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Abstract

We characterize the possible reductions of j-invariants of elliptic curves which admit complex multiplication by an
order O where the curve itself is defined over Z,. In particular, we show that the distribution of these j-invariants
depends on which primes divide the discriminant and conductor of the order.
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1. Introduction

There are several different ways of framing the results of this paper. Out main object of study will be CM-elliptic
curves over Z, which are supersingular at p. The results we obtain will primarily be directed towards trying to
address the following three questions:

1. When are there elliptic curves defined over Z, with CM by an order O in a quadratic imaginary field K in
which p is inert and where p does not divide the conductor of O7

2. What factors affect the possible reductions of their j-invariants modulo p amongst the set of all supersingular
[F)-rational j-invariants?

3. Given an Fj-rational supersingular j-invariant which admits CM by O, when does there exist an elliptic curve
defined over Z,, with CM by O which reduces to it.

One natural source of interest in these questions is the following observation of Ernst Kani:

Proposition. Every F, elliptic curve with CM by O lifts to Z, (with a lifting of its CM to Z,) if and only if p does
not divide the conductor of the ring Z[j(E1),...,j(En)] generated by the j invariants of all elliptic curves with CM
by O.

Remark 1.1. This ring Z[j(E1),...,j(E,)] is a very natural order in the ring class field of O, its structure is
mysterious.

The results we obtain are somehow in contrast to the same question asked for elliptic curves over Z,> the
unramified quadratic extension of Zj,. In particular, for the same questions asked over Z,:, we have the following
answers:

1. There are always CM-elliptic curves over Zy> with CM by O an order in a quadratic imaginary field K in
which p is inert, and where p does not divide the conductor.

2. From the work of Cornut-Vatsal [CV05, CV07] and Jetchev-Kane [JK11] we have that the reductions of the
J-invariants of elliptic curves with CM by O are equidistributed among the supersingular values in Fj2 (as
we vary the conductors O subject to certain congruence conditions). Moreover, for each p and all but finitely
many O where p is inert, the map from elliptic curves with CM by O to supersingular j-invariants in [Fp2 is
surjective.

3. By the work of Deuring [Deu41] we know that given a supersingular elliptic curve E with CM by O there
always exists a lift to an elliptic curve over Z,> with CM by O which reduces to E.

The results we obtain are motivated by computations, some of the data from which is presented in the Appendix,
which gave results which seemed contrary to the above. In particular if we consider only the elliptic curves which
are defined over Zj, then:
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e They are not always surjective onto supersingular F,, values as we vary O among

— maximal orders subject to certain congruence conditions on the discriminant;
— orders in a certain fixed K subject to certain congruence conditions on the conductor;

— orders subject to certain congruence conditions on the conductor and discriminant of K.

e The set of possible values, and hence the overall distributions, depends on congruence conditions on both the
discriminant of K and the conductor of O.

e For certain congruence conditions on discriminants and conductors there are irreducible factors which always
appear together, in equal numbers. So the appearance of a given factor is not independent on the appearance
of another.

We should emphasize before proceeding that the above does not actually conflict with the aforementioned
equidistribution results. Firstly, because the Z, curves have density 0 among all curves, but moreover, because the
data does suggest the following:

e Varying O subject to congruence conditions on the discriminants and/or conductors; the j-invariants which
appear are very likely to following a simple distribution.

e The equidistribution results should work primarily with conditions of the form ¢ fDf rather than ¢| Df whereas
the difference in behavior is primarily from a comparison of these cases.

Consequently, it is possible or perhaps even likely that based on heuristic arguments and the precise types of
families considered in the work of Cornut-Vatsal and Jetchev-Kane, some form of the equidistribution results
one would have expected still hold for the Z,-terms.

e The work of [CV07] actually describes circumstances in which there can be correlation between frequencies,
however we should note that the correlations we observe are only apparent for Z, values and not the Z,»
values with the same reductions, so even if they have the same underlying explanation, the phenomenon is
still somewhat distinct.

This paper is organized as follows:

e In Section 2 we introduce the relevant background.

e In Section 3 we state and prove our results

e In Section 4 we discuss two natural questions our work leaves open.

e In Appendix A we discuss the computations and data on which are work is based.

2. Background

In this section we will be introducing the results necessary to state and prove our theorems. Much of what we
are saying is very well known, and can be found in many references on the theory of complex multiplication. Some
results which are perhaps less well known can be found in [Sch10], [Deudl], [Ibu82] or [Dor89].

We recall the following important facts:

Theorem 2.1. If E is an elliptic curve over a field of characteristic 0 then either:
e End(E) =1Z, this is the general case.
e End(E) =0, for O C Q(~/—D) an order in a quadratic imaginary field, this is the so-called CM-case.

We will be interested in the CM or complex multiplication case in characteristic 0, where we have the following
classification result:

Theorem 2.2. The elliptic curve E. = C/(Z ® 7Z) has End(E) = O if and only if

1. 7 € Q(v/~D), that is T generates a (complex) quadratic field, and
2. Z+7Z C Q(v/—D) is a (projective) O-module.

Moreover, for any algebraically closed field C of characteristic O there is a bijective correspondence between elliptic
curves over C' with End(E) = O and CL(QO) the ideal class group of O.



