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Goals

The goal of this talk is to very briefly summarize some recent results
of mine. For the benefit of the junior members of the audience I will
spend more time stating important background results than giving
any actual proofs.

But first, as the background may take a while, just to give those who
will already understand the background a taste, a concrete example.
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Example

Let O be any quadratic imaginary order of discriminant −D and

conductor f ∈ Z with
(
−Df 2

71

)
= −1 and such that 2 6 |f .

Let S48(O) ⊂ Z71 (respectively S66(O) ⊂ Z71) denote the set of
j-invariants congruent to 48 (respectively 66) modulo 71 for elliptic
curves defined over Z71 which (after base extension) admit CM by O.

We have the following:

If 2 6 |D then |S48(O)| = 0.

If 4||D then |S48(O)| = |S66(O)|.
If 8||D then |S66(O)| = 0.

If 7|Df then |S48(O)| = |S66(O)| = 0.

Note: there exist O for which these sets are arbitrarily large.
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Elliptic Curves over C

Perhaps the easiest way to define an elliptic curve over C is to
consider its complex points as a quotient of C by a discrete lattice.
Given τ in the complex upper half plane we can consider:

Eτ (C) = C/(Z⊕ τZ)

It will be a complex analytic variety with a canonical Abelian group
structure.

Theorem

All complex analytic elliptic curves can be constructed as above. The
isomorphism class of Eτ depends only on τ module SL2(Z) acting by
fractional linear transformations.

Unfortunately an analytic description isn’t so useful to us, so we must
obtain an algebraic one.
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An Algebraic Description

To convert this to an algebraic description we shall use the function
j(τ) from the upper half plane to C. The function has a well known
Fourier expansion:

j(τ) = e−2πiτ + 744 + 196884e2πiτ + 21493760e4πiτ + . . .

Theorem

The curve Eτ is isomorphic to the (smooth projective) algebraic curve
defined by:

y2 = x3 − 3j(τ)(j(τ)− 1728)x − 2j(τ)(j(τ)− 1728)2

unless j(τ) = 0, 1728 [a problem which can be dealt with hence we ignore]

Moreover, two elliptic curves Eτ1 and Eτ2 are isomorphic over an
algebraically closed field if and only if j(τ1) = j(τ2).

By the above, we may freely write j(Eτ ) or j(E ) instead of j(τ).
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Endomorphism Algebras

As elliptic curves admit algebraically defined group laws, we may
consider the endomorphism algebra: End(E ) of E .

Theorem

If E is an elliptic curve over C then either:

End(E ) = Z, this is the general case.

End(E ) ' O, for O ⊂ Q(
√
−D) an order in a quadratic

imaginary field, this is the so-called CM-case.

The CM-case will be the one we are actually interested in.
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Complex Multiplication

We can understand which curves admit CM from the analytic
description

Theorem

The elliptic curve Eτ = C/(Z⊕ τZ) has End(E ) ' O if and only if

1 τ ∈ Q(
√
−D), that is τ generates a (complex) quadratic field,

and

2 Z + τZ ⊂ Q(
√
−D) is a (projective) O-module.

Moreover, there is a bijective correspondence between elliptic curves
over C for which End(E ) ' O and C`(O) the ideal class group of O.
(the group of invertible ideals modulo principal ideals).

We shall denote by CM(O) this set of elliptic curves which admit
complex multiplication by O.
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Some Galois Theory

If σ ∈ AutQ(C), that is σ is a Q-algebra automorphism of C, and if:

y2 = x3 − 3j(j − 1728)x − 2j(j − 1728)2

defines an elliptic curve with CM by O, then so does:

y2 = x3 − 3σ(j)(σ(j)− 1728)x − 2σ(j)(σ(j)− 1728)2.

It follows from this that the j(E ) are algebraic numbers and moreover
that:

P(X ) =
∏

E∈CM(O)

(X − j(E ))

is a polynomial with coefficients in Q.
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Some Amazing Facts

The action of Gal(K/K ) on CM(O) commutes with the action
of C`(O) and hence we have a map:

Gal(K/K )→ C`(O).

