =
∑

(−1)ilOX,z(Tor
OX,z
i (Ox,z,Oy,z))

(Recall that Tor is the homology of the total complex for the double complex coming from the
tensor product of projective resolutions of the modules involved).

Remark. This makes sense because the length generalizes the valuation of defining elements, and
for ‘nice’ rings the Tor functor will vanish for i ≥ 1.

It is actually a hard theorem that these values are typically positive.

Example. Compute Tor·(Z/n,Z/m).

0→ Z [n]→ Z→ Z/nZ→ 0

Is a projective resolution.

0→ Z/m [n]→ Z/m→ 0

Thus:

Tor0 = Z/(m,n)

Tor1 = m
(n,m)

Z/m ∼= Z/(m/(m,n)) Tori = 0

Compute Tor
k[x,y](0,0)
· (k[x, y]/(y − x2), k[x, y]/y).

0→ k[x, y](0, 0)
[y−x2]→ k[x, y](0, 0)→ (k[x, y]/(y − x2))(0, 0)→ 0

Thus look at:

0→ k[x]0
[x2]→→ k[x](0)→ 0

Thus:

Tor0 = k[x]0/x
2

Tor1 = 0

Theorem 2.4. Let X be a regular scheme, Y, Z closed subschemes, then there exists a pairing:

CHp
Y (X)× CHq

Z(X)→ CHp+q
Y ∩Z(X)

That makes the Chow ring into a graded ring with unity, which is functorial with respect to changes
of support and which is natural with respect to cycles with proper intersection.
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2.3. K-Theory. Let K0(X) (resp K ′0(X)) be the group of coherent, locally free (resp coherent)
OX-modules. For Y ⊂ X closed let KY

0 (X) denote the group of finite subgroup of complexes:

F : 0→ Fn → · · · → F1 → F0 → 0

which are a-cyclic outside of Y . Consider these up to equivalence of additivity on short exact
sequences.

Lemma 2.5. For X regular K0(X) = K ′0(X).

We can define a filtration on the K0(X) in terms of the size of the support.
We can then define the Grothendick group as the ‘homology’ of the filtration.
These GrpKY

0 (X) are naturally isomorphic to the chow groups, and these naturally acquire an
intersection pairing.

3. (Logarithmic) Green’s Currents

We now switch to the context of complex geometry, we shall be considering X = X(C) a smooth
projective complex equidimensional variety.

(Note that projective implies Kahler, a condition we shall need)

3.1. Definitions. Let X(C) be a complex projective variety of dimension d. Let Ap,q(X(C)) be
the differential forms of type p, q.

Let ∂, ∂ be differentiation with respect to z and z respectively (even in multi-dimensional sense).
d = ∂ + ∂.

We let Dp,q(X) = Ap,q(X)∗ be the space of continuous linear functionals. Then set Dp,q(X) =
Dd−p,d−q(X). We then have a mapping:

Ap,q(X)→ Dp,q(X)

Let ∂′, ∂
′
, d′ be the naturally induced maps on Dp,q. That is ∂′, ∂

′
, d′ act as (∂′g)(ω) = g(∂(ω))

And by abuse let ∂ = (−1)p+q∂′ (et. al.). So that we get commutativity with respect to the
inclusion above. (the reason for this is that under the natural map Ap,q → Dp,q one finds that
[dω] = (−1)p+qd′[ω].)

For Y ⊂ X of codimension p we have δY ∈ Dp,p(X):

δY (α) =

∫
Y

i∗(α)

given by integration on Y .
Let dc = (4πi)−1(∂ − ∂) so ddc = −(2πi)−1∂∂.

Definition 3.1. A Green current for Y is a current g ∈ Dp−1,p−1 such that ddcg + δY = [ω] for
some ω ∈ Ap,p.

Example. On P1 we can consider OP1(1) the twisted sheaf of Serre, and we may consider the
standard section x.