Remark 2.3. Note that there is an essentially equivalent bijection between C¢(O) and pairs (E, p: O = End(E))
of F and an isomorphism of O with End(F) with a fixed CM-type. This bijection extends to characteristic p where
we consider instead certain optimal embeddings O — End(E).

In the definition of Pn(X) below, it is conceptually better to be considering the bijection of the theorem.
Theorem 2.4. If E is an elliptic curve over a field of characteristic p then either:

e End(E) = Z, this is the general case.

e End(E) = O, for O C Q(v/—D) an order in a quadratic imaginary field in which p splits.

e End(E) =B, for B a mazimal order in a quaternion algebra over Q ramified only at p and co. This is the
so-called supersingular case.

From the above we see that if ever we can reduce a CM elliptic curve E at a prime inert in O we will obtain a
supersingular elliptic curve. In the characteristic p setting it will be this case we are most interested in.

Notation 2.5. Let m € Z* be square free so that K = Q(y/—m) is the quadratic imaginary field of discriminant
D, denote by Ok its maximal order and O = Ok 3 = Z + fOg an order of conductor | € Z. Denote by:

Po(X) = [[(X = j(C/a)).
a0
Denote by L the splitting field of Po(X) over K.
The following facts are well known, for a reference see for example [Sch10].

e Pp(X) € Z[X] and is irreducible over K.

e L is abelian over K, with Gal(L/K) ~ C¢(O), the action being the natural permutation action of C4(O) on
the roots.

e L is galois over Q, the action of Gal(K/Q) on C¢(O) being g + g~ ! so that Gal(K/Q) is a generalized
dihedral group.

e The action of complex conjugation on the ideals of K, agrees with the action on the set C'M(O) which agrees
with the action of Gal(K/Q).

e L/K is ramified only at primes over f, whereas L/Q is ramified only at primes over Df.

We shall denote by N = Q(j) = Q[X]/(Po(X)) C L.
Based on the above we can conclude the following:

e If p is inert in K and p does not divide § (or equivalently that (%2) = —1) then p splits in L/K.

o If (%ﬁ) = —1 then Pp(X) factors as a product of quadratic and linear terms over Z,.

Remark 2.6. The above agrees with the fact that the reductions of these elliptic curves must be defined over F,
as they are known to be supersingular.

Proposition 2.7. If p is inert in K, and E s an elliptic curve with CM by O, then the reduction of E modulo p
is supersingular. In particular, End(F) = B, where B is a mazimal order in a quaternion algebra ramified only at
p and infinity. Moreover, there is a bijection between elliptic curves with CM by O and pairs:

(O CB)

of O with an optimal embedding into a maximal order B.

Moreover, the natural action of the ideals of O by conjugation on such pairs (O C B) agrees with the action of
the ideals on the collection of elliptic curves with CM by O.

See [Dor89].
From now on we shall be working in the setting where p is split in K and p does not divide §. In particular we
2
are assuming that (%L) =—1.



Proposition 2.8. If Po(X) has a linear factor over Z,, the number of such linear factors is |Gal(L/K)[2]| the
size of the two torsion of the class group.

Proof. By basic algebraic number theory we must count the size of the conjugacy class of Frobenius. This is then
a basic property to dihedral groups. O

Remark 2.9. If |Gal(L/K)[2]| = 1 then Po(X) has a unique linear factor over Z,.

Theorem 2.10 (Deuring). If E corresponds to the data (O C B) then the reduction of E modulo p is defined over
Fy, (rather than simply F,2) if and only if B contains Z[/—p].

See [Deudl].
In [Tbu82] Ibukiyama gives a complete classification of the maximal orders B which contain Z[/—p].

Notation 2.11. Fix p and ¢ = 3 (mod 8) such that B = (—p, —¢q) is the quaternion algebra ramified only at p and
0o. Fix a, B € B such that a? = —p, 2 = —q and a8 = —Ba. Choose r € Z such that r% 4+ p = mq for some m € Z.

Denote: ) )
o 2+ﬁ)+Z ;/3+Z(r+a>6
q

If p=3 (mod 4) choose 7" € Z such that (r')2 + p = 4m/q for some m’ € Z. Denote:

O(p,q,r,m)=Z+Z

1
O'prar'om') =2 +22 5% 175+ 2P,

Theorem 2.12 (Ibukiyama). The sets O(p,q,r,m) (and O'(p,q,v',m’)) are mazimal orders of B, their isomorphism
classes depend only on q and not onr orm. Moreover, all pairs consisting of a maximal order in B with an embedding
of Z[\/—p] are of the form O(p,q,r,m) (or O'(p,q,r',m')) with the embedding taking \/—p — +a.

The orders O(p,q,r,m) and O'(p,q,r’,m") are only ever isomorphic if they correspond to the j-invariant 1728.

See [Ibu82].

Remark 2.13. In O(p, q,r,m) we may write:

0‘:2<a(1;—m>—q<(r+qa)ﬂ>+w.

