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What is a Cross Product?

Starting with a vector space over R, so V = Rn, with the standard
dot product:

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+ xnyy .

the key features that characterize the cross product are that it is a
bilinear map:

V × V → V

which satisfies:

1 (Orthogonality)

~x · (~x × ~y) = (~x × ~y) · ~y = 0

2 (Parollellogram)

(~x × ~y) · (~x × ~y) = (~x · ~x)(~y · ~y)− (~x · ~y)2
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What do we want to say about them?

The main result of this talk is that cross products
only exist for Rn if n = 0, 1, 3, 7.

This result is true in more generality than I will show. In particular
it is true if we change what we mean by a cross product a little:
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Why not prove the more general result?

The proof of the more general result requires a hard result in
topology/differential geometry. Namely:

“Non-parallelizability of the N-Sphere”
(sphere in RN+1) except for N = 0, 1, 3, 7.

which can be viewed as a generalization of the Hairy Ball
Theorem, which says you can’t properly comb a hairly ball in R3

(or Rn for n > 1 odd).

The result I am showing uses instead that:

“N + 1-dimensional Hurwitz algebras exist only for
N = 0, 1, 3, 7.”

(Note: there is a more elementary proof than the one I am giving.)
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The Algebra associated to a Cross Product

We shall use the cross product on V to define an R-algebra
structure on

A = R⊕ V = Rn+1.

by:
(x0, ~x)(y0, ~y) = (x0y0 − ~x · ~y , x0~y + y0~x + ~x × ~y).

Recall: An R-algebra is just a R-vector space with an R-bilinear
multiplication:

A× A→ A

which is left and right distributive:

a(b + c) = ab + ac (a + b)c = ac + bc

but not necessarily commutative, or associative, so can’t typically
assume:

ab = ba or a(bc) = (ab)c

and it may not have an identity.
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Where are we going with this?

The algebra A we we just defined will have some
special properties that can’t possibly be satisfied
unless n is one of 0, 1, 3, 7.

An an aside, I will point out that the thing I just defined would
(with a bit of work) allow you to construct a parallelization of the
N-sphere (even if we had dropped to the weaker hypothesis.)
Which Adams tells us typically does not exist.
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Properties of the the Algebra

Recall

(x0, ~x)(y0, ~y) = (x0y0 − ~x · ~y , x0~y + y0~x + ~x × ~y).

Claim: The algebra is unital

That is, there is an identity element namely 1A = (1, 0).
In particular 1A = (1, 0) satisfies:

(1, 0)(x0, ~x) = (x0, ~x) = (x0, ~x)(1, 0).
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Properties of the Algebras

Recall

(x0, ~x)(y0, ~y) = (x0y0 − ~x · ~y , x0~y + y0~x + ~x × ~y).

Claim: The algebra has an inner product (positive definite):

We can extend the dot product on V to A by:

(x0, ~x) · (y0, ~y) = x0y0 + ~x · ~y .
Claim: The algebra has an (anti-)involution:
We may define an (anti-)involution on A:

a∗ = 2(1A · a)1A − a.

These are related by the observation:
With a = (x0, ~x) we have a∗ = (x0,−~x) and:

ab∗ + ba∗ = 2(a · b)1A.

The above are all immediate to check.
This essentially shows that the algebra is a nicely normed ∗-algebra.
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Properties of the Algebras

Recall

(x0, ~x)(y0, ~y) = (x0y0 − ~x · ~y , x0~y + y0~x + ~x × ~y).

Claim: The algebra is a (multiplicatively) normed algebra
In the sense that:
For all a, b ∈ A we have:

(a · a)(b · b) = (ab) · (ab)

or equivalently that:
For all a, b, c , d ∈ A we have:

2(a · b)(c · d) = ((ac) · (bd)) + ((ad) · (bc)).

This is an easy (though tedious) check using both the
orthogonality and parallelogram properties of the cross product.
The equivalence of the two statements uses only the linearity of
the dot product and the distributivity of multiplication.
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What have we shown so far?

We have shown that our algebra A is a finite
dimensional unital multiplicatively normed algebra
(with a positive definite norm).
These are called (Euclidean) Hurwitz algebras, these
are the things that are rare, that is what we will
now prove.
For the next little while, we will be taking A to be a Hurwitz
algebra, and proving some things about it.
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Properties of Hurwitz Algebras

Recall

2(a · b)(c · d) = ((ac) · (bd)) + ((ad) · (bc))

Claim: The involution a 7→ a∗ is actually the ‘adjoint’
That is, multiplication by a is an endomorphism of a vector space
with an inner product, and multiplication by a∗ is the adjoint to
that endomorphism.

Specializing b = 1A and rearranging slightly we obtain:

2(a · 1A)(d · c)− ((ad) · c) = ((ac) · d)

Applying linearity of dot product and distributivity of products in A
we see:

((ac) · d) = (c · (a∗d))

So that a∗ is the “adjoint” under the bilinear pairing.
Similarly one can show:

((ac) · d) = (a · (dc∗))

so it is also the adjoint for multiplication on the right!!
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Properties of Hurwitz Algebras

Recall

ab∗ + ba∗ = 2(a · b)1A.

