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Goals

The main goal of this talk is to explain some surprising and somewhat
mysterious results that came out of some computations I was doing.
The goal isn’t so much to show you the solution to the mystery as it
is tell you the story behind it.

In any case like many mysteries, it wouldn’t be all that interesting
without some backstory on the characters. So first we will go through
a bit of background.

Some of the general theory of elliptic curves with complex
multiplication and the role they play in Galois theory.

The reduction of CM-elliptic curves modulo a prime p.

Known properties of the distribution of j-invariants modulo p.

Note: This comes out of joint work with Eyal Goren at McGill.
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Elliptic Curves over C

Perhaps the easiest way to define an elliptic curve over C is to
consider its complex points as a quotient of C by a discrete lattice.
Given τ in the complex upper half plane we can consider:

Eτ (C) = C/(Z⊕ τZ)

It will be a complex analytic variety with a canonical abelian group
structure.

Theorem

All complex analytic elliptic curves can be constructed as above. The
isomorphism class of Eτ depends only on τ module SL2(Z) acting by
fractional linear transformations.

Unfortunately an analytic description isn’t so useful to us, so we must
obtain an algebraic one.
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An Algebraic Description

Our version of the algebraic story begins with a complex analytic
function j(τ) from the upper half plane to C
given by the Fourier expansion:

j(τ) = e−2πiτ + 744 + 196884e2πiτ + 21493760e4πiτ + . . .

Theorem

The curve Eτ is isomorphic to the (smooth projective) algebraic curve
defined by:

y2 = x3 − 3j(τ)(j(τ)− 1728)x − 2j(τ)(j(τ)− 1728)2

unless j(τ) = 0, 1728 [a problem which can be dealt with hence we ignore]

Moreover, two elliptic curves Eτ1 and Eτ2 are isomorphic over an
algebraically closed field if and only if j(τ1) = j(τ2).

By the above, we may freely write j(Eτ ) or j(E ) instead of j(τ).
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Endomorphism Algebras

Given an elliptic curve, its points are an abelian group, and as such
we have that:

End(E ) = Hom(E ,E )

has the canonical structure of a Z-algebra.

Theorem

If E is an elliptic curve over C then either:

End(E ) = Z, this is the general case.

End(E ) = O, for O ⊂ Q(
√
−D) an order in a quadratic

imaginary field, this is the so-called CM-case.

We will be interested in the CM or Complex Multiplication case.

In order to avoid technical details in a colloquium talk, it is traditional
to assume O is a maximal order, and claim “things work similarly in
the general case”. I will not break this tradition, though have
generally stated results in such a way to handle the non-maximal case.
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Complex Multiplication

We will need to know when an elliptic curve ends up with these extra
endomorphisms, this is easiest to understand in the analytic
description.

Theorem

The elliptic curve Eτ = C/(Z⊕ τZ) has End(E ) = O if and only if

1 τ ∈ Q(
√
−D), that is τ generates a (complex) quadratic field,

and

2 Z + τZ ⊂ Q(
√
−D) is a (projective) O-module.

Moreover, there is a bijective correspondence between elliptic curves
over C with End(E ) = O and C`(O) the ideal class group of O. (the
group of invertible ideals modulo principal ideals).

As such, we could identify C`(O) with the set of CM-elliptic curves,
however, this is (secretly) misleading, so we instead denote by
CM(O) this set of elliptic curves with complex multiplication by O.
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Galois Theory

If σ ∈ AutQ(C), that is σ is a Q-algebra automorphism of C, and if:

y2 = x3 − 3j(j − 1728)x − 2j(j − 1728)2

defines an elliptic curve with CM by O, then so does:

y2 = x3 − 3σ(j)(σ(j)− 1728)x − 2σ(j)(σ(j)− 1728)2.

As the ideal class group C`(O) is finite, and C`(O) acts transitively
on CM(O), the set CM(O) is also finite. It follows from the above
that the j(E ) are algebraic numbers.
Thus by Galois theory:

P(X ) =
∏

E∈CM(O)

(X − j(E ))

is a polynomial with coefficients in Q.
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Some Amazing Facts

The action of Gal(K/K ) on CM(O) commutes with the action
of C`(O) and hence we have a map:

Gal(K/K )→ C`(O).

Gal(K/K ) acts transitively on CM(O).
Consequently:

P(X ) is irreducible over K .
M = Q[X ]/(P(X )) and L = K [X ]/(P(X )) are fields.
L is Galois over K and the map Gal(L/K )→ C`(O) is an
isomorphism.
In particular the Galois group of L/K is abelian.