Remark 2.14. We can count the number of isomorphism classes of O(p,q,r,m) (respectively O'(p,q,r’',m’)) by
looking at the class numbers h,, for Z[\/—p| (and h,, for Z[(1 4+ /—p)/2]), we have the following standard formulas

(for p # 3):

e The number of supersingular j invariants over 2 isn = |(p — 1)/12| +eo+e1728, where e, is 0 or 1 depending
on if x is supersingular at p.

o If p="7 (mod 8) then h, = ﬁp and there are (h, 4+ 1)/2 options for both O(p, ¢,7,m) and O’ (p, g,r',m’).

e If p = 3 (mod 8) then h, = 3h, and there are (h, + 1)/2 options for O'(p,q,r’,m') and (h, + 1)/2 options
for O'(p, q, 7", m').

e If p=1 (mod 4) there are h,/2 options for O(p, ¢, r,m).

Combining the above allows us to compute the number of I, rational supersingular values in terms of h,,.
More generally, if we fix K = Q(v/—D) a quadratic imaginary field of discriminant —D and class number hg.
Fix an order O = Z 4 fOk and write f = [ ¢;"* The class number of O is given by:

-D o
o= I (n- (22))

where e =1 unless D = -3 or D = —4.
If D = —3 and the formula above is divisible by 3 then ¢ = 1. If D = —4 and the formula above is divisible by

1 3
2 then € = 5-




Theorem 2.15 (Halter-Koch). If n is the number of prime divisors of Df and 2 does not divide f then :

2n=1 Df odd
272 9]\ Df
ClO)2)| = 2" 4/|Dj
21 §||Dj
2" 16|Df

More precisely, the mazimal 2-extension of the ring class field of O contains:

Qy/ (- 1)a-1/2g)

where q is an odd prime factor of Df.
If D = —8m then the mazimal 2-extension of the ring class field of O contains:

Q(y/ (-1)(m=1/22).

If D =4 (mod 8) and 4|f then the maximal 2-subextension of the ring class field of O contains:

QV2).
If D is odd, and 8|f then the mazimal 2-subextension of the ring class field of O contains:

Qv2).
If D =4 (mod 8), or 2|f and 2|D, or D is odd and 4|f then the mazimal 2-extension of the ring class field of O

contains:

Q(v-1).

The above fields generate the genus field F', that is the maximal 2-subextension of the ring class field of O.

See [Sch10, Thm 6.1.4].

3. Results

In this section we will present our main theorems. These are primarily structured to address the entries in the
data which we present in Appendix A. We will begin by looking at certain conditions under which there can be
no elliptic curves over Z, at all.

Theorem 3.1. Fiz K = Q(v/—D) of discriminant —D. Fiz an order O = Z+fOk and suppose that (%2) =-1.
There are no elliptic curves over Z, with CM by O if any of the following occur:

e there is an odd prime factor q of Df with <p> =-1
q

e p=1 (mod 4) and 16| Df?.
e p=3 (mod 8) and 8|D.
e p=3 (mod 8) and 64|Df?
Otherwise there are ezactly |CL(O)[2]| j-invariants for elliptic curves over Z, with CM by O.

Remark 3.2. The condition that there is an odd prime factor ¢ of D with (—p) = —1 implies in particular that
q
the quaternion algebra (—p, —D) is ramified at ¢. Though this can be used to justify the condition for those ¢|D,

we will not follow this strategy of proof, rather we give a proof which has a more natural connection to class field

theory.
The condition on odd primes cannot be extended to even primes by use of the Kronecker symbol, the dependence

on the behavior at 2 is more subtle.



We shall use the following two lemmas.

Lemma 3.3. Fiz K = Q(v—D) of discriminant —D. Fiz an order O = Z + Ok and suppose that (%) =-1.

The polynomial Po(X) has a linear factor over Z, if and only if N = Q(§(O)) has no quadratic subextension in
which p s inert.

Proof. If there is a quadratic subextension of N which is inert, then all factors of p in N have inertial degree 2, and
thus there can be no linear factors.

Conversely, suppose every factor of p in N has inertial degree 2. let p be a prime of L over p and let ¢ be a
generator for the decomposition group of p and let 7 be a generator of Gal(L/N). Then

e 0 is indivisible with exact order 2, because this is true of Frob,.
e o and T are not conjugate, since if 7 were a conjugate of Frob, the field N = L™ would have a non-inert prime.

e o and 7 commute since ¢ has order 2.

o7 is in Gal(L/K) as they both act non-trivially on K.

It follows from the above, and the basic structure of dihedral groups, that o7 is indivisible with exact order
2.

Thus we may write:
Gal(L/K) = (o7) x H

and thus
Gal(L/Q) = (o) x (H x (1)).

We see that G = (H x (7)) is a normal subgroup of Gal(L/Q), moreover, the field LY is an inert quadratic
subextension of N. O

Lemma 3.4. The maximal 2-subextension of N is the totally real subfield M of F' the genus field of L.

Proof. Tt suffices to show that IV has a real embedding since any composite of quadratic extensions is either totally
complex or totally real.
To see this we use the fact that:

Jj(a) = j(@).
It is thus sufficient to find a such that @ = a, but indeed we may simply take a = O. O

proof of Theorem 3.1. The idea of the proof is to show that p is inert in a quadratic subextension of the totally real
subfield N of F if and only if one of the conditions of the theorem holds.