Claim: We can explicitly describe the failure of
commutativity:

If a, b ∈ A and 1A · a = 1A · b = a · b = 0 then:

ab = −ba = b∗a.

So that the algebra is quite possibly not commutative.
Note that under the conditions 1A · a = 1A · b = 0 we have:

a∗ = −a b∗ = −b.
Combining this with the above we have:

ab = −ab∗ = ba∗ = −ba = b∗a.
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Properties of Hurwitz Algebras

Recall

2(a · b)(c · d) = ((ac) · (bd)) + ((ad) · (bc))

Claim: We can explicitly describe the failure of associativity:

If a, b, c ∈ A and
1A · a = 1A · b = 1A · c = a · b = a · c = b · c = (ab) · c = 0 then:

(ab)c = −a(bc).

So that the algebra is quite possibly not associative.
For all d we have:

(−a(bc)) ·d = a(cb) ·d = (cb) ·(a∗d) = 2(c ·a∗)(b ·d)−(cd) ·(a∗b)

By perpendicularity of a and c we get 2(c · a∗)(b · d) = 0 so the
above equals:

− (cd) · (a∗b) = − d · (c∗(a∗b)) = − ((a∗b)c) · d = ((ab)c · d).

And since this holds for all d and the dot product is a perfect
pairing... done!
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By perpendicularity of a and c we get 2(c · a∗)(b · d) = 0 so the
above equals:

− (cd) · (a∗b) = − d · (c∗(a∗b)) = − ((a∗b)c) · d = ((ab)c · d).

And since this holds for all d and the dot product is a perfect
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Properties of Hurwitz Algebras

Recall

((ac) · d)) = (c · (a∗d))

Claim: Hurwitz Algebras are Alternating

That is, for all a, b ∈ A we have:

(aa)b = a(ab)

For all a, b, c we have:

((aa∗)b ·c) = (((a ·a)b)·c) = (a ·a)(b ·c) = (ab)·(ac) = (a∗(ab))·c

Replacing a∗ = (2(a, 1A)1A − a) we can solve to obtain:

((aa)b) · c = (a(ab)) · c

for all a, b, c . Again exploiting the perfect pairing we obtain the
result.
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Aside from the cross product, how can we construct
algebras like this?

Given an algebra A with an anti-involution, we can construct a new
product structure on:

C(A) = A⊕ A

by the rule:

(a, b) · (c , d) = (ac − d∗b, bc∗ + da)

The involution is:
(a, b)∗ = (a∗,−b)

We call this process the Cayley-Dickson process C(A).
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How to get cross products

R has the trivial involution

C(R) ' C with standard involution.

C(C) ' H (Hamilton Quaternions) with standard involution.

C(H) ' O (Octonions) with standard involution.

Each of these 4 algebras (R,C,H,O) is a Hurwitz algebra.
Consequently we definitely have 0, 1, 3, 7 dimensional cross
products!!!

By projecting onto the orthogonal complement of the unit element
we can get a cross product:

(0, ~x)(0, ~y) = (~x · ~y , ~x × ~y).
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Low Dimension Classification

We claim that if A is any (Euclidean) Hurwitz algebra over R and
has dimension at least:

1 then A has R as a subalgebra.

2 then A has C as a subalgebra.

3 then A has H as a subalgebra, so is dimension at least 4.

5 then A has O as a subalgebra, so is dimension at least 8.

9 then A has C(O) as a subalgebra.
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Low Dimension Classification - Proof Sketch

The claim will follow from the following:
Let A be a Hurwitz algebra, let B be a subalgebra, and let i ∈ A
be an element such that B · i = 0 and i · i = 1. Then the algebra
generate by B and i is isomorphic to:

C(B)

under the natural map:

(B ⊕ B)→ A

given by:
(a, b) 7→ a + bi .
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Low Dimension Classification - Proof Sketch

Proof idea:
By linearity it will suffice to check this is a homomorphism on
products of the form:

(a, 0)(b, 0), (a, 0)(0, b), (0, a)(b, 0), (0, a)(0, b).

We can simply further by assuming that a = (x0, ~x) and
b = (y0, y

′~x + ~y) with ~x · ~y = 0.

If we can express the non-commutativity and non-associativity of
a, b and i we can describe the algebra they generate.

On the A side they fall into the cases I already showed you!!!

On the C(B) side it is easy to see these relations are the same.

The details of the proof are a tedius case analysis on the above
cases.
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Non-Existence in Large Dimensions

The algebra C(O) is called the sedonions.
The algebra C(O) is not a Hurwitz algebra.
In particular it has elements i + j which are zero divisors, but
where (i + j)2 = −2. eg:

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

is zero and

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

is −2

Therefore, there is no cross product in dimensions larger than 7!!!
So cross products only exist in dimensions:

0, 1, 3, and 7.
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Some Questions For the Audience

Where did I actually really need that I was working over R?

What do you need to change/keep the same to do this for other
fields like C or Qp or Q?

What can you say about the “Hermitian” inner products on Cn?
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The End
Thank You.
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