When O is maximal (or more generally stable under Gal(K/Q)),
then:

Gal(L/Q) = Gal(L/K ) o Gal(K/Q).

The polynomial P(X ) is actually in Z[X ].
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Some Remarks

The proofs of the previous statements are actually far less trivial than
might at first be suggested by the fact that we appear to be naturally
labeling the roots of P(X ) by elements of a group.

The results of the previous slide are part of the main theorem of
complex multiplication and describes (most of [when we allow
non-maximal orders]) explicit class field theory (abelian Galois
extensions) for quadratic imaginary extensions [the “most of” can be
dealt with, but we won’t do that here].

It can be thought of as largely equivalent to the Kronecker-Weber
Theorem which describes all the abelian extensions of Q as being
generated by e2πiz for z ∈ Q.

In our case the abelian extensions are generated by j(τ) for
τ ∈ Q(

√
−D) \Q, the function j(τ) is very much a transcendental

function. Generalizing this result further is “Kronecker’s
Jugendtraum” and Hilberts 12th problem.
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Elliptic Curves in Characteristic p

One clever way to study Galois groups is to reduce the polynomials
modulo p. We can then exploit the fact that Galois theory for finite
fields is quite simple to study subgroups of the original Galois group.
To do this in our context we will need to know a little bit about
Elliptic curves in characteristic p. (This trick is an important part of
the proofs of those previous results).

We can’t (easily) define an elliptic curve in characteristic p as the
quotients of a ring like we did for elliptic curves over C.

However, we can still fairly easily define the variety by writing down
equations such as:

y2 = x3 − 3j(j − 1728)x − 2j(j − 1728)2

and vary j over elements of Fp [again ignoring difficulty when
j = 0, 1728].
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Endomorphisms in Characteristic p

Such curves end up having canonical abelian group structures, and we
can still study their endomorphism rings.

Theorem

If E is an elliptic curve over Fp then End(E ) is one of:

Z.

An order O ⊂ Q(
√
−D) where −D is a square modulo p.

An order in a quaternion algebra (ramified only at p and R). We
call this new case supersingular.

Notice that the CM-case is now slightly more restrictive, and there is
an additional supersingular case. In characteristic p it will be this
supersingular case we are interested in.
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Reducing modulo primes

As P(X ) ∈ Z[X ] its roots are algebraic integers, and so the roots,
j(τ), can be reduced modulo p, (or more accurately modulo p|p for p a

prime ideal of the ring of integers of L).

Reduction can also be carried out on the equation defining the curve:

y2 = x3 − 3j(τ)(j(τ)− 1728)x − 2j(τ)(j(τ)− 1728)2 (mod p)

resulting in the equation for an elliptic curve E over Fp.

As the reduction can be done to every equation in sight, including
those defining endomorphisms we obtain a map from the set
CM(O)(C) of elliptic curves over C with endomorphism ring O to the
set CM(O)(Fp) of elliptic curves over Fp where O is a subring of the
endomorphism ring.
(this map is Galois equivariant for the map from the decomposition group

D(p|p) ⊂ Gal(L/Q) to Gal(Fpf /Fp)).
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Remark

We really should note that the proof that P(X ) ∈ Z[X ] is carried out
in the opposite direction of what we do here. Rather, the proof first
establishes the fact that we can obtain models for the curves with
integer coefficients, and uses this to show that the j invariants are
integral and hence that P(X ) ∈ Z[X ].

We should also mention, the choice of prime p|p is not canonical,
thus neither is the decomposition group, nor the association between
roots of P(X ) in L and roots of P(X ) over Fp.
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What Happens When we Reduce?

There are three main cases:

p|D (or some other conditions relative to the conductor of O),

−D is a square modulo p, or

−D is not a square modulo p.

We will be most interested in the last case, that is when −D is not a
square modulo p. In this case we find:

The endomorphism ring of E is larger than Z, but can’t be O,
hence E must be ‘supersingular’ at p.

Algebraic number theory lets us conclude that P(X ) factors as a
product of linear/quadratic terms over Zp and Fp.
This agrees with the fact that supersingular curves all have j(E) ∈ Fp2 .

Key point:
We thus have a map from CM(O) to supersingular values in Fp2 .

We are interested in studying the image of this map.
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What is known about the image?

Many things are known about these supersingular reductions. For
example:

If we fix p, and consider values of −D which are not squares
modulo p.

