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1. What is a building and why do we care?

A building is an a basically a set satisfying a bunch of seemingly random combinatorial relations
such that one might well believe that examples simply don’t exist or that they would otherwise
serve no particular purpose.

It turns out that since their intruduction they have become a topic of keen interest to Geometric
group theorists as well as having a number of surprising applications in number theory. As an
example they are able to play a role analogous to that of symmetric spaces in the theory of p-adic
modular forms. That is one can define modular forms on them, construct Hecke operators, and
in many cases recover the same Hecke modules as with classical forms, one can do many of the
same modular form things with these spaces. These sorts of things have in fact been worked on
by former (and possibly current) students here.

2. Abstract Buildings

Now seriously, what is a Building?
An n-dimensional building is:

• An n-dimensional simplicial complex.
A set of things with elaborate adjacency conditions satisfying many hypothesis.
That is there are facets (simplicies) that are all attached together.

• The object can be subdivided into apartments.
This subdivision satisfies even more hypotheses.

Every 2 simplicies in X lie in a common appartment.
If x, y ⊂ A ∩ A′ there is an isomorphism of X taking A to A′ fixing x, y pointwise.

(This axiom is equivalent to:)
special case x a chamber.
If C ⊂ A ∩ A′ there is an isomorphism A→ A′ fixing A ∩ A′ pointwise.

Every appartment is a coxeter complex (This axiom can be weakened if we assume
thickness)

Optional, every k-simplex with k < n is in at least 3 n-simplicies. (this is thickness, it
is an extra assumption)

Basically a building is a whole lot of combinatorial data with even more extra terminology. We
summarize some of it as follows:

• We call the n-simplicies ‘chambers’ (rooms).
• We have the notion of types of adjacency for chambers, this is controlled by the type of

simplex in which they intersect. But also by the extent to which the automorphism group
acts transitively on adjacency.
• We have a notion of gallery, this is a sequence of adjacent chambers (with specified adja-

cency types within the sequence).
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We can create notion of homotopy of galleries and reduced words and use this to define
a distance.
• The rank of the building is n+ 1.

It is important to realize that buildings are typically very infinite, but that these seemingly
random hypothesis give very huge restrictions on the types of constructions that actually arise.
That is to say, buildings can be classified into several families, the structure of families is similar
to algebraic groups (though there are many more families for buildings). There are also a lot of
things one can prove about all buildings as a consequence of just these random axioms.

3. Actions of Groups on Buildings

People actually study abstract buildings because of their combinatorics. We are not interested
in this per se, we are interested in using them as an object on which groups act to understand
properties of the group.

The definition of a building implies it will typically have many automorphisms. (This is provably
very true).

Theorem 3.1. Fixing a chamber C, the group W of automorphisms of X mapping C to C is a
coxeter group. It is independent of C.

Definition 3.2. Coxeter group is a ‘reflection group’, that is have relations (rirj)
mij = 1 and

r2i = 1.

Note that there is a classification of Coxeter groups by Dynkin diagrams which is largely similar
to that for Simple groups. The usual Dynkin classification is classifying Root systems and not
their associated groups. Root systems have a few extra axioms so are slightly more restrictive
than what occurs with Coxeter groups. Hence the families here are slightly different.

Theorem 3.3. The apartments of A are all isomorphic to the coxeter complexes of W , hence are
determined by W , and hence by C and even more hence by X.

This gives a very strong restriction on the sorts of things that can exist as buildings, and almost
implies that the building structure on a building is uniquely determined by simplicial structure.

Remark. I am not going to define what the Coxeter complex of a Coxeter group is. The key thing
is that it is a simplicial complex on which the group acts.

The best examples are decompositions of spheres with many reflexive symmetries and tessilations
of affine spaces. Given a ‘reflection group’ acting on space you can decompose the sphere into
fundamental domains by cutting it with hyperplanes that are fixed by the reflections. This realizes
the coxeter complex on the sphere.

4. BN-pairs

We wish to study groups by studying their action on buildings. In this context there is an
alternate language that is used which focuses on the combinatorics of the groups, that is the
terminology of (B,N)-pairs. (It arises as an alternate way to capture the same combinatorial data
that buildings capture in the context that we are interested in, there is some history in the timing
of the development of both theories)

Let G be any group acting simplicially on X, we say that action is strongly transitive if:

• The stabilizer of an apartment in G acts transitively on its chambers.
• G acts transitively on ordered pairs of chambers (x,wx) where w ∈ W .

In this case we make the following definitions
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Definition 4.1. Define a Borel to be B the stabilizer in G of a chamber C. Define a Cartan to
be N the stabilizer in G of an apartment A containing C. We define the Parabolics to be the
stabilizers of facets of X.