The claim is that [− log |x|2] is a green current for [0 : 1]− [1 : 0].
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Firstly, being a meromorphic function it gives an element of D0,0. The coordinate on P1 near
[0 : 1] is x. ∫

P1

log |x|2 ddcf(x) =

∫
P1

ddc(log |x|2)f(x)

=

∫
γ

(dc log(xx))f(x)

= i
4π

∫
γ

f(x)( 1
x
dx+ 1

x
dx)

= f([0 : 1])− f([1 : 0])

= δdiv(x)(f)

Definition 3.2. A smooth form α on X −Y is said to be logarithmic on Y if in a nhd of Y , there
exist local functions zi defining Y and:

α =
∑

αi log |zi|2 + γ

Where αi, γ are all smooth forms.

3.2. Properties.

Theorem 3.3. Let L be a holomorphic line bundle with hermitian metric |·| and s a meromorphic
section. Then [− log |s|2] ∈ D0,0 is a green current for div s and:

ddc[−log |s|2] + δdiv s = [c1(L, |·|)]
Theorem 3.4. If X is Kahler, then every Y ⊂ X has a greens current and for any two g1, g2

green currents for Y we have:
g1 − g2 = [η] + ∂S1 + ∂S2

for η ∈ Ap−1,p−1, S1 ∈ Dp−2,p−1, S2 ∈ Dp−1,p−2.

Definition 3.5. Let Y, Z ⊂ X intersect properly and gY be a green current for Y of logarithmic
type, let q : Z̃ → X be a resolution of the singularities of Z.

Define [gY ] ∧ δZ = q∗[q
∗gY ]. This then extends to a product [gY ] ∗ gZ = [gY ] ∧ δZ + [wY ] ∧ δgZ .

Where [wY ] = ddcgY − δY .

3.3. Existence.

Theorem 3.6. If X(C) is Kahler, then every Y ⊂ X has a Green current and for any two such:

g1 − g2 = [η] + ∂S1 + ∂S2

Theorem 3.7. If X(C) is Kahler, then every Y ⊂ X has a Green current of the form [gY ] where
gY is a logarithmic form. Moreover, every Green current is of logarithmic type up to im ∂ + im ∂.

Theorem 3.8. The ∗-product works like an intersection pairing. In particular it takes a green
current for Y and Z to one for Y ∩Z, it is symmetric, associative, commutative (provided we use
forms of log type), the image mod ∂, ∂ only depends on source mod ∂, ∂.)

Remark. The key property of forms of logarithmic type is that we via functionality and knowing
how to handle integrals of logs show that the ∗-product gives a greens current.

In particular we know the pullback q∗gY will be of logarithmic type, thus we can use our
understanding of log derivatives there and push the result forward.

The details are quite technical.
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Example. X = Pd, Y given by x0, . . . , xp−1 = 0.

τ = log(
∑d

i=0 |xi|
2), α = ddcτ on X.

σ = log(
∑p

i=0 |xi|
2), β = ddcσ on X − Y .

Λ = (τ − σ)(
∑p−1

i=0 α
i ∧ βp−1−i) on X − Y .

There is a theorem that says:
ddc[Λ] + δY = [αp]

moreover, Λ has logarithmic growth.

4. Arithmetic Chow Rings

The basic idea, is to to combine the information about an arithmetic scheme arising from the
finite places with information arising from considering the scheme at the infinite places.

I mentally think of this as doing things ‘adelically’.
Let the base scheme be S = Spec(OK). We shall require that X be flat, quasi-projective, over

S with regular generic fibre.
(Note that X(C) = tσXσ(C), so by talking about X(C) we are treating all the infinite places

at the same time).

Definition 4.1. We define the following objects: Let F be complex conjugation on X(C).