To show this we must find a subextension of N defined by adjoining the square root of a positive integer which
is not a square modulo p, in each of the following cases we describe how to find such a non-square. Note that if
q =3 (mod 4) then \/—Dq € N whereas if ¢ = 1 (mod 4) then /g € N.

e Consider the case where p = 1 (mod 4) and 4||D. In this case there exists odd prime factor ¢’ of D with

(ZD) = —1. Moreover, D has a factor ¢ such that both +¢q are not squares mod p.
q

e Suppose there is an odd prime factor g of Df with <—p> =—1.
q
— if g =p =3 (mod 4) we obtain (q) = —1 and thus —Dgq is not a square mod p.
p
—if ¢g=3 (mod 4), p=1 (mod 4) and 2 /D we obtain (q) =1 and thus —Dgq is not a square mod p.
p

— if ¢ =1 (mod 4) we obtain (q) = —1 and thus ¢ and is not a square mod p.
p

e Suppose p =3 (mod 8) and 8|D and D/8 = 3 (mod 4) then D has a factor d congruent to 3 (mod 4) which
is not a square mod p.

e Suppose p =3 (mod 8) and 8D and D/8 =1 (mod 4) then v/2 is not a square mod p.



e Suppose p =3 (mod 8) and 64|Df? then v/2 is not a square mod p.
e Suppose p =1 (mod 4) and 16/Df? then D has a factor ¢ such that both +¢ are not square mod p.

The above covers all of the cases of the theorem.
To prove the converse we remark that if p is inert in N it is inert in a quadratic subextension of one of the
following types:

e Q(\/q) where q|fD or
e Q(,/q1q2) where both ¢q1,¢2 = 3 (mod 4) and q1¢2|f D.
as such fields generate the genus field of N. Completing the proof follows a similar case analysis to the above. [

We now shift to discussing a phenomenon whereby certain I, reductions are disallowed based on the differing
behavior of 2.

Remark 3.5. In the following theorem we will be distinguishing the supersingular j-invariants in I, by identifying
them as roots of Py = (X) or P14, /=p)/2(X).

To understand the significance we recall the theorems above of Ibukiyama which asserted that this naturally
divides the supersingular values into two almost disjoint sets. More precisely, we have that for p = 3 (mod 4) these
polynomials factor as (X — 1728) [],(X — a;)? whereas for p = 1 (mod 4) the factorization is [],(X — a;)?. In each
case the «; are distinct in [F,. Furthermore, in the case p = 3 (mod 4) the «; for Py /—=;(X) are distinct from those

for Pyj(14y=p)/2)(X). The polynomial for v/—2 is precisely Py, =5 (X) = X — 8000.

Theorem 3.6. Fiz K = Q(v/—D) of discriminant —D. Fiz an order O = Z 4Ok of conductor § € Z and suppose
that (%2) =—1. Let j be a Z, root of Po(X).

o Ifp="7 (mod 4)

— If 2 is unramified in K and 2 [f then j is a root of Py /=5 (X).

— If 2 is unramified in K and 2|f but 8 [f then j is a root of Py /=5)/2(X)-

— If 2 is unramified in K and 8|f then j is a root of either Py /=5(X) or Py =5)/21(X)-

— If 2 is tamely ramified in K and 2 [f or 4|f then j is a root of Py /=5(X) or Pyq =5 /2(X)-

— If 2 is tamely ramified in K and 2||f then j is a root of Py14,/=5)/2)(X)-

— If 2 is wildly ramified in K and 2 [f or 4]f then j is a root of Py /=5)/2)(X).

— If 2 is wildly ramified in K and 2| or 4| then j is a root of either Py /=5 /(X) or Py =5 /2)(X)-

e Ifp=3 (mod 8)

— If 2 is unramified in K and 2 [f or 4|f then j is a root of Py /=5 (X).

— If 2 is unramified in K and 2||f then j is a root of Py /=5)/2)(X).

— If 2 is unramified in K and 8|f then there are no linear terms.

— If 2 is tamely ramified in K and 2 [f then j is a root of Py /=5 /(X) or Py =p)/2(X)-
— If 2 is tamely ramified in K and 2||f then j is a root of Py /=5 (X).

— If 2 is tamely ramified in K and 4|f then there are no linear terms.

— If 2 is wildly ramified in K then there are no linear terms.

e Ifp=1 (mod 4)

If 2 is unramified in K and 4 [f then j is a root of Py /=5 (X).

If 2 is unramified in K and 4|f then there are no linear terms.

If 2 is tamely ramified then there are no linear terms.
If 2 is wildly ramified in K and 2 ff then j is a oot of Py /=5 (X).

If 2 is wildly ramified in K and 2|f then there are no linear terms.

To prove this we will make use of the following lemma.



Lemma 3.7. If E is an elliptic curve over Z, with CM by O which corresponds to a datum (O C B) then the

Galois Frobenius Frob,, acting on E(Q,) over Z, induces the endomorphism Frobenius Frob, of E. Moreover we
have:

e Frob,, the Galois action of Frobenius on F, acts on O by v — T.

e Frob,, the endomorphism of E, satisfies Frob,z = EF/rg—gp forz e O.

° Frobf), the Galois action of Frobenius on E, commutes with O.

2 _ —2
e Frob, , the endomorphism of E, satisfies Frob, = —p.