And we find:

Theorem 4.2. If X is a thick building and G acts strongly transitively on X then B,N are a
(B,N)-pair or tits system ie:

• G is generated by B,N .
• B ∩N is normal in N and W = N/B ∩N .

Let si be generators of W .
• BsBwB ⊂ BwB ∪BswB.
• sBs 6= B, for s 6= 1

Proposition 4.3. The axioms of a tits system imply:

• The generators of W can be taken to have order 2 and W is a coxeter group.
• B ∪BW ′B = ∪wBwB is a group for every special subgroup W ′ of W .
• G = BWB = ∪wBwB.
• BwB = BswB if `(sw) ≥ `(w) (length of minimal presentation of word)
• BwB = BwB ∪ BswB if `(sw) ≤ `(w) (length of minimal presentation of word in terms

of a system of generators)

Remark. All the language, Borel, Cartan, Parabolic is highly abusive. Alternatives exist in
different contexts (Iwahori, ..., Parahoric)

Theorem 4.4. A tits system determines a building.

Set the chambers to be the cosets gB (or gBg−1. Get the w-adjacency from gB ⊂ BwB. The
faces correspond to parabolics gBW ′B.

Remark. A group G/ may have many tits systems, which may determine many different buildings
or the same building in different ways.

The group G is not uniquely determined by the building in general, there may exist many groups
with strongly transitive actions on a given building. (Eg. the affine buildings for SL2(K) where K
has residue field Fq are all the exact same tree).

Most bad counterexamples happen with low rank. For sufficiently large rank (3), think buildings
arise from BN-pairs.

5. Spherical vs Affine

A building is said to be spherical if W is a finite Coxeter group. (so that we may realize the
Coxeter complex as a topological sphere, by viewing the group as a linear reflection group).

A building is said to be affine if W if the coxeter complex comes from the tiling of an affine
plane. In this case it has the property that there is an normal abelian subgroup such that the
quotient is a finite Coxeter group.

Remark. There is a lot that can be said about this phenominon, in fact there is a relation among
the Dynkin diagrams, which in turn identifies special (or hyperspecial) elements of the weyl group
which in turn gives us special (and hyperspecial) subgroup. Moreover, one can construct a spherical
building at infinity.

Remark. This is not a complete classification, ie there exist hyperbolic reflection groups and more
generally other reflection groups

All the buildings we shall see will be associated to affine or spherical Coxeter groups.
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We may be able to associate both Spherical and Affine buildings to the same ‘group scheme’ G.
In fact there may be many of each.

6. Examples

We want to associate buildings to algebraic groups G/K where K is some field. We may of
course base change K to any other field to construct the building there, different constructions
make sense in different contexts and may be ‘related’.

6.1. Over algebraically closed. This is what we call the Spherical building!
Suppose K is algebraically closed, we define the spherical building associated to G/K to be:
The Chamber system of parabolic subgroups defined over K
The verticies are associated to the maximal parabolics.
That is, for each conjugacy class of maximal parabolic Pi we have verticies:

(G/P )(K)

Two verticies are on a common face if gP ∩ P is parabolic, that is we have faces of different
dimension associated to the points of:

(G/P )(K)

For a system of parabolics B ⊂ P .
An apartment is the set of all parabolics containing a given maximal torus.
It should be apparent that this whole setup comes with a G action. Moreover, if G was actually

defined over k, you can bootstrap in a Gal(K/k) action!!!. (This is not totally trivial)
So in this context we have: B is actually Borel, N is the normalizer of a maximal torus contained

in B (A Cartan subgroup). P are parabolics, W is the usual Weyl group.

Example. For SLn.
Faces are flags V1 ⊂ · · · ⊂ V`.
Adjacency corresponds to refinement of flags.
The chambers thus correspond to complete flags. (Note the inclusion reversing tendency here).
An apartment is the set of all flags which can be constructed from a basis: {e1, . . . , en}. That

is any flag whose subspaces have bases consisting of those elements.

6.2. Over Non-algebraically closed. This is (also) what we call the Spherical building!
The chambers correspond to maximal parabolics (defined over your field!!).
The faces correspond to parabolics contained in the maximal one.
Two chambers thus intersect if their associated parabolics intersect in a parabolic.
The stabilizer of a face is the corresponding parabolic.
An apartment correspond to maximally split tori, they contain all faces where the parabolics

contain the given torus.
Fix S a maximal split torus.
The group B is a minimal parabolic containing S .
The group N is the normalizer of S.
(One should notice that this naturally maps into the one above, and indeed it is the Galois

invariants in the object over the algebraic closure.) Note that the apartment systems are also
compatible with this.