For D sufficiently large the set j(CM(O)) surjects onto the set of
supersingular values (Jetchev-Kane).
The values j(τ) are equidistributed (Cornut-Vatsal,
Jetchev-Kane).

Note that this equidistribution requires varying both D and the
order O ⊂ Q(

√
−D).

Gross-Zagier gave a formula for computing the factorization of
the constant term P(0).
They have an algebraic proof which focuses on the case O a
maximal order with odd class number.

(What we are actually looking to obtain is a more precise understanding of the

roots of P(X ).)
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That is what we know about the characters, what did we
do with them?

We wanted to compute lots of examples, the setting of our
computations:

Because it is easier, and this is the case Gross-Zagier dealt with
we consider only the case O the maximal order.

Further, Gross-Zagier had made the assumption that |C`(O)| was
odd, so we looked at the data separately between the two cases.

Thirdly, as we were interested in the valuations of the roots, we
factor the polynomials over Zp before doing the reduction. This
naturally groups the terms into quadratic and linear factors. We
don’t bother to check if the quadratics factor further after
reduction.

In the end I computed too many examples to look at them all
individually, so we collected some statistics.
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What did we expect to see?

Given that the roots of these polynomials are
supposedly equidistributed modulo p we figured the
factors we obtained would be too.
(what we guessed was slightly more refined than this, but you will see the obvious

corrections on the next few slides)

Strictly speaking our approach to computing them means they don’t
have to be (the factoring over Zp rather than Fp) but we had no
reason to expect it to matter.

Now the mystery...
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This table gives the total frequency of each factor (expressed modulo
23) across all imaginary quadratic fields with odd class numbers
between 1 and 39 with discriminants between 1 and 10000000 for
which −D is not a square modulo 23.

Polynomial Frequency
x 459

x + 4 1 only 1??
x + 20 223

x2 2700
(x + 4)2 9484

(x + 20)2 4486

Comments on the obvious questions:

Recall: The factors were irreducible over Zp before we reduced
modulo p.
Galois theory explains why there are way more quadratics than
linear terms.
What we had expected was equidistribution of possible linear
(respectively possible quadratic) terms. This is clearly not the
case, the next slide explains part of this.
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Maybe more data will shed some light. This is as above, except
p = 59.

Polynomial Frequency
x 151 j=0

x + 11 135
x + 12 140
x + 31 140
x + 42 73 j=1728
x + 44 0 missing??

x2 994 j=0
(x + 11)2 3252
(x + 12)2 3168
(x + 31)2 3228
(x + 42)2 1590 j=1728
(x + 44)2 3264

It is natural to expect the pesky 0 and 1728 values to need to be
reweighted based on the size of the automorphism groups.
(The referenced equidistribution results actually do this).

Oddly, this doesn’t happen for the linear j = 0 term. (a mystery)

And what about the missing linear term? (another mystery)
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Maybe more data will shed some light. This is as above, except
p = 71.

Polynomial Frequency
x 199 j=0

x + 5 188
x + 23 1 j=8000
x + 30 171
x + 31 0 missing??
x + 47 88 j=1728
x + 54 0 missing??

x2 742 j=0
(x + 5)2 2618

(x + 23)2 2832
(x + 30)2 2650
(x + 31)2 2846
(x + 47)2 1308 j=1728
(x + 54)2 2762

Why j = 8000? Because we can look at our data and check
where the 1 came from (this explains the previous 1 also).

But what is the pattern with terms that are missing?
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Maybe more data will shed some light. This table is as above, except
p = 107.

Polynomial Frequency
x 140 j=0

x + 13 135
x + 26 137
x + 35 0 missing??
x + 60 142
x + 91 74 j=1728

x2 452 j = 0
(x + 13)2 1698
(x + 26)2 1718
(x + 35)2 1786
(x + 60)2 1628
(x + 91)2 820 j=1728

x2 + 66x + 58 3580
x2 + 82x + 30 3610

Note that 8000 is not supersingular at p = 107 or p = 59, and
there are no 1’s in either case.
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Questions and Observations?

It is worth noticing that we have almost perfect equidistribution
of roots, despite everything going wrong with the factors.

Mystery 1: What is the pattern on the missing terms? They can’t
all come from a single congruence as there are 2 modulo 71.
Hint: the “pattern” is by no means obvious, but based on what
happens with 8000, you might be able to guess at something.

Mystery 2: Why does x + 8000 factor only ever appear once?