• Ap,p(X) = {ω ∈ Ap,p(X(C))|ω real, Fω = (−1)pω}
• Zp,p(X) = ker(d : Ap,p(X)→ A2p+1(X(C)))
• Hp,p(X){ω ∈ Hp,p(X(C))|ω real, Fω = (−1)pω}
• Ãp,p(X) = Ap,p(X)/(im ∂ + im ∂)
• Dp,p(X) = {T ∈ Dp,p(X(C))|T real, FT = (−1)pT}

Note that Hp,p(X) = ker ddc/(im ∂ + im ∂) ⊂ Ãp,p(X).

We define arithmetic cycles Ẑp(X) = {(Z, gZ)} where Z ∈ Zp(X) and gZ is a green current for
Z.

The boundaries are: R̂p(X) generated by (div f,−[log |f |2] and (0, im ∂ + im ∂).
Arithmetic Chow groups are then:

ĈH
p
(X) = Ẑp(X)/R̂p(X)

We have the following exact sequences:

CHp−1,p(X)
ρ→ Hp−1,p−1 a→ ĈH

p
(X)

ζ,ω→ CHp(X)⊕ Zp,p(X)
cl→ Hp,p(X)→ 0

CHp−1,p(X)
ρ→ Ãp−1,p−1 a→ ĈH

p
(X)

ζ→ CHp(X)→ 0

Theorem 4.2 (Functoriality). If X, Y are regular, projective, flat over Z and f : Y → X is a

morphism, then there exists a pullback f ∗ : ĈH
p
(X)→ ĈH

p
(Y ).

If X, Y are equidimensional, f is proper, fQ : YQ → XQ. then there is a pushforward map

f∗ : ĈH
p
(Y )→ ĈH

p−δ
. (δ = dim(Y )− dim(X)).

5. Arakelov Intersection Theory

5.1. Desired Properties. We would like to have a bilinear pairing

ĈH
p
(X)⊗ ĈH

q
(X)→ ˆCHp+q(X)

which is compatible with the that on the regular Chow groups.
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5.2. Existence Theorem.

Theorem 5.1. The intersection pairing exists.

ĈH
p
(X)⊗ ĈH

q
(X)→ ˆCHp+q(X)Q

(except there is a Q).
If X is smooth over a Dedekind domain, or q = 1 then we don’t need the Q.

6. Faltings Heights

Definition 6.1. Let X be a scheme over OK . We define a bilinear pairing ĈH
·
(X) × Z·(X) →

ĈH
·
(Spec(OK)).

Let y = (Y, gY ) ∈ ĈH
p
(X) and U ∈ Zq(X), let Ũ be a resolution of the singularities of U , and

p̃i : Ũ → Spec(OK) be the structure morphism.

(y|U) = π̃∗(y ∩ [Ũ ])

One can also define it by cases (p = q, p = q + 1 (trivial in other cases)). For p = q get

π∗(π∗(Y.U)π∗(gδY )). For p = q + 1 get π∗(Y.U) ∈ CH0(Spec(OK)) = ˆCH0(Spec(OK)) = Z.

Definition 6.2. We wish to define the degree maps on ĈH
·
(Spec(OK)). The algebraic degree

map is degK ĈH
·
(Spec(OK))→ CH0(Spec(OK)) = Z. The arithmetic degree map is induced by

π : Spec(OK)→ Spec(Z) and is given by:

ˆdeg : ĈH
·
(Spec(OK))→ ˆCH1(Spec(OK))→ ˆCH1(Spec(Z)) = R

Theorem 6.3. Let z = (Z, g) ∈ Ẑq(X) and Y ∈ Zq be such that ZK ∩ YK = ∅. Write [Z] · [Y ] =∑
αmαWα with Mα ∈ Z ∩ Y .

ˆdeg(z|Y ) =
∑
α

mα log(|k(Wa)|) +
1

2

∫
X(C)

gδY

7. Example, Metrized Line Bundles

Definition 7.1. Let L = (L, h) be a hermitian line bundle on X, we associate to it a canon-

ical element ĉ1(L) ∈ ĈH
1
(X) by considering any non-vanishing rational section s of L, and

(div(s),− log |s|2) where |·| = h(·).