Recall from the theory of algebraic groups that inverse image of a parabolic is parabolic, we
thus have a certain functionality of this construction with respects to maps of algebraic groups,
one simply must make ‘compatible choices’ along the way.
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Example. Consider the special unitary group associated to the antidiagonal form:
It has a maximal torus consisting of the diagonal (with trivial middle if n is odd) where top and

bottom parts are inverses. The maximal split torus is the diagonal whose entries are in the base
field.

In this form, the group B can be the set of upper triangular matricies (which are in the group).
In this case, SU is what is called quasi-split as it contains a maximal torus defined over Q, even

though it fails to contain a maximal split torus definied over Q.
Noticing that the elements which interchange diagonal elements are in SU we conclude that the

Weyl group for this setting is the semidirect product of the symmetric group on bn/2c elements
together with bn/2c many copies of µ2.

The rational parabolics being stabilizers of rational isotrpic flags.
For the special case n = 3, notice there is only B!

6.3. Over Fields with Valuations. This is what we call the Affine building!
We start first with an example (because everyone prefers to do this than describe the actual

construction)

Example (The case of SLn(K)). The verticies correspond to lattices up to homothety.
The dimension ` faces correspond to (up to homothety):

pL` ⊂ L1 ⊂ L2 ⊂ · · · ⊂ L`

Adjacency corresponds to ‘refinement’.
Chambers thus correspond to maximal ‘flags’

pLn ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln

Apartments are the set of all ‘flags’ constructable with a given basis. (multiplies of πkei).
In this context the stabilizer of a vertex is:

SLn(OK)

The stabilizer of a chamber is ‘Borel mod π’.
The stabilizer of an apartment is the normalizer of a maximal torus.
We thus have that W is a the normalizer of the torus modulo the units of the torus. Thus, it is

an extension of the usual Weyl group by the ‘value group of the torus’ to the rank of the torus.

In general we have the following:
(This might be a bit unsatisfying)
The apartments correspond to maximal K-split tori S.
The group N is the normalizer of the torus.
The group B is a the inverse image of a Borel under reduction modulo π (These are called Iwahori

subgroups) for some integral model... (which ones are not made particularly clear in general). If G
is simply connected and split it is those where G is ‘integrally split’ (residually split). Alternatively
they are the Normalizers of maximal pro-p subgroups...

Fix a maximal compact subgroup and an integral model for which it is the integral points, then
B is the inverse image of a borel under the reduction...

Generically... one constructs the building first and defines them to be the stabilizers...
The groups P are then ‘parabolics’ modulo π. (These are called parahoric subgroups)
The affine Weyl group is an extension of the ordinary Weyl group by the group Z/Zc where Z

is the centralizer of S and Zc is the ‘group of units’.
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The affine space for the apartment is an affine space under X∗(S) ⊗ R. The usual Weyl group
acting as it usually does... the extension acting by translation (valuation in the direction of some
character gets replaced by the action of that character)

Verticies correspond to P , the maximal compact subgroups of G(K). (NOTE here the very
strong analogy to symmetric spaces!!!)
B maximal compact subgroup of a minimal parabolic containing S.
N is the inverse image of a minimal parabolic containing S in the reduction.

Example. Quasi-split special unitary in dimension 2n+ 1 in residue characteristic not 2.
Let L/K be quadratic with τ the involution.
Pick λ ∈ O×L with Tr(λ) = −1 and Tr(λπ) = 0.
Let ei ,−n ≤ i ≤ n be the basis for L2n+1. The Hermitian form is the anti-diagonal one.

For 0 ≤ r ≤ n consider basis: e
(r)
i = π−1ei for i < −r, e(r)i = ei for −r ≤ i ≤ 0 and e

(r)
i = λei for

i > 0.
This flag of lattices defines a chamber for the special unitary group.
The stabilizer of this chamber is an iwahori.
The stabilizers of subflags are the parahorics.

Remark. Functoriality here is not as nice as we extend the field. One can do things (especially
under unramified extensions). This is where terms like quasi-split, residually split come up.

It isn’t totally unreasonable as we map between groups.

Theorem 6.1. Buildings coming from rank 2 algebraic groups have as automorphisms: The au-
tomorphism group of the underlying group. (Its projectivization + field automorphisms + outer
automorphisms).

7. Buildings in Buildings

One can observe that the link of an affine building is the spherical building of the group over its
residue field.

One can interpret the spherical building as the ‘infinite ends’ of the affine building.