Gal(K/K ) acts transitively on CM(O).
Consequently:

P(X ) is irreducible over K .
M = Q[X ]/(P(X )) and L = K [X ]/(P(X )) are fields.
L is Galois over K and the map Gal(L/K )→ C`(O) is an
isomorphism.
In particular the Galois group of L/K is Abelian.

When O is stable under Gal(K/Q), then:

Gal(L/Q) = Gal(L/K ) o Gal(K/Q).

The polynomial P(X ) is actually in Z[X ].
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Elliptic Curves in Characteristic p

One clever way to study polynomials and their Galois groups is to
reduce modulo p. We can then exploit the fact that Galois theory for
finite fields is quite simple to study subgroups of the original Galois
group. To do this in our context we will need to know a little bit
about Elliptic curves in characteristic p.

We can’t (easily) define an elliptic curve in characteristic p as the
quotients of a ring like we did for elliptic curves over C.

However, we can still fairly easily define the variety by writing down
equations such as:

y2 = x3 − 3j(j − 1728)x − 2j(j − 1728)2

and vary j over elements of Fp [again ignoring difficulty when
j = 0, 1728].
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Endomorphisms in Characteristic p

Such curves end up having canonical Abelian group structures, and
we can still study their endomorphism rings.

Theorem

If E is an elliptic curve over Fp then End(E ) is one of:

Z.

An order O ⊂ Q(
√
−D) where −D is a square modulo p.

An order in a quaternion algebra (ramified only at p and R). We
call this new case supersingular.

Notice that the CM-case is now slightly more restrictive, and there is
an additional supersingular case. In characteristic p it will be this
supersingular case we are interested in.
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Reducing modulo primes

As P(X ) ∈ Z[X ] its roots, j(τ), are algebraic integers, it makes sense
to consider there reduction modulo p, (more accurately modulo p|p for p a

prime ideal of the ring of integers of L).

Reduction can also be carried out on the equation defining the curve:

y2 = x3 − 3j(τ)(j(τ)− 1728)x − 2j(τ)(j(τ)− 1728)2 (mod p)

resulting in the equation for an elliptic curve E over Fp.
We can also reduce the equations defining the endomorphisms, and
thus reductions yields a map from the set of elliptic curves over C
with endomorphism ring O to the set of elliptic curves over Fp where
O is a subring of the endomorphism ring.
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What Can Happen When we Reduce?

There are three main cases:

p|f 2D (where f is the conductor of O),

−Df 2 is a square modulo p, or

−Df 2 is not a square modulo p.

We will be most interested in the last case, that is when −Df 2 is not
a square modulo p. In this case we find:

The endomorphism ring of E is larger than Z, but can’t be O,
hence E must be ‘supersingular’ at p.

Algebraic number theory (plus class field theory) lets us show
that P(X ) factors as a product of linear/quadratic terms over Zp

(and consequently Fp).

Key point:
In the case we care about, the reductions of the j-invariants will all be
supersingular values in Fp2 .
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What is known about the image?

Many things are known about these supersingular reductions. For
example:

If we fix p, and consider values of −D and f with
(
−Df 2

p

)
= −1

then:

For D sufficiently large the set j(CM(O)) surjects onto the set of
supersingular values (Jetchev-Kane).

The values j(τ) are equidistributed (Cornut-Vatsal,
Jetchev-Kane).

Note that this equidistribution requires varying both D and the order
O ⊂ Q(

√
−D) but still holds when we impose certain types of

congruence conditions on D and f .
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Some Computations:

We wanted to compute lots of examples for some reason, we were
interested in factoring the polynomial P(X ) over Zp at supersingular
primes and studying the factors (which would be quadratic and
linear).
I computed too many examples to actually look at them all, so I
computed some summary statistics in which I grouped factors by their
reductions modulo p.
Given that the roots of these polynomials are supposedly
equidistributed modulo p we figured the factors we obtained would be
too, and so the summary data should be pretty boring.

The data in the next few slides gives the total frequency of each
factor (grouped modulo p) across all maximal orders in all imaginary
quadratic fields with odd class numbers between 1 and 39 with
discriminants between 1 and 10000000 for which −D is not a square
modulo p.
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This table is for p = 23, there are only 3 supersingular values.