Fact: if there is a 1 in our data it occurs if and only if the factor
is congruent to x + 8000 modulo p (primes up to 1000 odd class
numbers 1-39).

Mystery 3: Why are my examples all from p = 11 (mod 12)?

This I can answer, because these are the ones where both 0 and
1728 appear and so I like them more.
(there are actually missing values in (virtually) all examples p = 3 (mod 4).)
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Answers, or rather Hints

Firstly, I should point out that 8000 is the j-invariant for the ring of
integers of Q(

√
−2), which explains why it has to appear at least

once, though not why it never appears otherwise.

For the next question, I should give a much bigger ‘hint’ by pointing
out that:

x + 44 = x − 16581375 module 59
x + 31 = x − 54000 modulo 71
x + 54 = x − 287496 modulo 71
x + 35 = x − 54000 modulo 107

A few of you might recognize the numbers 16581375, 54000, and
287496 as j-invariants of certain non-maximal orders where 2 divides
the conductor. Note that the above factors will all be missing any
time they could have appeared.

In order to better understand what is happening, we should maybe
look at the even class number case for comparison.
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As before, except even class numbers between 1 and 39 all for p = 71.

Polynomial Frequency
x 531 j=0

x + 5 557
x + 23 367 j=8000
x + 30 587
x + 31 363 j=54000
x + 47 447 j=1728
x + 54 364 j=287496

x2 3012 j=0
(x + 5)2 10432

(x + 23)2 10614
(x + 30)2 10342
(x + 31)2 10508
(x + 47)2 4974 j=1728
(x + 54)2 10570

Nothing is missing, but the terms that were before missing are still
systemically under-represented.

So what is my “explanation”?
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Conjectural “Explanation”

At this point I would like to suggest my prime suspect in the mystery.
I blame that pesky number 2.

In order to explain the ‘missingness’ we need to consider the
ramification of 2 in our order. Why would I think such a thing?

Quadratic imaginary fields with odd class number are never
ramified at 2 unless it is Q(

√
−2) or Q(

√
−1).

Quadratic imaginary fields with even class number are ramified at
2 about a quarter of the time. (if you order by class number like we are)

The three other rings we needed to find missing values all had
conductors 2.

What is great about this conjecture is we can check it by only
checking the orders not ramified at 2.
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This table considers all class numbers between 1 and 39 but only
orders for which 2 does not ramify in Q(

√
−D) (ie D = 3 (mod 4)).

This is all for p = 71.

Polynomial Frequency
x 605 j=0

x + 5 627
x + 23 0 j=8000
x + 30 630
x + 31 0 j=54000
x + 47 311 j=1728
x + 54 0 j=287496

x2 2650 j=0
(x + 5)2 9422

(x + 23)2 10066
(x + 30)2 9370
(x + 31)2 10000
(x + 47)2 4630 j=1728
(x + 54)2 9968

So our vague conjecture, as vaguely stated, is right!
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Other Questions?

This whole buisness really just raises further questions.

What is a precise formulation of the conjecture?
Concretely we are saying that the ramification at 2 influences the
possible j invariants of elliptic curves with CM over Zp (but
somehow not over its unramified extension, which is also
mysterious).

What is the pattern underlying the values which do not appear?
Is there a systematic description of these?

Fact: The rational j-invariants is a red herring, there are
eventually missing values that don’t come from these.

Is there a ‘good’ number theoretic explanation?

It is possible that the explanation will turn out to be ‘obvious’ or
rather ’well-known’ in hindsight.
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My original plan was to fade out now and leave you
with a good mystery, which I will still do if I am now

out of time

But if I still have time... I would like to make things a little more
mysterious

So what is the natural next question to ask?
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This table considers all class numbers between 1 and 39 but only
orders for which 2 does ramify in Q(

√
−D) (ie D 6= 3 (mod 4)). This

is all for p = 71.

Polynomial Frequency
x 125 j=0

x + 5 118
x + 23 368 j=8000
x + 30 128
x + 31 367 j=54000
x + 47 254 j=1728
x + 54 364 j=287496

x2 1104 j=0
(x + 5)2 3628

(x + 23)2 3388
(x + 30)2 3622
(x + 31)2 3354
(x + 47)2 1652 j=1728
(x + 54)2 3364

The ones which do have 2 ramify have an over-representation of
the terms which didn’t appear before.
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As above, except 2 wildly ramifies in Q(
√
−D) (ie D = 2 (mod 4)).

This is all for p = 71.