Definition 7.2. The height associated to a hermitian line bundle L = (L, h) on X is a map
Zp(X)→ R given by:

hLZ 7→ ˆdeg(ĉ1(L)p|Z)

The is the arithmetic analog of:

degLK (Z) = π∗(c1(LK)p−1[ZK ]) = degK(ĉ1(L
p−1|Z)

TODO-this agrees with previous notions
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8. Example, Borcherds Lift

Theorem 8.1 (Borcherds). Let L be an even lattice of signature (2, l) where l ≥ 3 and z ∈ L is
a primitive isotropic vector. Let z′ ∈ L′, K = L ∩ z⊥ ∩ z′⊥. As well, assume K has an isotropic
vector. Furthermore let f be a nearly holomorphic modular form of weight k = 1− l

2
with integral

Fourier coefficients c(γ, n) when n < 0. Define Ψ : Hl → C by

Ψ(Z) =
∏

β∈L′/L

∏
m∈Z+Q(β)

m<0

Ψβ,m(Z)
c(β,m)

2 .

Then we have the following properties.

(1) The function Ψ is a modular form of weight c(0,0)
2

for the orthogonal group Γ(L) with a
multiplier system χ of finite order. In particular, if c(0, 0) ∈ 2Z then χ is a character.

(2) The divisor of Ψ(Z) on Hl is

(Ψ) =
1

2

∑
β∈L′/L

∑
m∈Z+Q(β)

m<0

c(β,m)H(β,m).

Moreover, Ψ(Z) defines a ‘green’s current’ Φ(Z) via Φ(Z) = −2 log |Ψ(Z)|2 with log-log
growth for Z(f).

ddc[Ψ(Z)] + δdiv(Ψ(Z)) = [ddcΨ(Z)]

(3) Let m0 = min{n ∈ Q | c(γ, n) 6= 0}. Given a Weyl chamber W ⊂ Hl with respect to f let
%f (W ) ∈ K ⊗ R denote the Weyl vector attached to W and f . On the set Z ∈ Hl which
satisfy q(Y ) > |m0| and which belong to the complement of the set of poles of Ψ(Z), the
function Ψ(Z) has the normally convergent Borcherds product expansion

Ψ(Z) = Ce((%f (W ), Z))
∏
λ∈K′

(λ,W )>0

∏
δ∈L′

0/L

p(δ)=λ+K

(1− e((δ, z′) + (λ, Z)))c(δ,q(λ))

where C is a constant of absolute value 1.

9. Application, Brunier, Yang

Theorem 9.1. For f a harmonic weak mass form with vanishing constant coefficient we have, U
a negative definite rational subspace (in the space where O shall come from).

Φ(Z(U), f) = deg(Z(U)) · (CT (〈f+, θp ⊗ ε+
N〉) + L′(ξ(f), U, 0))

The ·+ denotes the holomorphic part, CT (·) is the constant term. ξ is a certain anti-linear differ-
ential operator whose kernel is the weakly holomorphic forms.
Z(U) is the CM-cycle associated to U . θP is the theta series associated to the orthogonal com-

plement of U in L. εN = d
ds
EN(τ, s; 1)|s=0, (EN is an eisenstein series associated to N = U ∩ L).

The tensor product is a rankin-type convolution. L(ξ(f), U, s) is a rankin type convolution of the
θP , and ξ(f).

Φ(Z(U), f) literally means the evaluation of Φ(·, f) at the cycle Z(U), that is the archimedian
contribution to the faltings height of Z(U) at the class we would associate to f via the Borcherds
lift.

The 〈, 〉 is the inner product on the space the vector valued forms land.
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Conjecture 9.2. The Faltings height pairing is:

〈Ẑ(f),Z(U)〉Fal =
deg(Z(U))

2
L′(ξ(f), U, 0)

Conjecture 9.3. 〈Z(m,µ),Z(U)〉fin is −deg(Z(U))
2

times the (m,µ) coefficient of θP ⊗ ε+
N .