In particular Ffr(;f)/p € Ot is an element of norm p.
See [Sch10].

proof of Theorem 3.6. We must show, using the classification of maximal orders containing /—p by Ibukiyama,
that the only CM-orders in ot are those satisfying the conditions of the theorem.

We note that in selecting the values of ¢, » and m we may assume by replacing r by r 4+ ag that 8|r. With this
assumption we have that p¢g = m (mod 8). When selecting ¢, v and m’ we must have that 7’ is odd, when p = 3
(mod 8) this implies that m is odd.

We observe the following important facts about a in the various cases:

1. For the maximal orders of the form O’(p, q,r’,m’) we have that o contains no elements with odd trace.

2. For the maximal orders of the form O’(p,q,’,m’) we have that all primitive elements of Z[,/—p]* are of the

form:
(r'+a)B

yB+ 2 o

for some choice of y and z coprime.
The square of such an element is:

—y%q — 2*m — yzr'.
Notice that if p =3 (mod 8) this cannot be even.

3. For the maximal orders of the form O(p, g,7,m) we have that all primitive elements of odd trace in Z[/—p|*
are of the form:
(r+a)s
q

yB + z

for some choice of y and z coprime, with z odd.
The square of such an element is:
—y%q — 2%m — 2yzr
modulo 8 this becomes:
—q(y® = 2°p).

Notice that if this is odd, then y is even and —q(y? — 2%p) = pq (mod 8). Also, if it is even then y and z are
both odd and it is divisible by (1 — p)| — q(y® — 2%p).

By considering each of the cases of the theorem, the above allows us to conclude the result. O
Proposition 3.8. Suppose there exists Z[/—D] = O C at, then Po(X) has Z, roots.
Proof. By the above argument we note that @ C a implies the existence of a solution to:
2 2 _ 2 2 r_
yeq+ z°m+2yzr =D or y°q+ z“*m +yzr' = D.
In the first case, multiplying by ¢ we obtain:
gD = y*¢* + 22 (p +1°) + 2yzrq = 2’p + (yq + r2)°.

reducing modulo 8 and modulo all the odd prime factors of D we obtain the result. In the second case, multiplying
by 4q we obtain:
49D = 42> + 2% (p +r®) + 2y2rq = 2%p + (2yq + 72)?

and the result follows similarly. O



Remark 3.9. Note that the above does not actually prove the converse to Lemma 3.7 though it would provide for
an alternate proof for one direction of Theorem 3.1.

We now explain the phenomenon where in specific circumstances certain IF,, reductions always occur with the
same frequency. Based on [CV07] we should expect that this is caused by systematic collections of isogenies (coming
from Hecke relations), and in our case we should expect 2-isogenies to play a role.

Lemma 3.10. If \/qz € a™ then O ~ O(p, g2,r,m) or O(p, q2,7',m’) for some choice of r,m or ', m’.
Proof. By [Ibu82, Prop 2.1 and Rmk 2.2] the conditions:

G1q2 = 2°p+ (yqr +rz)? or dq1go = 2°p + (2yq1 +72)?

imply that ¢; and ¢o satisfy O(p,q1,71,m1) =~ O(p, g2, 72, m2) or respectively O'(p, g1, 7, m}) =~ O'(p, g2, rhH, mb).
The results then follow from the proof of Proposition 3.8. O

Lemma 3.11. Fizp =3 (mod 4). Fiz K = Q(v/—D) of discriminant —D. Fiz an order O = Z+§Ok and suppose

that (%2) = —1. Suppose further that 2 is tamely ramified in K but 2 does not divide f§.

Suppose that O is optimally embedded in O(p,q,m,m) and contained in a. Let a®> = (2) in O. Then
aO(p,q,r,m)a"t ~ O'(p,q,7",m’') is a mazimal order with an optimal embedding of O. Consequently, if E is
an elliptic curve over Z, with CM by O whose reduction has endomorphism ring O(p, q,r,m), then the reduction of
ax E has endomorphism ring O'(p,q,r’',m') with the exact same choice of q.

Conversely, if E is an elliptic curve over Z,, with CM by O whose reduction has endomorphism ring O’ (p, ¢, 7", m'),
then the reduction of ax E has endomorphism ring O(p, G, 7,m) for some G such that O'(p,q,r’',m') ~ O'(p, G, 7 ,m’).

Proof. Let O = Z[y = \/qz2]. It suffices to show that aO(p, q,, m)a~! contains both HTO‘ and f.
We note that a = (2,1 +7) and a=! = (1, 152). It follows immediately that 3 € aO(p, 1,7, m)a"".
Now we may write v = y3 + 2™+

qo‘,é’ with y and r even and z odd. Now, by observing that:
14+« 1+ r+« 1-—-
(2) =(1+7) (é(—zm—i—ry—l— 1)+ (zm +ry) (2ﬁ> — 3(yq + 27) < . ﬂ)) (27>
and that the right hand side is in aO(p, ¢, 7, m)a~! we conclude by Lemma 3.10 that aO(p, ¢,7,m)a=* ~ O’(p, q, 7", m’).