Polynomial Frequency
x 0 j=0

x + 5 0
x + 23 250 j=8000
x + 30 0
x + 31 238 j=54000
x + 47 123 j=1728
x + 54 236 j=287496

x2 308 j=0
(x + 5)2 946

(x + 23)2 822
(x + 30)2 946
(x + 31)2 823
(x + 47)2 415 j=1728
(x + 54)2 825

So wild is the opposite of unramified...

Except for j = 1728, which appears for both.
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As above, except 2 tamely ramifies in Q(
√
−D) (ie D = 1 (mod 4)).

This is all for p = 71.
Polynomial Frequency

x 125 j=0
x + 5 118

x + 23 118 j=8000
x + 30 128
x + 31 125 j=54000
x + 47 101 j=1728
x + 54 128 j=287496

x2 244 j=0
(x + 5)2 868

(x + 23)2 868
(x + 30)2 865
(x + 31)2 854
(x + 47)2 411 j=1728
(x + 54)2 857

um... in the data... the linear terms do actually come in pairs...
and this happens at other primes... but not all of them...
Quadratics being equal is actually a coincidence.
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As above, except for which 7 ramifies in Q(
√
−D) (ie D is a multiple

of 7). This is all for p = 71.

Polynomial Frequency
x 0 j=0

x + 5 0
x + 23 0 j=8000
x + 30 0
x + 31 0 j=54000
x + 47 0 j=1728
x + 54 0 j=287496

x2 258 j=0
(x + 5)2 807

(x + 23)2 804
(x + 30)2 806
(x + 31)2 798
(x + 47)2 395 j=1728
(x + 54)2 816

So ramification at other primes can just completely prevent any
linear terms from appearing.
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All for which 5 ramifies in Q(
√
−D) (ie D is a multiple of 5). This is

all for p = 71.

Polynomial Frequency
x 197 j=0

x + 5 200
x + 23 97 j=8000
x + 30 216
x + 31 93 j=54000
x + 47 146 j=1728
x + 54 101 j=287496

x2 242 j=0

(x + 5)2 968

(x + 23)2 1035

(x + 30)2 944

(x + 31)2 1025

(x + 47)2 445 j=1728

(x + 54)2 1009

All for which 5 ramifies in Q(
√
−D) (ie D is a multiple of 5). This is

all for p = 73.

Polynomial Frequency
x + 17 0
x + 64 0

(x + 17)2 1030

(x + 64)2 1039

x2 + 57 ∗ x + 8 2085

x2 + 68 ∗ x + 9 2122
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My second plan was to end things here, because I
don’t really want to ruin a good mystery

But there are two more slides if you want to see a hint of how things
unravel.
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Conjecture/Theorem

Fix −D, squarefree, which is not a square modulo p. There are no
elliptic curves over Zp with CM by maximal order of Q(

√
−D) if

either of the following occur:

if p = 3 (mod 8) and D = 0 (mod 2)

there is an odd prime factor q of D with

(
−p

q

)
= −1

Otherwise there is at least one.

This is stated as a conjecture because I don’t have a reference, nor
have I checked the details of the proof (though it isn’t all that hard to
prove, so presumably it is known).

(Note that we can’t just use the Kronecker symbol and drop the odd requirement

in the second condition even though that subsume the first condition. This is

because the p = 5 (mod 8) case is more subtle and depends on D (mod 8), the

second condition ends up handling these cases (unless I screwed up in my quick check and there

are no counterexamples in my data somehow).)
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Conjectures for impossible reductions of j-invariants of elliptic curves
over Zp with CM by maximal order of Q(

√
−D) based on

ramification at 2.

If p = 3 (mod 4) and 2 is unramified, then there will be no
elliptic curves whose j-invariants are the same modulo p as those
coming from Q(

√
−p) (except j = 1728).

If p = 3 (mod 8) this is (n − 2)/4 missed curves.

If p = 7 (mod 8) this is (n − 1)/2 missed curves.

If p = 7 (mod 8) and 2 divides D then all elliptic curves have
j-invariants the same as those coming from Q(

√
−p)

If p = 7 (mod 8) and 2 is tamely ramified then there is a
matching between curves (one from Q(

√
−p) and one not).

If p = 1 (mod 4) and 2 divides D then there is a matching
between curves.

Note: If p = 1 (mod 4) then j-invariants of Q(
√
−p) take on all values.

Parts of the above should follow from, or at a minimum, be suggested
by the work of Deuring, Ibukiyama, and Dorman. Though the details
of why some of the above would be true is still mysterious.
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The Actual End.
Thank you.
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