Polynomial Frequency Observations
x 459

x + 4 1 only 1??
x + 20 223

x2 2700
(x + 4)2 9484

(x + 20)2 4486

Galois theory/Chebotarev density explains why there are way more
quadratics than linear terms.

Theorem:
That 1 is a 1, even if I consider all maximal orders in all quadratic
imaginary fields with odd class number where

(−D
23

)
= −1. (the

actual theorems are far more general).

Andrew Fiori (University of Calgary) Supersingular Zp j-Invariants of CM-Elliptic Curves Fall 2015 16 / 25



This is p = 59.

Polynomial Frequency observations
x 151 j=0

x + 11 135
x + 12 140
x + 31 140
x + 42 73 j=1728
x + 44 0 missing??

x2 994 j=0
(x + 11)2 3252
(x + 12)2 3168
(x + 31)2 3228
(x + 42)2 1590 j=1728
(x + 44)2 3264

Note that the equidistribution results actually tell us we should
reweight the 0 and 1728 values based on the size of the
automorphism groups.
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This is p = 71.

Polynomial Frequency observations
x 199 j=0

x + 5 188
x + 23 1 j=8000
x + 30 171
x + 31 0 missing??
x + 47 88 j=1728
x + 54 0 missing??

x2 742 j=0
(x + 5)2 2618

(x + 23)2 2832
(x + 30)2 2650
(x + 31)2 2846
(x + 47)2 1308 j=1728
(x + 54)2 2762

Why is j = 8000 special? This is actually the key to the whole thing,
and the concrete example from the start should ruin the mystery.
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More hints about what is happening

Firstly, I should point out that 8000 is the j-invariant for the ring of
integers of Q(

√
−2), which explains why it has to appear at least

once, though not why it never appears otherwise.

For more fun facts I should give a much bigger ‘hint’ by pointing out
that:

x + 44 = x − 16581375 module 59
x + 31 = x − 54000 modulo 71
x + 54 = x − 287496 modulo 71

A few of you might recognize the numbers 16581375, 54000, and
287496 as j-invariants of certain famous CM elliptic curves.

Theorem (refined):
For all p = 3 (mod 4) the 8000 always gets a one, the others above
always get 0’s, even if I consider all maximal orders in all quadratic

imaginary fields with odd class number where
(
−D
p

)
= −1.
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Theorem: p = 7 (mod 8) then this pattern happens

O with hO < 40 and
(
−Df 2

71

)
= −1 for p = 71. (Note:

(−71
7

)
= −1).

All 2 6 |D2 6 |D2 6 |D2 6 |D 4||D 4||D4||D4||D 8||D 8||D8||D8||D7|Df 7 6 |Df
2 6 |f 2||f 4||f 8|f 2 6 |f 2||f 4||f 8|f 2 6 |f 2||f 4||f 8|f

x 1109 806 - - 23 158 - 17 7 - 73 16 9 - 1109
x + 5 1123 817 - - 25 152 - 16 9 - 74 22 8 - 1123

x + 23 941 - 173 82 19 152 75 17 6 314 73 21 9 - 941
x + 30 1126 811 - - 30 161 - 11 9 - 74 23 7 - 1126
x + 31 967 - 176 94 32 158 77 11 9 303 75 23 9 - 967
x + 47 1027 408 86 48 20 143 39 17 10 155 74 22 5 - 1027
x + 54 934 - 169 86 23 161 66 17 10 301 79 15 7 - 934

x2 2981 1572 432 101 22 298 90 12 8 378 47 19 2 467 2514
(x + 5)2 102585675 1293 310 81 1078 267 55 32 1164 207 72 24 1447 8811

(x + 23)2103756106 1194 278 74 1086 229 60 29 1009 219 63 28 1427 8948
(x + 30)2102145661 1292 304 67 1068 271 60 27 1159 208 69 28 1418 8796
(x + 31)2102836052 1213 251 78 1062 236 61 32 1001 207 73 17 1414 8869
(x + 47)2 4833 2787 598 134 32 499 118 26 17 509 78 28 7 721 4112
(x + 54)2102556042 1187 258 70 1065 235 54 31 1001 218 71 23 1450 8805
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Theorem: p = 3 (mod 8) then this pattern happens

All O with hO < 40 and
(
−Df 2

59

)
= −1 for p = 59.