Now suppose we start with O optimal in O’(p,q,r’,m’). Attempting to reverse the above calculation cannot
work in general as we no longer have r and m but r’ and m’. However, we observe that:

((1+v) (1—|2-a> (1;7) B (1172>a> € a0’ (p.qur’ ')

is perpendicular to a and has odd trace. Hence, aO’(p, q,r’,m')a~t ~ O(p, ¢, 7,m). The result now follows. O

Remark 3.12. Note, that we could not simply run the first part of the above argument in the opposite direction
to go from O'(p,q,r’',m’) to O(p, q,r,m), in particular this would be impossible in any case where the class groups
which classify O'(p, q,r’,m’) and O(p, q,r,m) are not in bijection.

Theorem 3.13. Fiz p =7 (mod 4). Fiz K = Q(v/—D) of discriminant —D. Fiz an order O = Z + Ok and
suppose that (%) = —1. Suppose further that 2 is tamely ramified in K but 2 does not divide f.

It we consider the set of supersingular values of ), except 1728, each j-invariant J has a partner J such that,
the frequency of the appearance of X — J and X — J as the reduction of irreducible linear factors of Po(X) modulo
p is the same.

Proof. We first observe that if E is defined over Z, then so too is a x E. This follows by observing that the
collection of endomorphisms in a is Galois stable. Moreover, in the case p =7 (mod 4) the map from O(p,q,r,m)
to O'(p,q,r’,m’) being injective implies it is bijective as the collections have the same size.

By Lemma 3.11 it now follows that O(p,q,r,m) and O'(p,q,r’, m’) must occur with the same frequency.

We note that j-invariant 1728 is the only one that can ever be identified with itself through this process, and in
fact it must, because the class group has odd order. O



Remark 3.14. For p = 3 (mod 4) we obtain other less obvious relationships between the counts for maximal
orders of type O’ and of type O arising from the fact that the map is generically 3 : 1. In particular, in general the
frequency for those of type O’ is the sum of the frequencies of a specific collection of three of orders of type O. We
note that there will be a curve which is 2-isogenous to the one with j-invariant 1728.

We should point out that the F, points of the 2-torsion is well understood, that there is a unique F, rational
2-torsion point is suggestive of the above results, but does not show that the association is between O(p, q,r,m)
and O'(p,q,r’',m’) and certainly not that it ‘respects ¢’.

Theorem 3.15. Fiz p =1 (mod 4). Fiz K = Q(v/—D) of discriminant —D. Fiz an order O = Z + fOk and
suppose that (%) = —1. Suppose further that 2 is wildly ramified in K but 2 does not divide f.

It we consider the set of supersingular values of Fy,, each j-invariant J has a partner J such that, the frequency
of the appearance of X —J and X —J as the reduction of irreducible linear factors of Po(X) modulo p is the same.
This partner J is independent of K and O and depends only on p.

Proof. Set a®> = (2) in O. In this case we have a = (2,7) and a~! = (1, 17%). As in the previous case, we must only
show that aO(p, q,7,m)a"! is independent of O.

Now set b% = (2) in Z[,/—p]. We have that b = (2,1 + «).

We recall that we have v = yf3 + ZHT“ﬁ = %(yq + 2r 4+ za)B with r even and both y and z odd.

We claim that (1 + «) € aO(p, g, r,m). Indeed, as 5 € O(p, q,r,m) we have yq + zr + za = v € aO(p, q,r,m).
Since 2 € a the claim then follows immediately. Conversely, it is clear that ¢y € bO(p,q,r,m). As ¢ is odd, and
2 € b we also have that v € bO(p, ¢, 7, m). We thus have shown that aO(p, ¢,r,m) = bO(p, q,r,m).

It follows that aO(p,q,r7,m)a~! = bO(p,q,7,m)b~! is independent of O. O

Remark 3.16. In this case the uniqueness of the IF,-rational 2-torsion points is sufficient to conclude the result.

4. Further Questions
Our results suggest the following natural questions:

Question 1. In Theorem 3.6 we gave necessary conditions for a datum (O C B) to correspond to an elliptic curve
over Z,. Moreover, Proposition 3.8 gives the impression that this may be sufficient. It is natural to ask, if these
conditions are in fact sufficient.

(a) More precisely, given an elliptic curve over F,,, and an endomorphism (defined over some extension) when can
we lift the curve to Z, such that the endomorphism lifts to some extension?
(b) Is it sufficient that the endomorphism be perpendicular to Frobenious in the endomorphism algebra over E‘?

A thorough answer to this question would shed light on the structure of Z[j(F1),...,j(E,)] as remarked in the
introduction.

Question 2. Theorems 3.13 and 3.15 give situations in which there are automatic relationships between certain
roots of Po(X). As remarked a simalar result holds for the same reason when p = 3 (mod 8).

(a) Tt is natural to ask if there are other situations in such relationships must exist? In particular are there
situations where the role of 2 can be replaced by some other prime?

(b) The method of proof also suggests that we could anticipate relations between the roots of Po(X) between
two different orders in the same field whose conductors differ by a factor of 2. Can the combinatorics of this
be made more precise?
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Appendix A. Data

In this section we will present a representative sample of the data, which forms the basis for how we discovered
the theorems. Similar computations have been done for all p up to 1000. All of these computation were performed
in SAGE. Data not contained can be obtained from the author.