All 2 6 |D 2 6 |D 2 6 |D 2 6 |D 4||D 4||D 4||D 4||D 8||D 8||D 8||D 8||D
All 2 6 |f 2||f 4||f 8|f 2 6 |f 2||f 4||f 8|f 2 6 |f 2||f 4||f 8|f

x 1245 896 - 92 - 172 85 - - - - - -
x + 11 1241 890 - 98 - 173 80 - - - - - -
x + 12 1236 890 - 97 - 167 82 - - - - - -
x + 31 1224 870 - 91 - 172 91 - - - - - -
x + 42 1146 440 285 40 - 336 45 - - - - - -
x + 44 1060 - 549 - - 511 - - - - - - -

(x + 11)2 12375 6855 1574 325 132 1269 299 85 44 1389 297 92 14
(x + 12)2 12241 6818 1537 319 125 1229 293 84 53 1371 306 93 13
(x + 31)2 12274 6844 1544 324 125 1250 282 83 57 1381 292 83 17
(x + 42)2 5910 3429 632 160 63 511 144 39 26 701 145 52 8
(x + 44)2 12360 7250 1264 381 143 1066 329 80 46 1399 300 87 15

x2 3692 1983 512 77 38 352 72 26 20 474 100 33 5
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p = 1 (mod 4)

All O with hO < 40 and
(
−Df 2

41

)
= −1 for p = 41.

All 2 6 |D 2 6 |D 2 6 |D 2 6 |D 4||D 4||D 4||D 4||D 8||D 8||D 8||D 8||D
2 6 |f 2||f 4||f 8|f 2 6 |f 2||f 4||f 8|f 2 6 |f 2||f 4||f 8|f

x 1488 1055 222 - - - - - - 211 - - -
x + 9 1495 1068 220 - - - - - - 207 - - -

x + 13 1491 1055 229 - - - - - - 207 - - -
x + 38 1499 1065 223 - - - - - - 211 - - -

x2 5583 3036 665 184 59 675 146 37 10 560 146 45 20
(x + 9)2 18184 10102 2215 557 191 2014 454 117 40 1877 434 135 48

(x + 13)2 18218 10107 2199 582 185 2001 444 123 40 1906 443 132 56
(x + 38)2 18173 10080 2205 583 185 2015 432 131 46 1871 437 128 60
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“Theorem”/Hint at Proof

The patterns you see above generalize fully based only on the
congruence of p modulo 8.

An empty column is always explained by genus theory, “The totally
real subfield of the genus field of the ring class field associated to O
contains a quadratic sub-extension in which p is inert.” One can
describe the conditions explicitly (ie. interpolate exactly from tables,

note for odd q|Df the condition
(
−p
q

)
= −1 implies this).

The sets which appear/don’t appear when p = 3 modulo 4 are based
on the fact that some supersingular elliptic curves admit CM

(optimally) only by Z[
√
−p] while others admit CM by Z[1+

√
−p

2 ]
(only j = 1728 does both optimally).

The pairing between the two sets when p = 3 modulo 4 is based on
the existence of unique Fp rational 2-isogenies.

The pairing between j-invariants when p = 1 modulo 4 is based on the
existence of a 2-isogeny between curves admitting CM by Z[

√
−p].
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Future Work

At this point I can explain and prove all the paterns I have seen,
though there are a few questions hinted at by the proof, it doesn’t
immediately seem like there is much left to do...

That said, the original goal of computing this data had nothing to do
with looking at phenomenon over Zp vs Zp2 . You may notice I have
computed thousands of examples over Zp2 , and though the modulo p
behaviour of j-invariants is equidistributed, there may be other more
subtle things in the data to look at...
I just don’t know what they are, if someone has good ideas for what
to do with the data, I am interested to hear them.

Even if it is just something unrelated you want to do with the PO(X )
for all rings of low class number.
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The End.
Thank you.
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