In all the data which follows, the frequencies presented represent the total number of times each factor appears
as the reduction modulo p of an irreducible factor of Po(X) over Z, for one of the orders under consideration. We
will consider several families of orders, but in all cases we are considering all orders in the described class with class
numbers strictly less than 40 (and discriminant of the base field less than 10 milliion, noting that there are no fields
of class number less than 100 with discriminant between 3 and 10 million).

Made precise, the appearance of the 199 in the first table indicates that there are exactly 199 different j-invariants
congruent to 0 mod 71 for elliptic curves over Z7; which admit CM by the maximal order of a quadratic imaginary
field with odd class number less than 40 (and discriminant less than 10 million) in which 71 is inert. The 1 in the
first table indicates that there is a unique j-invariant over Z; congruent to —23 modulo 71 for which the associated
elliptic curve admits CM by the maximal order of a quadratic imaginary field with odd class number less than 40
(and discriminant less than 10 million) in which 71 is inert. We remark that this unique j-invariant is that of the
curve with CM by Z[v/—2].

We should remark that ordering by class number is not ideal, in particular this appears to change the relative
frequency of various congruence conditions. Heuristically this can be explained for example by noticing that if 2
ramifies, this will tend to double the size of the class group, whereas if 2 splits this will tend to make it much larger.
That is the splitting and ramification of small primes tends to impact the size of the class group as it is precisely
these primes which, by Minkowski theory, will be the generators. Moreover, adding factors of 2 to the conductor
will typically double (or triple) the class number. The effect is that in the data which follows you should not try to
compare data between columns without adjusting for the bias caused by the class number cutoffs.

We should note, it is entirely possible that the skew the class number ordering creates in the data is the only
reason we were able to originally identify any of the underlying phenomenon we have discussed. In particular,
considering parity conditions on the class number is likely entirely unnatural.

Appendiz A.1. Data for p=T1

This data is typical for p = 7 (mod 8), the choices of 5 and 7 are arbitrary but demonstrate contrasting behavior.

Maximal Orders With Odd Class Number Inert at p = 71 subject to parity condition on class number.

Odd Class Number | Even Class Number

x 199 531
z+5 188 557
T +23 1 367
z+30 171 587
z+31 0 363
T+ 47 88 447
T + 54 0 364
z? 371 1506

(z +5)2 1309 5216
(z +23)? 1416 5307
(= + 30)? 1325 5171
(z + 31)° 1423 5254
(z +47)? 654 2587
(z + 54)? 1381 5285
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Al [2/D 4D [ 8D | 5D |5 /D] 7D]7)D

T 730 605 125 - 197 533 - 730
z+5 745 627 118 - 200 545 - 745
T+ 23 368 - 118 | 250 97 271 - 368
z+ 30 758 630 128 - 216 542 - 758
z+31 363 - 125 238 93 270 - 363
T +47 535 311 101 123 146 389 - 535
z + 54 364 - 128 | 236 101 263 - 364

z? 1877 | 1325 | 244 | 308 242 | 1635 | 258 | 1619

(x+5)% | 6525 | 4711 | 868 | 946 | 968 | 5557 | 807 | 5718
(z+23)% | 6723 | 5033 | 868 | 822 | 1035 | 5688 | 804 | 5919
(z+30)% | 6496 | 4685 | 865 | 946 | 944 | 5552 | 806 | 5690
(x+31)% | 6677 | 5000 | 854 | 823 | 1025 | 5652 | 798 | 5879
( )2 | 3141 | 2315 | 411 | 415 445 | 2696 | 395 | 2746
(x+54)% | 6666 | 4984 | 857 | 825 | 1009 | 5657 | 816 | 5850

All Orders Inert at p = 71 subject to conditions on discriminants/conductors.

ATl 2D | 2/D | 2D | 2/ D | 2 /D | 4D | 4]ID | 4||[D | 41D | 4[|[D | 81D | 8[ID | 8|ID | 8[ID | 8D | 7IDf | 7 /Df
All 2 ff 2|1f 41 81 161§ 2 Af 2||f 4|17 8|1f 16| f 2 ff 2||§ 4]1f 8|f 16]§

z 1109 806 B B 18 5 158 = 17 4 3 - 73 16 5 a B 1109
z+5 1123 817 - - 20 5 152 - 16 6 3 - 74 22 6 2 - 1123
x + 23 941 - 173 82 14 5 152 75 17 4 2 314 73 21 6 3 941
z + 30 1126 811 - - 22 8 161 - 11 6 3 - 74 23 4 3 1126
z + 31 967 - 176 94 26 6 158 77 11 6 3 303 75 23 6 3 - 967
x 4 47 1027 408 86 48 14 6 143 39 17 6 4 155 74 22 3 2 - 1027
z + 54 934 - 169 86 18 5 161 66 17 6 4 301 79 15 4 3 - 934

@2 2981 1572 432 101 19 3 298 90 12 4 4 378 a7 19 - 2 467 2514

(z +5)2 10258 5675 1293 310 70 11 1078 267 55 16 16 1164 207 72 8 16 1447 8811
(z + 23)2 10375 6106 1194 278 65 9 1086 229 60 15 14 1009 219 63 11 17 1427 8948
(z + 30)2 10214 5661 1292 304 56 11 1068 271 60 15 12 1159 208 69 14 14 1418 8796
(z + 31)2 10283 6052 1213 251 62 16 1062 236 61 20 12 1001 207 73 7 10 1414 8869
(z +47)2 4833 2787 598 134 28 4 499 118 26 11 6 509 78 28 - 7 721 4112
(z + 54)2 10255 6042 1187 258 56 14 1065 235 54 14 17 1001 218 71 11 12 1450 8805

Appendiz A.2. Data for p =159
This data is typical for p =3 (mod 8).

All Orders Inert at p = 59 subject to conditions on discriminants/conductors.

All 2D | 2 /D | 2 /D 2D | 2 /D | 4D | 4||D | 41D | 4[|D | 4][D | 8[|D | 8D | 8]|D | 8D | 8D

All 2 Af 2||§ 4llf 8|1f 16| f 2 ff 2|1f 4]1§ 8|1f 16]§ 2 Af 2|1f 4|17 8|1F 16| f
z 1245 896 B 92 B B 172 85 N = = = = = = Z
z+ 11 1241 890 - 98 - - 173 80 - - - - - - -
z + 12 1236 890 - 97 - - 167 82 - - - - - - -
x + 31 1224 870 - 91 - - 172 91 - - - - - - -
x + 42 1146 440 285 40 - - 336 45 - - - - - - - -
z + 44 1060 - 549 - - - 511 - - - - R - R R R
(z 4+ 11)2 12375 6855 1574 325 103 29 1269 299 85 28 16 1389 297 92 12 2
(z + 12)2 12241 6818 1537 319 98 27 1229 293 84 35 18 1371 306 93 10 3
(z + 31)2 12274 6844 1544 324 90 27 1250 282 83 43 14 1381 292 83 12 5
(z + 42)2 5910 3429 632 160 50 13 511 144 39 18 8 701 145 52 6 2
(z + 44)2 12360 7250 1264 381 114 29 1066 329 80 32 14 1399 300 87 12 3
22 3692 1983 512 77 31 7 352 72 26 14 6 474 100 33 4 1

Appendiz A.3. Data for p =41
This data is typical for p =1 (mod 4).

All Orders Inert at p = 41 subject to conditions on discriminants/conductors.

All 2 D 2/ D | 2 /D | 2 /D | 2 /D | 4[|D | 4]|D | 4[[D | 41D | 4D | 8||D | 8[ID | 8D | 8[D | 8[ID

All 2 ff 2|If 4l f 8l1f 16§ 2 Af 2|[f 41§ 81 f 16]f 2 ff 2|If 4[| f 81§ 16|f
z 1488 1055 222 - B B - B B B B 211 B - B B
z4+9 1495 1068 220 - - - - - - - 207 R - R R
z + 13 1491 1055 229 - - - - - - - - 207 - - - -
= + 38 1499 1065 223 - - - - - - - - 211 - - R R
x 5583 3036 665 184 46 13 675 146 37 8 2 560 146 45 13 7

(z 4+ 9)2 18184 | 10102 2215 557 143 48 2014 454 117 37 3 1877 434 135 33 15
(z + 13)2 18218 | 10107 2199 582 133 52 2001 444 123 37 3 1906 443 132 43 13
(z + 38)2 18173 | 10080 2205 583 138 47 2015 432 131 38 8 1871 437 128 47 13

Appendiz A.4. Key Observations About Data

e In all of the data sets the frequency with which the roots appear appears to be equidistributed subject only
to rescaling those j invariants for which the curves have automorphisms.

e The linear terms do not follow the same distribution as the underlying roots.

e It is not immediately clear if we restrict to maximal orders if the linear terms are equidistributed overall,
however each family based on ramification at 2 appears to be, and if we reweigh (to correct bias caused by
class number bounds) and regroup it is possible that the result is equidistribution.

e Specifying ramification conditions can have an effect on the presence or absence of linear factors.
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e All families where we account for the behavior at 2 in the discriminant and conductor appears to satisfy a
simple distribution.

— Those j-invariants with automorphisms may or may not be rescaled depending on the case.
More specifically j = 0 is never apparently rescaled, whereas j = 1728 may or may not be depending on
discriminant and conductor.

— Some j-invariants may be favored despite no extra automorphisms.
For example, j = —44 for p = 59 when 4||D and 2 does not divide f.

— For p =3 (mod 4) there is a partitioning of j-invariants into two sets (with j = 1728 the common inter-

section) where the distribution selects for one set or the other based on the conditions on discriminants
and conductors.

— For p =17 (mod 8), 4]|D and 2 ff there is an apparent bijection between these two sets (excluding 1728)
where the frequencies will be identical between the two sets.
Note: Within the data this actually happens on the level of individual orders.

— For p=1 (mod 4), 8||D and 2 /f there is an apparent bijection between two sets where the frequencies
will be identical between the two sets.
Note: Within the data this actually happens on the level of individual orders.

e Based on heuristic reasoning on the effect on class number of changing conductors by 2 and the apparent
patterns and equidistribution in families one can reasonably expect equidistribution of the linear terms in the
limit if we consider all conductors in a given field.

That is, we know the relative sizes of the exceptional sets and the effect on class numbers of increasing
conductors by factors of 2.
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